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Abstract

Background: A novel descriptor (Complex Correlation Measure (CCM)) for measuring
the variability in the temporal structure of Poincaré plot has been developed to
characterize or distinguish between Poincaré plots with similar shapes.

Methods: This study was designed to assess the changes in temporal structure of
the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and
scopolamine administration in healthy human subjects. CCM quantifies the point-to-
point variation of the signal rather than gross description of the Poincaré plot. The
physiological relevance of CCM was demonstrated by comparing the changes in
CCM values with autonomic perturbation during all phases of the experiment. The
sensitivities of short term variability (SD1), long term variability (SD2) and variability in
temporal structure (CCM) were analyzed by changing the temporal structure by
shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used
to show CCM as a measure of changes in temporal structure rather than random
noise and sensitivity of CCM with changes in parasympathetic activity.

Results: CCM was found to be most sensitive to changes in temporal structure of
the Poincaré plot as compared to SD1 and SD2. The values of all descriptors
decreased with decrease in parasympathetic activity during atropine infusion and 70°
head-up tilt phase. In contrast, values of all descriptors increased with increase in
parasympathetic activity during scopolamine administration.

Conclusions: The concordant reduction and enhancement in CCM values with
parasympathetic activity indicates that the temporal variability of Poincaré plot is
modulated by the parasympathetic activity which correlates with changes in CCM
values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.

Background
Heart rate variability (HRV) is a powerful non-invasive method for analyzing the func-

tion of the autonomic nervous system. It is useful to understand the interplay between

the sympathetic and parasympathetic autonomic nervous system, which serves to speed

up and slow down the heart rate, respectively [1]. HRV, the variation of the time period

between consecutive heart beats, is thought to reflect the heart’s adaptability to the

changing physiological conditions. It is dependent predominantly on the extrinsic regu-

lation of the heart rate [2]. Assessment of HRV provides quantitative information about

the modulation of heart rate (HR) by sympathetic nervous system (SNS) and
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parasympathetic nervous system (PNS). Interactions of SNS and PNS using HRV signal

have been well studied and their importance established with a number of cardiac dis-

eases including myocardial infarction [3], patients with congestive heart failure [4],

patients at risk of sudden cardiac death [5,6] and patients with hypertension [7,8]. There

are two main approaches to the analysis of HRV: time-domain and frequency-domain

analysis. Time-domain indices (i.e., Mean, standard deviation (SD), standard deviation of

normal RR intervals (SDNN), standard deviation of averaged normal RR intervals

(SDANN) [9]) are derived from simple statistical calculations based on interbeat inter-

vals (RR intervals). These indices are sensitive to transients and trends in the sample of

heartbeats, and as such provide estimates of overall and beat-to-beat variability [10]. Fre-

quency-domain analysis, which is based on the power spectral density of the heart rate

time series, highlights the issue of the underlying rhythms of the mechanisms controlling

heart rate (HR) and identified three major spectral peaks (high frequency (HF: 0.15-0.4

Hz), low frequency (LF: 0.04-0.15 Hz) and very low frequency (VLF: below 0.04 Hz)) in

the adult HR spectrum [1]. These measurements can be derived from short-term (i.e 5

to 30 minutes) or long-term ECG recordings (i.e. 24 hours). HRV has been used as a

non-invasive marker of the activity of the autonomic nervous system for over two dec-

ades. The necessary guidelines for comparing different studies of HRV have been estab-

lished by the Task force of ESC and NPSE [9]. In [9], it has been suggested that the

time-domain methods are ideal for the analysis of long-term HRV signal. Poincaré plot

is one of the popular time domain HRV analysis techniques which is used both for short

term (i.e. 5 to 30 minutes) or long term (ie. 24 hours) analysis.

Poincaré plot is a visual presentation of time series signal to recognize the hidden

patterns. It is also a quantitative technique in the sense that it has various parameters

(ex: short-term variability (SD1) and long-term variability (SD2)) to quantify the infor-

mation from the plot. The Poincaré plot of HRV signal is constructed by plotting con-

secutive points of RR interval time series (i.e., lag-1 plot). It is a representation of HRV

signal on phase space or Cartesian plane [11], which is commonly used to asses the

dynamics of the HRV [12-15] signal, describe the sympathetic and parasympathetic

modulation of heart rate [16,17] and in various clinical settings like diabetes [18],

chronic heart failure [19], chronic renal failure [15] and sleep apnea syndrome [20].

The popular technique used to quantify the Poincaré plot is fitting an ellipse to the

shape of the Poincaré plot and measure the dispersion along the major and minor axis

of the ellipse. This technique was first proposed by Tulppo et. al. [12] in which they

have defined two standard descriptors of the plot SD1 and SD2 for quantification of

the Poincaré plot geometry. Later, the description of SD1 and SD2 in terms of linear

statistics, given by Brennan et. al. [21], showed that the standard descriptors guide the

visual inspection of the distribution. In case of HRV, it reveals a useful visual pattern

of the RR interval data by representing both short and long term variations of the sig-

nal [12,21]. The primary limitation of the standard descriptors used for quantifying

Poincaré plot is the lack of embedding temporal information. The standard descriptors,

SD1 and SD2, represent the distribution of signal in 2 D space and carries only infor-

mation of width and length. As shown in Figure 1, Poincaré plots of similar SD1 and

SD2 values can have completely different underlying temporal dynamics.

To overcome this limitation, in our previous study [22], we developed a novel mea-

sure, complex correlation measure (CCM), to quantify the temporal variation of the

Karmakar et al. BioMedical Engineering OnLine 2011, 10:17
http://www.biomedical-engineering-online.com/content/10/1/17

Page 2 of 14



Poincaré plot. In that study, it was shown that CCM is more sensitive to changes in

temporal structure of the signal than SD1 and SD2. In [22], it was reported that it is

possible to have two Poincaré plots with similar SD1 and SD2 having varied temporal

structure. In such a scenario, CCM can be used to successfully distinguish two Poin-

caré plots. CCM was also shown as a measurement from a series of lagged Poincaré

plots (multiple lag correlation) which can potentially provide more information about

the behavior of Poincaré plot than the conventional lag-1 plot measurements (SD1 and
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Figure 1 Poincaré plots with similar SD1 and SD2 having different temporal dynamics. Two different
RR interval time series of length N (N = 2000) with similar SD1 and SD2 values having different temporal
dynamics (first 20 points) are shown in top and bottom panel.
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SD2). Moreover, CCM has shown to have better generalization capability over different

pathology than SD1 and SD2, and it was reported as a novel parameter to characterize

the variability in the temporal structure of the Poincaré plot.

Use of Poincaré plot of successive RR intervals to study the heart rate behavior dur-

ing accentuated sympathovagal interaction has been reported in several studies

[12,13,16]. In this study we demonstrate the physiological significance of the novel

measure CCM by analyzing the effects of perturbations of autonomic function on

Poincaré plot descriptors (SD1 and SD2) in young healthy subjects caused by the 70°

head-up tilt test, atropine infusion and transdermal scopolamine patch. We also ana-

lyze the characteristics of the responses of CCM to changes in sequences of points in

Poincaré plot by surrogate analysis, which provides insight into the variability in tem-

poral structure of the Poincaré plot.

Methods
Complex Correlation Measure (CCM)

The CCM measures the point-to-point variation of the signal rather than gross

description of the Poincaré plot. It is computed in a windowed manner which embeds

the temporal information of the signal. A moving window of three consecutive points

from the Poincaré plot are considered and the temporal variation of the points are

measured. If three points are aligned on a line then the value of the variation is zero,

which represents the linear alignment of the points. Moreover, since the individual

measure involves three points of the two dimensional Poincaré plot, it is comprised of

at least four different points of the time series for lag m = 1 and at most six points in

case of lag m ≥ 3. Hence the measure conveys information about four different lag cor-

relations of the signal. If the Poincaré plot is composed of N points then the temporal

variation of the plot, termed as CCM , is composed of all overlapping three point win-

dows and can be calculated as:

CCM m
C N

A i
n i
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where m represents lag of Poincaré plot, A(i) represents area of the i-th triangle

and Cn is the normalizing constant which is defined as, Cn = π * SD1 * SD2, repre-

sents the area of the fitted ellipse over Poincaré plot at lag-m. The length of major

and minor axis of the ellipse are 2SD1, 2SD2, where SD1, SD2 are the dispersion

perpendicular to the line of identity (minor axis) and along the line of identity

(major axis) respectively. The detail mathematical formulation of CCM is reported in

our previous study [22].

Sensitivity to changes in temporal structure

Literally the sensitivity is defined as the rate of change of the value due to the change

in temporal structure of the signal. The change in temporal structure of the signal in a

window is achieved by surrogating the signal (i.e, data points) in that window. In our

previous study [22], we studied the temporal nature of sensitivity of CCM by changing

the temporal structure of the signal using a moving fixed length window. In this study,

the sensitivity of CCM was analyzed in order to define how it was affected by increas-

ing amount of change in temporal structure. By increasing the number of surrogating
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points we have increased the probability of the amount of change in temporal struc-

ture of time-series signal. At each step the number of surrogated points is increased by

50, which gives enough resolution to understand the overall pattern. We calculated

SD1, SD2 and CCM of a RR interval signal by increasing the number of surrogating

points at a time. For a selected number of surrogating points, we have shuffled the

points for 30 times and calculated all descriptors each time after shuffling. Finally the

surrogated values of descriptors were taken as a mean of the calculated values. Finally,

the sensitivity of descriptors ΔSD1j , ΔSD2j and ΔCCMj was calculated using equations

2-4:
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−
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where SD10, SD20 and CCM0 were the parameters measured for the original data set

without surrogation and j represents the window number whose data was surrogated.

Moreover, SD1j, SD2j and CCMj represent the SD1, SD2 and CCM values respectively

after surrogation of jth step.

Surrogate analysis

To show statistically that CCM is a measure of temporal variation rather than the out-

come of a random process with no temporal variations, we adapted one method of

surrogate data introduced by Theiler et al. [23]. We have used this method to prove,

the hypothesis that the correlation properties of RR interval were distinguishable from

uncorrelated random noise. This also indicates that the effect of surrogation is higher

in case of a strongly correlated signal. In this study, 30 surrogate RR interval series

were generated for each RR interval time series by shuffling the original RR interval

time series. Each of the surrogated RR interval series had the identical statistical distri-

bution (mean, SD, higher moments) as surrogation differed only in the temporal

sequence from the original time series. The effect of surrogation on the Poincaré plot

was then measured by calculating SD1, SD2 and CCM for each surrogated time series

and the means of the surrogated values (MeanSD1s , MeanSD2s and MeanCCMs) were

then calculated for 30 surrogated time series and compared to the SD1i , SD2i and

CCMi of original time series to determine the sensitivity of all parameters. The test of

the hypothesis was performed by computing the relative changes of SD1, SD2 and

CCM values (SD1R , SD2R and CCMR respectively) between original and the mean of

surrogated time series. That is, for ith time series it was defined as:
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Subjects and Study design

In this study, five subjects with normal sinus rhythm, did not smoke, had no cardiovas-

cular abnormalities and were not taking any medications were studied. Subjects were

aged between 20 and 40 years (30.2 ± 7.2 year). All subjects had provided fully

informed consent and ethical approval was granted by the Austin Hospital Committee

of Ethics in Human Research.

All studies were performed at the same time of the day without any disturbances. No

respiration control was performed because all phases of the study were conducted in

the resting state. An intravenous cannula was inserted into an antecubital vein and

subjects then rested for 20 minutes before commencement of data collection. The

length of the study varies from 10 to 20 minutes. For autonomic perturbations the fol-

lowing sequence of protocol was performed. At least 20 minutes was allowed between

each phase to permit the heart rate to return baseline. The sequence of phases was

maintained strictly as follows:

Baseline study

All baseline studies were conducted in subjects in the post-absorptive state after rest-

ing for 10 minutes in the supine position.

Seventy degree head-up tilt

Data were collected after subjects were tilted 70° on a motorized table. This maneuver

increases sympathetic and decreases parasympathetic nervous system activity [24]. To

permit the heart rate to stabilize at the new position, data were collected 5 minutes

after the subjects were tilted.

Atropine infusion

Atropine sulphate (1.2 mg) was added to 50 ml of intravenous dextrose and infused at

a rate of 0.12 mg/min for 5 minutes and then at a rate of 0.24 mg/min until comple-

tion of this phase of study. Use of this dose regimen reduces parasympathetic nervous

system activity significantly [25]. After 10 minutes of infusion of atropine, the data col-

lection started.

Transdermal scopolamine

One week after the above studies, a low-dose transdermal scopolamine patch (hyoscine

1.5 mg) was applied overnight to an undamaged hair free area of skin behind the ear.

The patch remained in situ for the duration of this period of the study. It has been

shown in [26] that low-dose transermal scopolamine increases parasympathetic ner-

vous system activity.

Details of the study design and data collection were published in [16].

Results
In Figure 2, the RR intervals and the corresponding Poincaré plot for all four phases of

the experiment with the same subject are shown. From figure it is eminent that the
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atropine infusion strongly reduces the size of plot by reducing both the RR interval

(increase in heart rate) and its variation. Whereas, the head-up tilt position reduces the

RR interval (increase in heart rate) variability markedly with respect to the baseline. In

contrast, use of low-dose transdermal scopolamine increases the RR interval (reduces

heart rate) and its variability resulted into a wider Poincaré plot in terms of width in

both direction (perpendicular to line of identity and along the line of identity).
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Figure 2 RR intervals and Poincaré plots during autonomic perturbations. RR interval time series for
single subject from all four phases of study with corresponding Poincaré plot.
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Table 1 summarizes the mean and standard deviation of heart rate variability features

of all subjects in all four phases. Short-term variability (SD1) was increased in Scopola-

mine phase and decreased in Atropine phase. A similar trend was also found for long-

term variability (SD2). Changes of SD1 values from phase to phase was much higher

than that of SD2. CCM value was also minimum in Atropine phase and maximum at

Scopolamine phase. Changes in mean values of CCM between study phases were

higher than both SD1 and SD2 (Table 1). Moreover, change in CCM values in Atro-

pine, 70° head-up tilt and Scopolamine phases from Baseline are found significant (p <

0.01). SD1 values were significantly different in Atropine and Scopolamine phases and

SD2 values differ only in Atropine phase.

The errorbars of log-scaled SD1, SD2 and CCM values for four groups of subjects are

shown in Figure 3. The atropine administration resulted into reduction in mean value

of SD1 (SD of ΔRR) for all subjects. The similar effect was also found for SD2 and

CCM . The use of scopolamine patch increased both the width and height of the Poin-

caré plot which resulted into increase in mean values of CCM as well as SD1, SD2. All

subjects have shown a marked reduction in SD1, SD2 and CCM values in 70° head-up

tilt phase compared to the baseline.

Figure 4 represented the change of descriptors SD1, SD2 and CCM with increasing

number of shuffled RR intervals. From Figure 4 it is obvious that the rate of change with

number of shuffled RR intervals was highest for CCM at any point than SD1 and SD2.

Surrogate data testing was performed to test if CCM can represent a measure of

temporal dynamics of RR intervals and quantify sensitivity of those parameters to rela-

tive changes. For each subject at all four phases, relative changes in SD1, SD2 and

CCM values of the RR interval signal were calculated. Figure 5 shows the log scaled

values of relative changes in SD1, SD2 and CCM at all four phases of the study using

SD errorbar. Relative changes in CCM values were higher compared to relative changes

in SD1 and SD2 values due to shuffling the sequences of data series (Figure 5). More-

over, the relative changes were found to be lowest for SD2 for all four phases.

Discussion
Heart rate variability time series were analyzed using a variety of linear methods, most

commonly using HRV descriptive statistics in the time and frequency domains

[1,10,12,14,16]. The potential use of Poincaré plot as a serial correlation technique has

also been explored to quantify autonomic activity [16,27]. In this study, we have shown

that CCM (a measure of temporal dynamics) for Poincaré plot provides a dynamical

way to quantify autonomic activity. In addition to this, CCM has been shown to be a

Table 1 MEAN and Standard deviation SD of values of all descriptors for lag-1 Poincaré
plot

Feature SD1 SD2 CCM

(mean ± sd) (ms) (mean ± sd) (ms) (mean ± sd)

Atropine 4.45 ± 2.45* 43.11 ± 13.79* 3.88E-02 ± 1.05E − 02*

Head-up tilt 11.96 ± 5.47 70.77 ± 13.98 6.29E-02 ± 2.08E − 02*

Baseline 28.74 ± 9.28 85.94 ± 11.27 1.50E-01 ± 3.40E-02

Scopolamine 69.90 ± 21.25* 103.05 ± 20.05 2.75E-01 ± 2.14E − 02*

SD1, SD2 and CCM values of all subjects (N = 5) were calculated for four phases as described in section.

* indicates the value of the feature in corresponding phase is significantly (p < 0.01) different from baseline phase using
Wilcoxon rank sum test.
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more sensitive parameter compared to SD1 and SD2 to any changes of dynamics in

autonomic activity.

Physiological relevance of CCM

Quantitative Poincaré plot analysis was used to assess the changes in HRV during

parasympathetic blockade [12] and compared the results with power spectral analysis
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of HRV, which was the commonly used method in the measurement of sympathovagal

interaction [1,12,28,29]. It was also reported that Poincaré analysis method can provide

the heart rate dynamics that is not detected by the conventional time domain methods

[12]. The present quantitative analysis was performed to measure the instantaneous

beat-to-beat variance of RR intervals (SD1), the long term continuous variance of all

RR intervals (SD2) and the variation in temporal structure of all RR intervals (CCM).

Instantaneous changes in RR intervals are mediated by vagal efferent activity, because

vagal effects on the sinus node are known to develop faster than sympathetically

mediated effects [30,31]. The maximum reduction in SD1 during atropine infusion

compared to baseline values, confirming that SD1 quantifies the vagal modulation of

heart rate, which was also reported by Kamen et. al. [16] and Tulppo et. al. [12]. Simi-

lar reduction in CCM value could be observed (Table 1 and Figure 3), which indicates

that CCM might correlate the parasympathetic nervous system activity. The lowest

value of CCM has also been found during atropine infusion which reduced the para-

sympathetic activity and reduces instantaneous changes in HRV signal. Moreover, sig-

nificant (p < 0.01) change in CCM values in all phases from Baseline phase compared

to SD1 and SD2 indicates that CCM is more sensitive to changes in parasympathetic

activity (Table 1). On the contrary, changes in SD1 values are insignificant in 70°

Head-up tilt phase and changes in SD2 values are insignificant both in 70° Head-up tilt

as well as Scopolamine phases.
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Reciprocal changes in sympathetic and parasympathetic activity occurs during head-

up tilt phase. The RR interval and the high-frequency power of RR intervals decreases

during the head up tilt phase as evidence of withdrawal of vagal activity (decrease in

parasympathetic activity) [32-34]. The short term variability measure of Poincaré plot

(SD1) also decreases and correlates with high-frequency power as reported by Kamen

et. al. [16]. In this study, SD1 value decreased during 70° head-up tilt phase compared

to baseline, which supports the results reported by previous studies [16,24]. The CCM

value has also decreased in 70° head-up tilt phase compared to baseline, which indi-

cates that CCM value is modulated by the vagal tone (parasympathetic activity). There-

fore, changes in autonomic regulation caused by 70° head-up tilt phase resulted in

concordant changes in the temporal structure of the Poincaré plot of RR intervals.

The low-dose transdermal scopolamine patch (hyoscine 1.5 mg) may decrease heart

rate by a paradoxical vagomimetic effect [26]. Delivery by transdermal patch substan-

tially increases both baseline and reflexly augmented levels of cardiac parasympathetic

activity over 24 hours in normal subjects [35,36]. Both time-domain HRV (Mean, SD)

and frequency domain HRV (high frequency power) increased to a greater extent dur-

ing administration of low-dose scopolamine, which indicates the increase in parasym-

pathetic activity [26]. The increase in parasympathetic activity decreases the heart rate

and increases the RR interval as well as instantaneous variance in the RR, as measured

by SD1 of Poincaré plot. The increased value of SD1 correlates with increased high

Atro Tilt Base Scop
10−1

100

101

102

103

C
ha

ng
e 

of
 v

al
ue

s 
in

 lo
g 

sc
al

e

SD1R
SD2R
CCMR

Figure 5 Changes in SD1, SD2 and CCM values for all phases. SD1R , SD2R and CCMR is the change
between original and surrogated values of SD1, SD2 and CCM (given by number of original Mean). RR
interval signal of each subject for four different phases was randomly shuffled 30 times then SD1, SD2 and
CCM was calculated each time. Mean of each descriptor (SD1, SD2 and CCM) of these 30 data sets was
compared to value of corresponding descriptor (SD1, SD2 and CCM) of originally ordered RR interval signal.

Karmakar et al. BioMedical Engineering OnLine 2011, 10:17
http://www.biomedical-engineering-online.com/content/10/1/17

Page 11 of 14



frequency power and is supported by the previous study reported by Kamen et. al. [16].

In this study, the variability in the temporal structure of the Poincaré plot (measured

as CCM) was also found to be increased with increase in parasympathetic activity dur-

ing administration of low-dose scopolamine (Figure 3, Table 1). The increase in CCM

value indicates that it reflects the change in parasympathetic activity harmoniously.

Sensitivity of CCM due to changes in dynamics

In this study, we have found that CCM correlates with the parasympathetic activity

similar to SD1 [16]. In [22], we have shown that CCM is sensitive to change in tem-

poral structure of the signal irrespective of temporal position of the signal. In that

study, we had used simulated RR interval signal to prove our hypothesis. In line with

the previous finding [22], in this study the relation of CCM with increasing number of

shuffled RR intervals has been studied. The highest rate of change of CCM with num-

ber of shuffled RR intervals (Figure 4) at any point represents the maximum sensitivity

of CCM with respect to change in temporal structure of the Poincaré plot. Therefore,

we can conclude that CCM is much more sensitive than SD1 and SD2 with respect to

change in temporal structure or the change in autocorrelation of the signal which was

earlier reported in [22]. Moreover, sensitivity of CCM with small number of RR inter-

vals increases its applicability to short length HRV signal analysis. However, it is not

possible to determine the value of minimum number of required RR interval for all

biomedical application as it will be problem specific rather than a global one.

The impact of changes in parasympathetic activity on temporal structure of the Poin-

caré plot is obvious from Figure 5. The changes due to surrogating are the highest for

CCM in all phases, which might indicate that CCM is a measure of temporal structure

of the plot and more sensitive to it than SD1 and SD2. Moreover, the change in its

value between before and after surrogating is the highest for atropine phase which

might indicate the reducing parasympathetic activity and its impact on the temporal

structure of the plot better manifest in CCM value. In atropine phase, since the para-

sympathetic activity is reduced, variability decreases (low SD1 values) which is reflected

by substantially linear temporal structure of the plot (lower CCM values). After surro-

gating, the correlation among the signal vanishes and as a result, uncorrelated or ran-

dom temporal structure increased the CCM value. Therefore, the difference between

original and surrogate value indicates that CCM depends on the correlation properties

of the RR interval and it can be used to distinguish the HRV signal from uncorrelated

random noise. Moreover, the difference between original and surrogate value also indi-

cates the sensitivity of the CCM increases with degree of blocking parasympathetic

activity by 70° head-up tilt and atropine infusion. On the other hand, the sensitivity of

CCM decreases with enhancement of parasympathetic activity by scopolamine

administration.

Conclusion
By using the quantitative Poincaré plot analysis of HRV signal, we observed that atro-

pine infusion, 70° head-up tilt and scopolamine administration result in changes in

heart rate variability [short term variation (SD1) as well as long term variation (SD2)]

and heart rate dynamics [temporal structure (CCM) values]. Subtle differences in

dynamics of HRV signal were detected by CCM in all phases of the study. These
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observations provide some novel information on the physiological relevance of CCM

for Poincaré plot analysis: 1) The variability of temporal structure of Poincaré plot of

HRV, quantified using CCM, correlates the parasympathetic activity 2) CCM is highly

sensitive to changes in parasympathetic activity (vagal tone) as compared to SD1 and

SD2. Although CCM captures temporal variation of Poincaré plot, it fails if the RR

intervals are aligned on a line. However, existence of few zero area patterns does not

affect the overall CCM value as it is measured using a moving window of three conse-

cutive points. Further studies of CCM of HRV signal with changes in sympathetic

activity may give the complete physiological explanation of CCM with respect to sym-

pathovagal activity. Moreover, due to well published changes in autonomic regulation

between men and women and in different age groups [37], and investigation of gender

and age effects on CCM would be of interest in further studies.
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