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Abstract

Background: Elevated transient ischemic ST segment episodes in the ambulatory
electrocardiographic (AECG) records appear generally in patients with transmural
ischemia (e. g. Prinzmetal’s angina) while depressed ischemic episodes appear in
patients with subendocardial ischemia (e. g. unstable or stable angina). Huge amount
of AECG data necessitates automatic methods for analysis. We present an algorithm
which determines type of transient ischemic episodes in the leads of records
(elevations/depressions) and classifies AECG records according to type of ischemic
heart disease (Prinzmetal’s angina; coronary artery diseases excluding patients with
Prinzmetal’s angina; other heart diseases).

Methods: The algorithm was developed using 24-hour AECG records of the Long
Term ST Database (LTST DB). The algorithm robustly generates ST segment level
function in each AECG lead of the records, and tracks time varying non-ischemic ST
segment changes such as slow drifts and axis shifts to construct the ST segment
reference function. The ST segment reference function is then subtracted from the
ST segment level function to obtain the ST segment deviation function. Using the
third statistical moment of the histogram of the ST segment deviation function, the
algorithm determines deflections of leads according to type of ischemic episodes
present (elevations, depressions), and then classifies records according to type of
ischemic heart disease.

Results: Using 74 records of the LTST DB (containing elevated or depressed ischemic
episodes, mixed ischemic episodes, or no episodes), the algorithm correctly
determined deflections of the majority of the leads of the records and correctly
classified majority of the records with Prinzmetal’s angina into the Prinzmetal’s angina
category (7 out of 8); majority of the records with other coronary artery diseases into
the coronary artery diseases excluding patients with Prinzmetal’s angina category (47
out of 55); and correctly classified one out of 11 records with other heart diseases
into the other heart diseases category.

Conclusions: The developed algorithm is suitable for processing long AECG data,
efficient, and correctly classified the majority of records of the LTST DB according to
type of transient ischemic heart disease.
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Background
Myocardial ischemia is an adverse outcome of pathologies, which compromise blood

flow to the myocardium. It is a state when there is insufficient supply of oxygenated

blood or the demand for it is too great. This can cause a part of the heart muscle to

become electrically inactive, and can lead to acute myocardial infarction, and in worst

case even death. On electrocardiogram (ECG) ischemia is manifested as transient

change of ST segment level and morphology (transient ischemic ST segment episodes).

In addition to these ischemic episodes, transient non-ischemic ST segment changes

also appear [1,2]. These non-ischemic changes include: changes of ST segment level

and morphology due to changes in heart rate (heart-rate related ST segment episodes);

sudden changes of ST segment level due to sudden shifts of the electrical axis of the

heart (axis shifts) or changes in ventricular conduction (conduction changes); and slow

drifts of ST segment level due to diurnal changes or effects of medications. According

to shift of ST segment level (positive or negative), transient ischemic ST segment epi-

sodes are either elevated or depressed.

Transient ischemic ST segment elevations typically appear in patients with acute

transmural ischemia [1] and in patients where acute transmural ischemia without

infarction occurs in the settings of Prinzmetal’s angina [3,4]. Furthermore, persistent

ST segment elevations indicate higher risk of mortality [5-10], a possible myocardial

injury [11-13], and often (but not always) an acute myocardial infarction [14]. In some

patients with ST segment elevations, reciprocal ST segment depressions may appear in

leads that are separate and distinct from leads manifesting ST segment elevations [1,4].

These reciprocal changes can appear in leads reflecting contra lateral surface of the

heart [1,4] or are believed to be secondary to coexisting distant ischemia, a manifesta-

tion of infarct extension, or may be an electrophysiological phenomenon caused by dis-

placement of the injury current vector away from the non-infarcted myocardium [15].

In contrast to the transient ST segment elevations, the transient ST segment depres-

sions appear in patients with other heart diseases, such as classic stable and unstable

angina [3,4].

Monitoring of a patient over a prolonged time is needed in order to identify or

observe sporadic transient events and to asses the extent and severeness of ischemic

heart disease. The long-term ambulatory ECG (AECG) records thus obtained have to

be checked and analyzed. Huge amount of data dictates use of automated methods for

processing and evaluation of such records. As a diagnostic tool for a cardiologist it

would be useful, time-saving and helpful to automatically determine “deflections of

leads” of AECG records: positive (only elevated transient ischemic ST segment episodes

present), negative (only depressed ischemic episodes), mixed (elevated and depressed

ischemic episodes), or no deflection (no ischemic episodes); and then to automatically

classify records according to “type of ischemic heart disease” into one of three cate-

gories: Prinzmetal’s angina (PMA), coronary artery diseases excluding patients with

Prinzmetal’s angina (CAD*), and other heart diseases (OHD). This information could

suggest further course of action such as additional investigations or might trigger an

early treatment of a patient. The objective of this study was to develop an algorithm to

automatically determine deflections of leads of AECG records according to type of

transient ischemic ST segment episodes present, and then to automatically classify
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records according to type of ischemic heart disease into three categories (PMA, CAD*,

and OHD).

Methods
For this study we used the AECG records of the Long-Term ST Database (LTST DB)

[16], which is intended to develop and to evaluate automated ischemia detectors and

to study physiological mechanisms responsible for myocardial ischemia. The LTST DB

contains 68 2- and 18 3-lead 24-hour AECG records (altogether 190 AECG leads)

sampled at a constant rate of 250 samples per second per channel (ΔT = 4 ms), with

amplitude resolution of 200 levels per 1 mV. The records of the LTST DB underwent

a considerable preprocessing phase [16], which was essential for human expert annota-

tors to be able to derive reliable reference annotations. Each lead of the records con-

tains reference annotations for transient ischemic and transient non-ischemic heart-

rate related ST segment episodes, reference annotations for axis shifts, and reference

annotations that define time-varying ST segment reference level (non-ischemic path)

along the leads of the records [16]. By subtracting time-varying ST segment reference

level, rA(i, j), where i denotes the lead number and j denotes the heart beat number,

from actual ST segment level, sA(i, j), the ST segment deviation level (or the ST seg-

ment deviation function), dA(i, j), was obtained for each lead of the records. All these

functions are stored in the files of the LTST DB. Transient ischemic and transient

non-ischemic heart-rate related ST segment episodes were then annotated in the ST

segment deviation functions by human expert annotators of the LTST DB. Transient

ST segment episodes were annotated according to three annotation criteria. These cri-

teria state that the episode begins when the magnitude of the ST segment deviation

function first exceeds 50 μV. Next, the ST segment deviation function must reach a

magnitude of at least Vmin μV throughout the interval of at least Tmin s. The episode

ends when the ST segment deviation function becomes lower than 50 μV, provided

that it does not exceed 50 μV in the following 30 s. Values for Vmin and Tmin differ

according to three annotation protocols and are: Vmin = 75 μV and Tmin = 30 s for the

protocol A; Vmin = 100 μV and Tmin = 30 s for the protocol B; and Vmin = 100 μV and

Tmin = 60 s for the protocol C.

For this study we chose reference annotations according to annotation protocol B.

For each lead of each record of the LTST DB, we verified the reference episode anno-

tations at the extrema of each episode and determined deflections of leads. If the

extrema of all ischemic episodes in a lead are positive, the deflection of lead is positive;

if the extrema of all ischemic episodes in the lead are negative, the deflection of lead is

negative; if ischemic episodes in the lead have negative as well as positive extrema, the

deflection of lead is mixed; and if there are no ischemic episodes in the lead, the

deflection of lead is no episodes. We considered all 86 records of the LTST DB. Of

these, we used 74 records for the study, while we excluded those 12 records which

contain non-ischemic heart-rate related ST segment episodes in each of their leads.

Based on the knowledge of the expert cardiologists [1,3,4] we defined a set of rules by

which AECG records can be classified into classes or categories of type of ischemic

heart disease (PMA , CAD*, OHD) according to their deflections of leads. The set of

rules are following:
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Dp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PMA : if ∃i : Op(i) = Positive

CAD∗ : if ∃i,∀l, l �= i : Op(i) = negative∧
Op(l) ∈ {negative, mixed,no episodes}

OHD : if ∀i : Op(i) ∈ { mixed, no episodes} ,

(1)

where Dp represents category into which a record p is classified, Op(.) represents

determined deflection of a lead, while i and l represent lead numbers. A record con-

taining at least one lead with positive deflection of lead is classified into the PMA cate-

gory. A record containing at least one lead with negative and no leads with positive

deflection of lead is classified into the CAD* category. And a record containing only

leads with mixed or no episodes deflection of leads is classified into the OHD category.

The 74 AECG records of the LTST DB used in this study, classified manually (based

on the reference episode annotations of the database set by human expert annotators)

into the categories of type of ischemic heart disease (PMA, CAD*, OHD), when using

the set of rules (1) and the deflection of leads, are shown in Table 1. The records are

also grouped according to the diagnoses.

The developed algorithm to classify AECG records into the categories of type of

ischemic heart disease is composed from three modules: A. preprocessing; B. tracking

of slow drifts, detection of axis shifts and correcting the ST segment reference level;

and C. determining the deflection of leads and classifying the records according to

type of ischemic heart disease.

A. Preprocessing

The input to the developed algorithm were raw AECG data of the records and the

ARISTOTLE’s [17] fiducial points of normal and non-noisy heart beats which passed

the preprocessing phase of the LTST DB [16]. These data are freely available to the

users of the LTST DB. To further avoid the effects of noise, the average heart beats

were constructed. Each normal heart beat in the raw AECG signal was replaced with

the average heart beat. For the construction of each average heart beat normal non-

noisy heart beats in the 16 s neighborhood of the current heart beat were used. Heart

beats were aligned according to their fiducial points, FP(i, j), where i denotes lead

number, and j denotes heart beat number. The FP(i, j) is located in QRS complex

region of the j-th heart beat in the ‘center of mass’ of deflections [16].

To construct the ST segment level function, the algorithm searches for the positions

of the isoelectric level and J point in each average heart beat. To determine the

Table 1 Manual classification of the records of the LTST DB

LTST DB (74 records)

Type of heart disease
↓

Diagnoses

Prinzmetal’s angina Unstable angina Angina CAD Other

PMA 6 1 1 0 0

CAD* 1 5 4 39 3

OHD 1 1 0 4 8

The 74 AECG records of the LTST DB with corresponding heart diseases classified manually according to defined rules
into categories of type of ischemic heart disease. Records in column Other belong to patients with other diseases, either
syndrome X, palpitations, hypercholesterolemia, syncope, hypertension, or cardiomyopathy. Legend: CAD - coronary
artery disease.
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position of the isoelectric level of the j-th heart beat, I(j), the algorithm searches from

the FP(i, j) backwards to point FP(i, j) - 108 ms in each lead for the “flattest” 20 ms

segment of the signal and then determines one final position, I(j), [18,19]. For the posi-

tion of the J point of the j-th heart beat, J(j), the algorithm searches forward from the

FP(i, j) to the point FP(i, j) + 68 ms in each lead for a part of a waveform which “starts

to flatten”. One final position, J(j), is then determined as that furthest from the FP(i, j)

[19,20].

Using the positions of the isoelectric reference points and J points in the average

heart beats, given lead, the algorithm constructs the ST segment level function, s(i, j),

as:

s(i, j) = a(i, j) − z(i, j), (2)

where a(i, j) is the amplitude at the point of measurement of the ST segment level (S

(j)), and z(i, j) is the amplitude of isoelectric level. Both amplitudes, a(i, j) and z(i, j),

are determined as mean values of signal sample amplitudes in the 20 ms interval sur-

rounding S(j) and I(j). The point of measurement of the ST segment level, S(j), is

determined according to the position of the J point, J(j), and heart rate by following

rule:

S(j) =

⎧⎪⎪⎨
⎪⎪⎩

J(j) + 80ms: if HR(j) < 100 bpm
J(j) + 72ms: if 100 bpm ≤ HR(j) < 110 bpm
J(j) + 64ms: if 110 bpm ≤ HR(j) < 120 bpm
J(j) + 60ms: if 120 bpm ≤ HR(j),

(3)

where HR(j) denotes heart rate at the j-th heart beat, measured in beats per minute

[bpm]. The ST segment level function, s(i, j), is then resampled at a constant rate of

0.5 samples per second and smoothed using 7-point moving average filter to obtain

the “raw” ST segment level function, s(i, k), where i denotes the lead number and k

denotes the sample number in the resampled function [19]. An example of the ST seg-

ment level function derived by the human expert annotators of the LTST DB and that

derived by the algorithm is shown in Figure 1b and 1d respectively.

B. Tracking of slow drifts, detection of axis shifts and correcting the ST segment

reference level

In order to accurately determine deflection of leads, all non-ischemic events have to be

excluded from further analysis. For this, the algorithm tracks the time-varying non-

ischemic path in each ST segment level function along the record to create the ST seg-

ment reference function. The ST segment reference function is then subtracted from

the ST segment level function to obtain the ST segment deviation function, which is

used to determine deflection of leads. Construction of the ST segment reference func-

tion is made in several steps.

In the first step, the algorithm tracks slowly varying ST segment reference level trend

by applying two moving average filters of 6 h 40 min (hg) and 5 min (hl) in length to

the ST segment level function, s(i, k), to obtain the time-varying global, rg(i, k), and

local, rl(i, k), ST segment reference level trends, respectively. The lengths of the

impulse responses of the filters were selected such that the output of hg models slow

changes of the ST segment level function (e. g. slow drifts), while output of hl models

faster changes of the ST segment level function (e. g. transient ST segment episodes)
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[21]. Using these two ST segment reference level trends, the algorithm obtains the esti-

mation of the ST segment reference function, r1(i, k), which tracks slow drifts but skips

faster events and episodes. The r1(i, k) is taken as rg(i, k) if the absolute difference

between the rg(i, k) and rl(i, k) is more than 50 μV; otherwise it is taken as rl(i, k).

In the second step, axis shifts due to position changes and changes in ventricular

conduction are detected in each ECG lead as a step change in the ST segment level

function and Mahalanobis distance functions of the first order of the QRS complex

and of the ST segment Karhunen-Loève coefficients feature vectors. These distance

functions are also included in the LTST DB and are available to the users of the data-

base. Axis shifts are detected as a step change within Ta = 72 s interval which has a

flat interval of length Tf = 216 s before and after the step change. The final ST seg-

ment reference function, r2(i, k), is obtained by replacing the r1(i, k) with s(i, k) in the

intervals surrounding the detected axis shifts, forward and backward from the axis

shifts, until the absolute difference between the rg(i, k) (or rl(i, k)) and s(i, k) is less

then 50 μV [21]. By subtracting the ST segment reference function of the lead from

the ST segment level function we get the ST segment deviation function, where slow

drifts and axis shifts due to body position changes and changes in ventricular conduc-

tion are excluded:

d(i, k) = s(i, k) − r2(i, k). (4)

Ideally, we would get the ST segment deviation function where only transient ST

segment episodes are present. The obtained ST segment reference function of the

example from Figure 1 (Figure 1e) tracks the non-ischemic changes quite well, so the
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Figure 1 Excerpt of a record s20371 from the LTST DB. Time trends of the first lead of the 2-lead
record s20371 from the LTST DB (6 hour excerpt from 24 hour record is shown, starting at 6 hours after
the start of the recording), where deflection of lead was correctly determined as negative. Legend: (a) heart
rate ([bpm]); (b) ST segment level function, sA(0, j), as derived by the human expert annotators of the LTST
DB ([μV]); (c) ST segment deviation function, dA(0, j), as derived by the human expert annotators ([μV]); (d)
ST segment level function, s(0, k), as derived by the algorithm ([μV]); (e) ST segment reference function, r2(0,
k), as derived by the algorithm ([μV]); (f) ST segment deviation function, d(0, k), as derived by the algorithm
([μV]); (g) Above the line: four axis shifts (vertical tics) as detected by the algorithm. Below the line: 7 axis
shifts (vertical tics) and one transient ischemic ST segment episode (thin rectangle) as annotated by human
expert annotators according to the protocol B of the database.
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ST segment deviation function derived by the algorithm (Figure 1f) is quite similar to

that constructed by the human expert annotators of the LTST DB (Figure 1c).

C. Determining the deflection of leads and classifying the records according to type of

ischemic heart disease

To determine the deflection of leads, the samples of the ST segment deviation function

of a lead, d(i, k), are considered as samples of a random variable, and are used to con-

struct a histogram of this function. An example demonstrating histogram of the first

lead of the record s20371 of the LTST DB is shown in Figure 2. Then, the z-th statisti-

cal moment above the threshold KS = 50 μV:

m+
z (i,KS) =

B∑
x=KS

(|x − KS|z. 1
M

.N(i, x)), (5)

and z-th statistical moment below the threshold -KS:

m−
z (i,−KS) =

−KS∑
x=−B

(|x + KS|z. 1M .N(i, x)), (6)

are computed, where z represents the statistical moment used (z = 1, 2, 3), N(i, x)

the number of samples with the value x in the histogram, M the number of samples of

d(i, k), and B = 1500 μV defines the upper and lower bounds between which the histo-

gram is constructed [21]. The algorithm determines the deflection of lead, Op(i), of the

lead i of a record p, using the z-th statistical moments above and below the threshold

KS, by applying the following rule [21]:
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Figure 2 Example histogram of the ST segment deviation function. Histogram of the ST segment
deviation function of the first lead, d(0, k), of the record s20371 of the LTST DB. Transient ischemic ST
segment episodes in this lead are depressions. See also Figure 1 and text.
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Op(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

positive :

if (m+
z (i,KS) − m−

z (i,−KS)) ¿ 1
M .KC

negative :

if (m+
z (i,KS) − m−

z (i,−KS)) ¡ − 1
M .KC

mixed or no episodes :

otherwise,

(7)

where KC is the threshold for lead classification and differs according to the statisti-

cal moment used. The threshold Kc is the same for all leads of all records of the data-

base, given statistical moment used for lead classification (either the first, or the

second, or the third). The example in Figure 2 demonstrates determining deflection of

the first lead of the record s20371 using the third statistical moment.

To optimize the algorithm, we investigated the first, second, and third statistical

moment, for various values of threshold KC. The KC determines whether deflection of

a lead is decided as positive, or negative, or as mixed or no episodes. Using higher KC

more leads have deflections of leads determined as mixed or no episodes, while using

lower KC more leads have deflections of leads determined as positive or negative.

As the main optimization constraint we took the minimum number of leads contain-

ing only elevated ischemic episodes being falsely determined as having negative, and

the minimum number of leads containing only depressed ischemic episodes being fal-

sely determined as having positive deflections of leads. We also tried to maximize the

number of leads containing both types of ischemic episodes and leads without any ST

segment episodes determined as having mixed or no episodes deflections of leads. We

tested different values of the threshold KC for the first, second, and third statistical

moment. The optimal values obtained for the threshold KC were: 2 × 103(μV) for the

first, 75 × 103(μV)2 for the second, and 3.75 × 106(μV)3 for the third statistical

moment.

Finally, the algorithm automatically classifies each record p into one of the categories

of type of ischemic heart disease, Dp Î {PMA, CAD*, OHD}, using the set of rules (1).

Results
Results of determining deflections of leads of the 74 AECG records of the LTST DB

using different moments and optimal thresholds are shown in Table 2. The results

when the reference level correction was applied are shown left, while when no refer-

ence level correction was applied are shown right. The upper left part shows the

results of determining deflections of leads using the first statistical moment. The algo-

rithm correctly determined deflections of 90% of leads (9 out of 10) with elevations as

positive. The algorithm correctly determined deflections of 96% of leads (89 out of 93)

with depressions as negative. For the leads with mixed types of episodes the algorithm

determined deflections of 60% of leads (three out of five) as positive and of 40% of

leads (two out of five) as negative. The algorithm also correctly determined deflections

of 19% of leads without transient ST segment episodes (8 out of 43) as mixed or no

episodes. The middle left part of Table 2 shows the results of determining deflections

of leads using the second statistical moment. The algorithm correctly determined

deflections of 100% of leads with elevations as positive, and of 97% of leads with

depressions as negative. For the leads with mixed types of episodes the algorithm
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determined deflections of 60% of leads as positive and of 40% as negative. The algo-

rithm also correctly determined deflections of 30% of leads without transient ST seg-

ment episodes as mixed or no episodes.

The lower left part of Table 2 shows the results of determining deflections of leads

using the third statistical moment. The algorithm correctly determined deflections of

100% of leads with elevations as positive, and of 99% of leads with depression as nega-

tive. For the leads with mixed types of episodes the algorithm determined deflections

of 60% of leads as positive and of 40% as negative. The algorithm also correctly deter-

mined deflections of 40% of leads without transient ST segment episodes as mixed or

no episodes. The right part of Table 2 shows results of determining deflections of leads

using different statistical moments when no reference level correction was performed.

Values of the threshold KC were optimized for best performance. Using the first statis-

tical moment (upper right, refer also to left part of the Table 2), the algorithm cor-

rectly determined deflections of 80% of leads with elevations as positive and of 72% of

leads with depressions as negative. The algorithm also correctly determined deflections

of 12% of leads without transient ST segment episodes as mixed or no episodes. Using

the second statistical moment (middle right), the algorithm correctly determined

deflections of 90% of leads with elevations as positive and of 82% of leads with depres-

sions as negative. The algorithm also correctly determined deflections of 16% of leads

without transient ST segment episodes as mixed or no episodes. Finally, using the third

statistical moment (lower right), the algorithm correctly determined deflections of 90%

of leads with elevations as positive and of 87% of leads with depressions as negative.

Table 2 Results of determining deflections of leads

Reference level correction No reference level correction

First moment KC = 2 × 103(μV) KC = 3.5 × 103(μV)

positive negative mixed, no episodes positive negative mixed, no episodes

Elevations 9 (90%) 0 (0%) 1 (10%) 8 (80%) 2 (20%) 0 (0%)

Depressions 3 (3%) 89 (96%) 1 (1%) 24 (26%) 67 (72%) 2 (2%)

Mixed 3 (60%) 2 (40%) 0 (0%) 2 (40%) 3 (60%) 0 (0%)

No episodes 11 (26%) 24 (56%) 8 (19%) 11 (26%) 27 (63%) 5 (12%)

Second moment KC = 75 × 103(μV)2 KC = 150 × 103(μV)2

positive negative mixed, no episodes positive negative mixed, no episodes

Elevations 10 (100%) 0 (0%) 0 (0%) 9 (90%) 1 (10%) 0 (0%)

Depressions 0 (0%) 90 (97%) 3 (3%) 17 (18%) 76 (82%) 0 (0%)

Mixed 3 (60%) 2 (40%) 0 (0%) 2 (40%) 3 (60%) 0 (0%)

No episodes 10 (23%) 20 (47%) 13 (30%) 12 (28%) 24 (56%) 7 (16%)

Third moment KC = 3.75 × 106(μV)3 KC = 4.75 × 106(μV)3

positive negative mixed, no episodes Positive negative mixed, no episodes

Elevations 10 (100%) 0 (0%) 0 (0%) 9 (90%) 1 (10%) 0 (0%)

Depressions 0 (0%) 92 (99%) 1 (1%) 12 (13%) 81 (87%) 0 (0%)

Mixed 3 (60%) 2 (40%) 0 (0%) 2 (40%) 3 (60%) 0 (0%)

No episodes 9 (21%) 17 (40%) 17 (40%) 13 (30%) 24 (56%) 6 (14%)

Results of determining deflections of leads of the 74 AECG records using the first, second, and third statistical moment,
with the reference level correction (left) and without the reference level correction (right), with regard to the reference
annotations of the protocol B of the LTST DB. Percentages of leads per total number of leads for given deflection
(elevations, depressions, mixed, or no episodes) are bracketed.
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The algorithm also correctly determined deflections of 14% of leads without transient

ST segment episodes as mixed or no episodes.

The best results were obtained using the third statistical moment which represents

skewness of the distribution. The difference of the positive and negative moments

above 50 μV and below -50 μV respectively shows which side lobe of distribution pre-

vails e. g. whether there are significant elevations or depressions present. The algo-

rithm differentiates very well between the leads containing only elevated or only

depressed ischemic episodes, but is not yet suitable for use with leads containing

mixed type of episodes. Next, using the third statistical moment for determining

deflections of leads, the algorithm then classified the records using the set of rules (1)

according to type of ischemic heart disease. These results are shown in Table 3. The

table shows the results of manual classification of the records (upper), of automatic

classification by the algorithm (middle), and the difference between the results of auto-

matic and of manual classification (lower). The results are also grouped according to

the diagnoses.

The algorithm (middle) correctly classified 7 out of 8 patients with Prinzmetal’s

angina into PMA category, and one was misclassified into CAD* category. The algo-

rithm classified 47 out of 55 patients with unstable angina, angina, or coronary artery

disease into CAD* category, while 6 were misclassified into PMA and two into OHD

category. One patient out of 11 with other heart disease was classified into OHD

Table 3 Manual and automatic classification (with differences) of the records of the LTST
DB

Reference: LTST DB (74 records)

Type of heart disease
↓

Diagnoses

Prinzmetal’s angina Unstable angina Angina CAD Other

PMA 6 1 1 0 0

CAD* 1 5 4 39 3

OHD 1 1 0 4 8

Σ8 Σ55 Σ11

Algorithm: LTST DB (74 records)

Type of heart disease
↓

Diagnoses

Prinzmetal’s angina Unstable angina Angina CAD Other

PMA [7] Σ7 [2 2 2] Σ6 6

CAD* 1 [5 3 39] Σ47 4

OHD 0 [0 0 2] Σ2 [1] Σ2

Σ8 Σ 55 Σ11

Algorithm - Reference

Type of heart disease
↓

Diagnoses

Prinzmetal’s angina Unstable angina Angina CAD Other

PMA 1 1 1 2 6

CAD* 0 0 -1 0 1

OHD -1 -1 0 -2 -7

The 74 AECG records of the LTST DB with corresponding diagnosis, classified according to defined categories of type of
ischemic heart disease. Results of manual classification are shown in the upper part, results of automatic classification in
the middle, and the differences between automatic and manual classification in the lower part of the table. Legend: CAD
- coronary artery disease.
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category. The difference between automatic and manual classification (bottom) shows,

that the automatic classification gives pretty much similar results as the manual classi-

fication. Using the set of rules (1) the algorithm managed to correctly recognize major-

ity of records belonging to patients with Prinzmetal’s angina and majority of records

belonging to patients with other coronary artery diseases.

Discussion and Conclusions
The results show, that the developed algorithm can be used to classify patients accord-

ing to type of ischemic heart disease. Using the set of rules (1) for classification of

records the results of automatic classification were similar to those of manual classifi-

cation, with the exception of classification of records in the “Other” category. Main

reason for this is that some of those records contain non-ischemic events, which are

not all properly detected and thus cause wrong classification. To rectify this we would

need to improve the part of the algorithm responsible for detection and exclusion of

non-ischemic events. The results showed that the proposed algorithm is efficient in

determining deflections of leads with only elevated or depressed transient ischemic ST

segment episodes present, but is not yet suitable for use with leads containing mixed

type of episodes. Using the third statistical moment, the deflections of almost all leads

with either elevated or depressed ischemic episodes were correctly determined. The

algorithm did not perform well in determining deflections of leads in those leads

which contain both types of transient ischemic ST segment episodes. This is mostly

due to the fact that in these leads there is a large number of depressions and small
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(b)
ST Level   [uV]
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  0

(c)
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  0

(d)
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Algorithm

-100
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  0

(e)
ST Reference   [uV]
Algorithm

-100

100

  0

(f)
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Algorithm
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100

(g)
 
 
Annotators

Annotations
Algorithm

Time
[h:m:s]

06:00:00 06:30:00 07:00:00 07:30:00 08:00:00 08:30:00 09:00:00 09:30:00 10:00:00 10:30:00 11:00:00 11:30:00

Record: s20274

Figure 3 Excerpt of a record s20274 from the LTST DB. Time trends of the second lead of the 2-lead
record s20274 from the LTST DB (6 hour excerpt from 24 hour record is shown, starting at 6 hours after
the start of the recording), where deflection of lead was determined as negative instead of mixed or no
episodes. Legend: (a) heart rate ([bpm]); (b) ST segment level function, sA(1, j), as derived by the human
expert annotators of the LTST DB ([μV]); (c) ST segment deviation function, dA(1, j), as derived by the
human expert annotators ([μV]); (d) ST segment level function, s(1, k), as derived by the algorithm ([μV]); (e)
ST segment reference function, r2(1, k), as derived by the algorithm ([μV]); (f) ST segment deviation
function, d(1, k), as derived by the algorithm ([μV]); (g) Above the line: one axis shift (vertical tic, time 10 h
8 min) as detected by the algorithm and only one elevated transient ischemic ST segment episode (thin
rectangle) as annotated by the human expert annotators (see the arrow). Below the line: one axis shift
(vertical tic, time 10 h 8 min) and 15 depressed ischemic episodes (thin rectangles) as annotated by the
human expert annotators according to the protocol B of the database.
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number of elevations, or vice versa. Larger number of episodes of one type prevails and

deflection of lead is then determined as either positive or negative. An example is the

record s20274 from the LTST DB (see Figure 3). Both leads of this record have ele-

vated as well as depressed ischemic episodes, but the algorithm determined deflections

of both leads as negative. The first lead of this record contains three elevated and 36

depressed, while the second lead contains only one elevated and 62 depressed ischemic

episodes. A 6-hour excerpt of the second lead of this record, with 15 depressed and

one elevated ischemic episode is shown. The results of determining deflections of leads

with no transient ST segment episodes were not good. The deflections of approxi-

mately one third of these leads (using the third statistical moment) were correctly

determined as mixed or no episodes. Lower performance is due to the fact that some

axis shifts were not detected, consequently causing wrong determination of deflections

of leads.

Our algorithm performed exceptionally well in determining deflections of leads and

in classifying patients according to type of ischemic heart disease, but there are still

some limitations, which concern leads containing both types of transient ischemic ST

segment episodes and leads without transient ST segment episodes. In cases where

leads contain larger number of one type of ischemic episodes, the insertion of such

leads into mixed group seems to be inadequate. A division of these records into more

groups, or some other method for determining deflections of leads, might be consid-

ered, and the rule (7) for determining deflections of leads would need to be improved.

The problem concerning leads without transient ST segment episodes is the inability

of the algorithm to accurately detect all axis shifts. To rectify this, the developed

method for detecting axis shifts would need to be improved. Other techniques for

detecting axis shifts due to body position changes were investigated in the past

[22-24]. Pitfalls with these techniques lie in the fact that they were developed using

artificially triggered axis shifts, so prior validation of these techniques using real clinical

data should be performed.

The algorithm shows high sensitivity of determining deflection of leads (100% for

leads containing elevations only and 99% for leads containing depressions only) with

some false positives. The proposed algorithm is efficient and could be a valuable aid in

every day clinical practice. The algorithm is, despite some limitations, appropriate for

processing large amount of AECG data and for quick assessment of type of ischemic

heart disease. The study showed that the reference level correction (tracking of slow

drifts, detection of axis shifts, and correcting the ST segment reference level) is an

essential part of the algorithm and enables good classification of patients according to

type of ischemic heart disease. Without the module for reference level correction, the

deflections of a substantial part of leads were incorrectly determined. Early and accu-

rate assessment of the deflection of leads itself is already valuable for a clinician, since

this information suggests the cause and type of ischemia.
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