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Abstract

Background: Accurate automatic segmentation of the caudate nucleus in magnetic
resonance images (MRI) of the brain is of great interest in the analysis of
developmental disorders. Segmentation methods based on a single atlas or on
multiple atlases have been shown to suitably localize caudate structure. However, the
atlas prior information may not represent the structure of interest correctly. It may
therefore be useful to introduce a more flexible technique for accurate
segmentations.

Method: We present Cau-dateCut: a new fully-automatic method of segmenting the
caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy
with the Graph Cut energy-minimization framework. We adapt the Graph Cut model
to make it suitable for segmenting small, low-contrast structures, such as the caudate
nucleus, by defining new energy function data and boundary potentials. In particular,
we exploit information concerning the intensity and geometry, and we add
supervised energies based on contextual brain structures. Furthermore, we reinforce
boundary detection using a new multi-scale edgeness measure.

Results: We apply the novel CaudateCut method to the segmentation of the
caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder
(ADHD) patients and 40 control children, as well as to a public database of 18
subjects. We evaluate the quality of the segmentation using several volumetric and
voxel by voxel measures. Our results show improved performance in terms of
segmentation compared to state-of-the-art approaches, obtaining a mean overlap of
80.75%. Moreover, we present a quantitative volumetric analysis of caudate
abnormalities in pediatric ADHD, the results of which show strong correlation with
expert manual analysis.

Conclusion: CaudateCut generates segmentation results that are comparable to
gold-standard segmentations and which are reliable in the analysis of differentiating
neuroanatomical abnormalities between healthy controls and pediatric ADHD.
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framework
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1 Introduction
Studies of volumetric brain magnetic resonance imaging (MRI) show neuroanatomical

abnormalities in pediatric attention-deficit/hyperactivity disorder (ADHD) [1-3].

ADHD is a developmental disorder characterized by inatten-tiveness, motor hyperac-

tivity and impulsiveness, and it represents the most prevalent childhood psychiatric

disorder. It is also estimated that half the children with ADHD will display the disorder

in adulthood. As stated in several reviews and metanalyses, diminished right caudate

volume is one of the most replicated findings among ADHD samples in morphometric

MRI studies [4]. As a result of these studies, in [5], the authors proposed a diagnostic

test based on the ratio between right caudate volume and the total bilateral caudate

volume.

Most of the analyses of ADHD via MRI images, as well as much research in neu-

roscience, lack an appropriate automated segmentation system, and therefore require

physicians to manually segment brain structures, such as the caudate, on a slice by

slice basis. This process is extremely time consuming, tedious, and prone to inter-rater

discrepancies, limiting the statistical power of the analysis. An automated approach

would accelerate the analysis and make the procedure feasible for large amounts of

data. Automatic segmentation of subcortical structures in the brain is currently an

active research area. In contrast to the problem of tissue segmentation (GM, WM, and

CSF) in brain MRI, for which acceptable solutions can be found, the issue of subcorti-

cal structure segmentation has yet to be satisfactorily addressed. Structures such as the

putamen and caudate nucleus are difficult to correctly segment even manually, since

they are small and their intensity is non-uniform and non-contrasted. Figure 1 is an

example of some brain MRI transversal planes with the caudate nucleus indicated.

Semi-automatic methods for segmenting subcortical structures have been proposed,

such as the method developed specifically for neuroanatomical segmentation [6], in

which the user specifies two coordinates of the AC-PC line for the segmentation of the

caudate. This method is a knowledge-driven two-step algorithm. In the first step, lat-

eral ventricles are extracted to help position a bounding box that contains the caudate

nucleus. Region growing of gray matter seed points is performed inside the box to esti-

mate an initial segmentation. A set of anatomical constraints are also defined, based on

previous knowledge, and are subsequently imposed on the first result. In the second

step, the caudate boundaries are refined outside the bounding box by imposing new

anatomical constraints. In [1], the authors use an SPM tool to segment and compute

Figure 1 Caudate nucleus in MRI transversal planes. Examples of brain MRI transversal scans. Caudate
nuclei are marked in white.
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voxel-based morphometry measures. Significant effort has been put into automated

segmentation of different structures in brain MRI (see reviews [7,8]). A good example

of these efforts can be found in the Caudate Segmentation Evaluation challenge

(CAUSE07) [9]. In this competition, different algorithms designed to segment the cau-

date nucleus from brain MRI scans were compared. From among the methods

adopted, the atlas-based segmentation approaches stand out as a powerful generic

technique for automatic delineation of structures in volumetric images. This approach

uses data obtained from different subjects to construct an atlas, which acts as a com-

mon anatomy for the area imaged (brain) and applies it to further segmentations. The

results of the CAUSE07 competition show that multi-atlas segmentation methods can

outperform schemes based on a single atlas. However, running multiple registrations

on volumetric data requires a lot of time, and it is difficult to determine the optimum

number of atlases to be considered [10]. In contrast, an important disadvantage of

atlas-based methods is that the target object is not necessarily correctly represented by

the atlas shapes. In this case, a more flexible and adaptive technique can be useful in

order to ensure accurate segmentation results.

In this work, we combine the power of atlas-based segmentation with an adaptive

energy-based scheme based on the Graph Cut (GC) framework, to obtain a globally

optimal segmentation of the caudate structure in MRI. The GC theory has been used

in many computer vision problems [11]. In particular, it has successfully been applied

to binary segmentation of images, and has yielded a solution which corresponds to the

global minimum of an energy function [12,13]. The goodness of the solution depends

on the suitability of the unary and boundary energy terms and their reliable computa-

tion. The original GC definition is limited to image information, and can fail when the

caudate structure in MRI is subtle and contrast is low. In order to overcome this pro-

blem, we add supervised contextual information of the caudate nucleus and reinforce

boundary detection using a new multi-scale edgeness measure.

Our method, CaudateCut, starts with an initialization step based on a standard atlas-

based method, and defines a new GC energy function that is specially adapted to cau-

date nucleus segmentation. In particular, CaudateCut involves several stages. The first

stage is devoted to defining the initial region of the caudate nucleus and does so by

taking advantage of the a priori brain structure information. Later steps continue the

definition of the novel GC energy function that is appropriate for segmentation of the

caudate nucleus from brain MRI scans. More specifically, we propose a novel energy

function that combines local and contextual image information analysis by modeling

foreground and background properties, as well as relations between neighboring pixels.

In contrast to the classical GC model, where energy unary terms are only based on

pixel intensity values, we also exploit previously-learned shape relations. In particular,

our unary term is defined as the weighted sum of two terms: one based on the inten-

sity model, and the other on the confidence of the output of a binary classifier. The

new supervised unary term uses correlogram structure as a pixel description in order

to capture contextual intensity relations around the pixel analyzed. Moreover, in the

case of the boundary term, we propose that information from the first and second

intensity derivatives be considered, and include a measure of edgeness based on a new

multi-scale version of the adaptive regularization parameter [14]. With this new term,
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we obtain a more accurate segmentation in the presence of boundary artifacts and

improve boundary term pixel influence.

We present results from two different datasets. The first consists on an MRI dataset

of thirty nine children/adolescents with ADHD (ages 6-18) and forty healthy control

subjects matched for age, gender, and handedness. The second is a public dataset of 18

healthy controls from the Internet Brain Segmentations Repository provided by the

Center for Morphometric Analysis at Massachusetts General Hospital. We show that

our method, CaudateCut, improves segmentation performance with respect to a classi-

cal atlas-based approach and a multi-atlas approach proposed recently. Moreover, we

provide a quantitative volumetric analysis of pediatric ADHD, and obtain specifications

and results that are comparable to manual analysis based on caudate nucleus

appearance.

The rest of the paper is organized as follows: Section 2 goes through the related

work. Section 3 introduces the CaudateCut algorithm. Section 4 reports and discuss

the results of experiments on caudate nucleus segmentation, as well as an ADHD volu-

metric quantitative analysis. Finally, Section 5 concludes the paper and describes future

lines of research.

2 Related work
Different strategies can be adopted for fully-automatic segmentation of subcortical

structures. Recent techniques can be summarized in four groups: a) anatomical atlas-

based and multi-atlas-based algorithms, b) supervised learning techniques, c) statistical

model approaches, and d) energy-based segmentation techniques.

a) Anatomical atlas-based methods rely on comparing the image under study with a

pre-computed anatomical atlas of the brain. After the comparison, atlas label propaga-

tion is performed to give an estimation of the segmentation in the subject being stu-

died [15-17]. Thus, these methods use knowledge about the structure of the brain

directly. [15] develops ANIMAL, a fully-automatic procedure for segmenting any struc-

ture in an anatomical image in a predefined native space in an anatomical atlas in a

normalized space. They observed that since the deformation field is bandlim-ited, irre-

gular structures could not be accurately segmented. It was in their next work, ANI-

MAL+INSECT [18], that the problem was addressed by introducing post-processing

that required tissue classification of the subject in order to refine the final segmenta-

tion of any labeled structure. Other authors have exploited the benefit of generative

models with the aim of reaching optimal solutions. [19] and [20] combine tissue classi-

fication, bias correction, and non-linear warping within the same framework. Version 8

of SPM [21] includes the unified approach of [20]. An important disadvantage of these

methods is the computational cost necessary to build an atlas from different subjects.

Moreover, the training set selection required to build the atlas is a difficult issue, and

most of the methods in Challenge CAUSE07 [9] select different training sets manually

to segment the different groups of test data. This fact converts these methods in semi-

automatic. In [17], the influence of atlas selection is analyzed by comparing the seg-

mentation of tissue from brain MRI of young children using different atlases. In this

case, a standard expectation-maximization algorithm with registration-based segmenta-

tion was used [22]. In [23], the authors incorporate structure-specific models using
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Markov random fields and [24] improves the results produced by [23] using diffeo-

morphic warps.

Atlas-based algorithms were first based on a single mean atlas, and, progressively,

evolved to multi-atlas strategies where decision fusion strategies are involved [10,25,26]

together with label propagation. Classifier fusion, based on the majority vote rule, has

been shown to be accurate for segmenting brain structures. This strategy can become

more robust and increasingly accurate as the number of classifiers grows. However, it

suffers from problems of scale when the number of atlases is large. [26] compares dif-

ferent classifier selection strategies, which are applied to a group of 275 subjects with

manually labeled brain MRI. An adaptive multi-atlas segmentation method (AMAS) is

presented in [10]. AMAS includes an automated decision to select the most appropri-

ate atlases for a target image and a stopping criterion for registering atlases when no

further improvement is expected. This method obtained the best mark in the

CAUSE07 challenge.

b) Different ways of exploiting supervised learning in segmentation methods have

been incorporated. In [27], the atlas-based segmentation method presented uses seg-

mentation confidence maps, which are learned from a small manually-segmented train-

ing set, and incorporated into the cost term. This cost is responsible for weighting the

influence of initial segmentations in the multi-structure registration. Moreover, multi-

ple atlases are used both in a supervised atlas-correction step, and multiple atlas pro-

pagation. In [28], a two-stage method is presented, which benefits from capabilities of

mathematical feature extractors and artificial neural networks. In the first stage, geo-

metric moment invariants (GMIs) are applied at different scales to extract features that

represent the shapes of the structures. Next, multi-dimensional feature vectors are con-

structed that contain the GMIs along with image intensity values, probability atlas

values (PAVs), and voxel coordinates. These feature vectors are used to estimate signed

distance maps (SDMs) of the desired structures. To this end, multi-layer perceptron

neural networks (MLP-NN) are designed to approximate the SDMs of the target struc-

tures. In the second stage, the estimated SDM of each structure is used to design

another MLP-NN to classify the image voxels into two classes: inside and outside the

structure.

c) Shape and appearance models involve establishing correspondence across a train-

ing set and learning the statistics of shape and intensity variation using PCA models.

To segment an image being studied, model parameters which best approximate the

structures have to be computed. [29] applies an active appearance model (AAM)-based

method to segment the caudate nucleus. A “composite” 3D profile AAM is constructed

from the surfaces of several subcortical structures using a training set, and individual

AAMs of the left and right caudate are constructed from a different training set. Seg-

mentation starts with affine registration to initialize the composite model within the

image. Then, a search is performed using the composite model. This provides a reliable

but coarse segmentation, used to initialize a search with the individual caudate models.

[30] uses a statistical shape model with elastic deformations to segment the hippocam-

pus, thalamus, putamen, and pallidum. In [31], a comparison of four different strate-

gies of brain subcortical structure segmentation is presented: two of them are atlas-

based strategies ( [26] and [17]) and the other two are based on statistical models of

shape and appearance ( [29] and [32]). The best results are achieved by the multi-atlas
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classifier fusion and labeling approach [26] which treats atlases as classifiers and com-

bines them using a majority voting rule.

d) With reference to energy-minimization methods, [33] uses a deformable mesh fol-

lowed by normalized cuts criterion to segment the caudate and the putamen from PET

images. [34] proposes a multiphase level set framework for image segmentation using

the Mumford-Shah model, as a generalization of an active contour model. In [35], a

method is presented for the segmentation of anatomical structures, which incorporates

prior information about the intensity and curvature profile of the structure from a

training set of images and boundaries. In [36], the GC strategy is adapted for segment-

ing anatomical brain regions of interest in diffusion tensor MRI (DT-MRI). An open

source application called ITK-SNAP was developed [37] for level set segmentation.

Finally, there exist some libraries, such as Freesurfer [38], Slicer [39], and SPM [21],

which have been developed to address the MRI segmentation problem. However, all of

them are limited to atlas-based algorithms which lack robustness when dealing with

different types of subjects. Hence, constructing an hybrid approach that combines

atlas-based and energy-based strategies is a natural extension of state-of-the-art algo-

rithms. The combination presented in this paper exploits atlas structure information

and an adaptive ad hoc energy model. Moreover, the proposed energy model also takes

advantage of supervised learning techniques.

3 CaudateCut
In this section, we review the GC framework and describe the novel CaudateCut seg-

mentation algorithm. Table 1 summarizes the terminology used in the next sections.

3.1 Graph-Cut Framework

In this section, we introduce the GC framework used in the CaudateCut segmentation

algorithm. Let us define X =
(
x1, ..., xp, ..., x|P |

)
as the set of pixels for a given grayscale

image I; P =
(
1, ..., p, ..., |P |) as the set of indexes for I; N as the set of unordered

pairs {p, q} of neighboring pixels of P under a 4-(8-) neighborhood system, and

L =
(
L1, ..., Lp, ..., L|P |

)
as a binary vector whose components Lp specify assignments to

pixels p ∈ P. Each Lp can be either “foreground” or “background”, or equivalently

“cau” or “back” for our problem (abbreviations for caudate and background), indicating

whether pixel p belongs to the caudate or background, respectively. Thus, the array L

defines a segmentation of image I. The GC formulation defines the cost function E(L)

which describes soft constraints imposed on boundary and region properties of L:

E(L) = U(L) + δB(L), (1)

where U(L) is the unary term (or region properties term),

U(L) =
∑
p∈P

Up(Lp),

and B(L) is the boundary property term,

B(L) =
∑

{p,q}∈N
B{p,q}�

(
Lp, Lq

)
,
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where,

�
(
Lp, Lq

)
=

{
0, if Lp �= Lq
1, otherwise.

The coefficient δ Î ℝ+ in Eq.(1) specifies the relative importance of the unary term

U(L) compared to the boundary term B(L). The unary term U(L) assumes that the

individual penalties for assigning pixel p to “cau” and “back”, correspondingly Up

("cau”) and Up("back”), are given. The term B(L) comprises the boundary properties of

segmentation L. Coefficients B{p,q} ≥ 0 should be interpreted as a penalty for a disconti-

nuity between p and q.

The GC method imposes hard constraints on the segmentation results by means of

the definition of seed points where labels are predefined and cannot be modified. The

subsets C ⊂ P ,B ⊂ P ,C ∩ B = ∅ denote the subsets of caudate and background seeds,

respectively. The goal of GC is to compute the global minimum of Eq. (1) from all seg-

mentations L satisfying the hard constraints ∀p ∈ C, Lp = “cau”, ∀p ∈ B, Lp = “back”.

Table 1 Table of terms

Ω(Lp,Lq) Pulse function.

δ Trade off coefficient between U and B.

∂k Substraction of graylevel for a pair of bins in Cc×r.
∂

∂x
∂2

∂x2
First and second derivatives w.r.t. x.

θ{p,q} Angle between minimum gradient variation vectors in pixel p and q.

a, s and b Weight parameters of boundary term.

|·| Cardinal of a set.

C,B Sets of caudate and background seeds.

Cc×r Correlogram structure of c circles and r radius.

dp Correlogram descriptor for pixel p.

d(·,·) Minimum Euclidean distance between two sets of voxels.

Dilatekd(.) Dilatation function of structure element of kd pixels.

E(·),U(·),B(·) Cost function, Unary term, and Boundary term.

Erodeke(.) Erosion function of structure element of ke pixels.

G =< V ,E > Graph of nodes V and edges ε .

G and ℓ The 2-dimensional Gaussian function and the Lindeberg parameter.

H(·) Entropy value.

I and Ip Grayscale image and image intensity value at pixel p.

Jp,g,s Binary edge map of pixel p at scale s and with sensitivity edge threshold g.
L =

(
L1, ..., Lp, ..., L|P |

)
Binary vectors of assignments to pixels p ∈ P.

N Set of unordered pairs {p, q} of neighboring pixels under a 4-(8-) neighborhood
system.

N{p,q} , O{p,q} Boundary terms based on first and second derivatives.

P =
(
1, ..., p, ..., |P |) Set of indexes of I.

Pu(·), Ps(·) Unsupervised and supervised probability function.

P(·) General frequency-based Probability function.

{p,q} n-link connecting a pair of neighbors p and q.

R0 Region of Interest (ROI).

Rp(s) Neighborhood of size s × s.

S, T Caudate and Background terminal nodes.

SVM(.) Support Vector Machines classifier function.

Tp Atlas-based threshold over probability map.

UU(·),SU(·) Unsupervised and supervised unary terms.

X =
(
x1, ..., xp, ..., x|P |

)
Set of pixels of I.
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Let us describe the details of the graph created to segment an MRI image. A graph

G =< V ,E > is created with nodes, V, corresponding to pixels p ∈ P of the image plus

two additional nodes: the caudate terminal (a source S) and the background terminal

(a sink T), therefore, V = P ∪ {S,T}. The set of edges ε consists of two types of undir-

ected edges: n-links (neighborhood links) and t -links (terminal links). Each pixel p has

two t-links {p, S} and {p, T} connecting it to each terminal. Each pair of neighboring

pixels {p, q} in N is connected by an n-link. Without introducing any ambiguity, an n-

link connecting a pair of neighbors p and q will be denoted by {p, q}, giving

E = N
⋃

p∈P
{{p, S}, {p,T}}. Final segmentation is then computed over the defined

graph using the min-cut algorithm to minimize E(L).

3.2 CaudateCut Segmentation Algorithm

In this section, we describe the steps in the automatic caudate segmentation algorithm

in detail. The CaudateCut algorithm is summarized in Table 2.

3.2.1 Atlas-based Segmentation

In this work, the atlas-based segmentation of the caudate largely follows the strategy

proposed by [18]. The main steps in the algorithm are illustrated in Figure 2 and

described thus:

1. First, a non-uniformity image intensity correction is computed. Then, the cor-

rected image is classified into WM, GM, and CSF.

2. In the next step, the GM image is elastically registered from its original geome-

trical space to match a template image (which represents the expected distribution

of gray matter in the subjects under study) in the so-called normalized space. The

deformation field obtained is inverted to map the normalized space onto the origi-

nal space.

3. This inverted deformation is applied to the caudate segmentation in the normal-

ized space, thus yielding a first segmentation of the caudate nucleus of the subject.

4. Finally, in order to refine this first segmentation, the GM mask of the subject

under study is combined with the mask obtained by unwarping the normalized

caudate segmentation. They are combined as follows: the GM and caudate prob-

ability maps are multiplied and a threshold Tp is imposed over the result: we con-

sider that a voxel belongs to the caudate only where the product map is larger

than Tp.

This atlas-based segmentation method depends strongly on the atlas definition. In

some situations, this can result in a solution that does not fit the target structure well

Table 2 Automatic CaudateCut Segmentation Algorithm

1. Initial segmentation using AB method.

2. Set background and caudate seeds by erosion and dilatation of AB mask.

3. Initialize unsupervised unary potentials UUp(”cau“) and UUp(”back“) based on local graylevel intensities.

4. Initialize supervised unary potentials SUp(”cau“) and SUp(”back“) based on SVM correlogram classifier.

5. Initialize unary term based on combined unary potentials.

6. Initialize boundary term B(L) based on first and second derivatives of intensities and multi-scale edge map.

7. Estimate caudate segmentation using GC.
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and a further refinement may be necessary. However, the segmentation obtained may

be useful for roughly locating the region of interest, and thus, it can be used to define

the seeds for GC application. Figure 3 (b) shows the result of AB segmentation for the

input image in Figure 3 (a).

3.2.2 Seed Initialization

GC is a semi-automatic interactive method, since the seeds are manually defined. In

order to achieve a fully automatic method, we use the result of the atlas-based method

to define an initial segmentation taking advantage of the atlas caudate shape. We

define caudate and background seeds by performing morphological operations on the

ROI obtained R0 in the atlas-based mask. To define the caudate seeds, C, we compute

C = Erodeke(R0), where Erodeke denotes an erosion with a structural element of ke pix-

els. In the case of background seeds, we dilate the region R0 and keep the complemen-

tary set, B = P\Dilatekd(R0), where Dilatekd denotes a dilatation with a structural

element of kd pixels. In the example shown in Figure 3 (a), the selection of C and B
seeds is obtained from erosion and dilation of the AB segmentation shown in Figure 3

(b).

3.2.3 Unary Energy Term

In this section, we describe how to compute the unary energy term for the GC energy

function. This energy term is divided into two: an unsupervised part and a supervised

part. The unsupervised part is computed in a problem-dependent image way, based on

the graylevel distribution of the seed pixels. The supervised part is computed from a

support vector machine classifier (SVM) based on the contextual learning of caudate

derivatives. Next, we describe in detail both parts of the unary term and the final

combination.

Figure 2 Flowchart of the atlas-based segmentation approach. Flowchart of the atlas-based
segmentation approach used in this work.
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Unsupervised unary term We define the unsupervised unary term using caudate and

background models based on graylevel information pertaining to the seeds. We initia-

lize the unary potentials at each pixel p as,

UUp (”cau”) = − ln
(
Pu

(
Lp = ”cau”

))
,

UUp (”back”) = − ln
(
Pu

(
Lp = ”back”

))
.

The probability of a pixel p being marked as “cau”, Pu(Lp = “cau”), is computed using

the histogram of graylevels of caudate seeds. The probability of a pixel being marked as

“back” is computed using the inverse probabil-ity, as Pu(Lp = “back”) = 1-Pu(Lp =

“cau”), since background seeds contain GM, WM and CSF and it is difficult to extract

Figure 3 Framework steps. (a) Original MRI scan, (b) Top: Crop from the MRI scan, Bottom: Atlas-based
segmentation (blue) and GT (green), (c) Unsupervised probability values Pu(Lp = “cau”) and GT (green), (d)
Supervised probability values Ps(Lp = “cau”) and GT (green), (e) Boundary potentials B(L), (f) Image crop, GT
(green) and CaudateCut result (red).
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a model directly from them. Figure 3 (c) shows the unsupervised probability values Pu
(Lp = “cau”)) for the image in Figure 3 (a).

The unsupervised unary term estimates image-dependent caudate pixel probabilities

based on caudate seeds. However, given the noisy information of MRI images and the

small number of caudate seed pixels, a high generalization based on this term is not

always guaranteed. In this context, we propose using a combination of the unsuper-

vised energy with the supervised, which is based on learning contextual caudate deriva-

tives from Ground Truth (GT) data.

Supervised unary term In order to define the supervised unary term, we train a binary

classifier using a set of MRI slices as a training set. In particular, we extract a pixel

descriptor using a correlogram structure. The correlogram structure captures contex-

tual intensity relations from circular bins around the pixel analyzed [40].

Given a pixel p, a correlogram Cc×r is defined, where c and r define the number of

circles and radius of the structure. Then, each bin b from the set of n bins, with n = c

⋅ r, is defined as the area delimited by two consecutive circles of the given radius.

Given the pixel p and its correlogram structure Cp
c×r, its supervised caudate descriptor

is defined as:

dp =
{
∂1, .., ∂k, .., ∂n·(n−1)/2

}
,

where ∂k is the signed substraction of graylevel information within a pair of bins in

Cc×r. In this sense, the descriptor contains the n · (n - 1)/2 graylevel derivatives of all

pairs of bins within Cc×r, which captures all spatial relations of graylevel intensities in

the neighborhood of p. An example of a correlogram structure estimated for a caudate

pixel is shown in Figure 3 (d).

We extract the descriptors for a subset of pixels on C and B from the training set

data. Given the set of descriptors, a linear SVM classifier is trained in order to predict

caudate confidence on image pixels from new test data. In our case, we use the output

confidence of the classifier as a measure of the “probability” of a pixel belonging to the

caudate. Then, the supervised unary potentials at each pixel p are:

SUp
(′′cau′′) = − ln

(
Ps

(
Lp =′′ cau′′)) ,

SUp
(′′back′′) = − ln

(
Ps

(
Lp =′′ back′′)) .

The probability of a pixel being marked as “cau” is computed using the confidence of

the SVM classifier over its correlogram descriptor Ps(Lp = “cau”) = SVM(p). The prob-

ability of a pixel being marked as “back” is computed as the negative of the output

margin of the classifier Ps(Lp = “back”) = -SVM(p). Figure 3 (d) shows the supervised

caudate probability values Ps(Lp = “cau”)) for the image in Figure 3 (b).

Combined unary term The final unary term is defined as the addition of the unsuper-

vised and supervised values at pixel p as follows:

Up
(′′cau′′) = UUp

(′′cau′′) + SUp
(′′cau′′) ,

Up
(′′back′′) = UUp

(′′back′′) + SUp
(′′back′′) .

3.2.4 Boundary Energy Term

To define boundary potentials, we use first and second intensity derivatives of the

image to use the intensity and geometric information. Moreover, given the high
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variability in contrast between the caudate and background in different parts of the

images, we propose weighting the boundary term using an image-dependent multi-

scale edgeness measure.

Specifically, we define the boundary potentials as the following convex linear combi-

nation:

B{p,q} = j
(
αN{p,q} + (1 − α)O{p,q}

)
.

First, we define N{p, q} and O{p, q} as:

N{p,q} =
1∥∥xp − xq

∥∥
2

exp

(
−(Ip − Iq)

2

2σ 2

)
,

O{p,q} =
1∥∥xp − xq

∥∥
2

exp

(
−θ2

{p,q}
2β2

)
.

(2)

The term θ{p,q} denotes the angle between two unitary vectors codifying the direc-

tions of minimum gradient variation in pixel p and q based on the Hessian eigenvec-

tors. In particular, we choose the direction of the eigenvector of the Hessian matrix

with the smallest eigenvalue which gives the direction of the smallest variation at each

pixel. The parameter a is empirically set by cross-validation, while s and b are com-

puted by adapting the image distribution to Ip and θ{p,q}, respectively. Intuitively, the

function N{p, q} penalizes discontinuities between pixels of similar intensities and O{p,q}

penalizes for discontinuities between pixels of similar gradient variations.

The differential operators involved in the previous definition (Eq. 2) are well-posed

concepts of linear scale-space theory, defined as convolutions with derivatives of Gaus-

sians:
∂

∂x
I(x, s) = s	I(x) ∗ ∂

∂x
G(x, s), where G is the 2-dimensional Gaussian function

and ℓ is the Lindeberg parameter.

The selection of the Gaussian scale parameter is crucial for obtaining a satisfactory

result. For a given pixel p, we consider an s × s neighborhood Rp(s), and measure its

entropy value:

H(Rp(s)) = −
r∑
i=1

P(i|Rp(s))log2P(i|Rp(s)),

where P(i|Rp(s)) is the probability of taking the value i in the local region Rp(s), with

r being all the possible discrete values. The scale chosen is defined by the maxima of

the function H in the space of scales Sp = {s : ∂H(Rp(s))/∂s = 0, ∂2H(Rp(s))/∂s2 < 0}.
Second, we define the J term as the multi-scale edgeness measure at each pixel:

J =
(
J∗1, ..., J

∗
p , ..., J

∗
|P |

)
. In order to compute J∗p, we first run the Canny edge detector

algorithm on the observed image at different threshold levels. Then, we compute the

edge probability at each pixel by linear averaging of the edge thresholds for different

scales as follows:

J∗p = min
j

1
n

n∑
k=1

Jp,γ k,sj ,
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where Jp,gk,sj is the binary edge map using threshold gk and scale sj for pixel p. If pixel

p is labeled as an edge pixel for most of the threshold levels at a significant scale, it has

a high probability of being an edge pixel. In order to decrease the smoothness effect at

the regions near a boundary, we convolve the probability map with a Gaussian kernel.

Figure 3 (e) shows the boundary potential values B(L) for the image in Figure 3 (a).

Intuitively, the term J adaptively changes the influence of the boundary term for pixels

in the image, since boundary regions should be less regularized than the rest of the

image regions.

Finally, by applying the min-cut algorithm over the defined energy function and

image graph, we obtain the final caudate segmentation. Figure 3 (f) shows the segmen-

tation resulting from applying the CaudateCut algorithm.

4 Experimental Section
Before presenting our results, we first describe the material and methods of compari-

son, and also the validation protocol for the experiments.

4.1 Material

We considered two different databases, named URNC database and IBSR database, in

order to validate the CaudateCut method we have proposed.

• URNC database. This is a new database, which includes 39 children (35 boys and

4 girls) with ADHD, according to DSM-IV, referred from the Unit of Child Psy-

chiatry at the Vall d [001]ebron Hospital in Barcelona, Spain, and coordinated by

the Unit of Research in Cognitive Neuroscience (URNC) at the IMIM Foundation,

together with 39 control subjects (27 boys and 12 girls) recruited from the commu-

nity. The mean age of the groups was 10.8 (S.D.: 2.9) and 11.7 (S.D.: 3), respec-

tively. The groups were matched for handedness and IQ. The 1.5-T system was

used to acquire brain MRI scans. The resolution of the scans is 256 × 256 × 60

pixels with 2-mm thick slices. Expert segmentations of the 79 individual caudate

nuclei was obtained. MRIcro software1 was used for volume labeling and

manipulation.

• IBSR database. This dataset is part of a public database released by CAUSE07

Challenge [9]. It is composed by 18 T1-weighted MRI scans from the Internet

Brain Segmentation Repository (IBSR). It also contains expert segmentations of

caudate structure. The MRI scans are of 1.5 mm thickness. Originally, the data size

was 256 × 128 × 256 pixels, but in order to prepare data for the later application

of the CaudateCut algorithm, we re-oriented they data by X-axis rotation and con-

verted it into 256 × 256 × 128 pixels. For more details of the acquisition, visit

CAUSE07 Challenge website2 from were the data was downloaded.

Figure 4 displays a sample control (a) and ADHD (b) MRI from the URNC database

and a sample MRI from the IBSR database, (c). As can be appreciated, the quality of

the ADHD image is worse than that of the control image, probably due to the move-

ment of the children during image acquisition. Anisotropic filtering [41] was per-

formed on all the slices before CaudateCut was applied.
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4.2 Methods

We compared the CaudateCut method to two state-of-the-art methods: a classical

atlas-based method, and a multi-atlas segmentation method. We also compared the

results with the inter-observer (IO) variability of the expert GT.

AB method

We implemented atlas-based segmentation of the caudate following the strategy pre-

sented in [18]. To this end we used the SPM toolbox implementation of the unified

non-linear normalization and tissue segmentation. The parameters of the method were

set by default as in the SPM8 implementation, except for the threshold Tp, which was

estimated using a subset of 5 control subjects from the URNC database and set to Tp

= 0.1. The method was implemented using Matlab2008.

AMAS method

An adaptive multi-atlas segmentation method (AMAS) was implemented as presented

in [10]. For the atlas selection strategy we computed the absolute voxelwise difference

between the target image and the registered images from the atlases and ordered them

from smallest to largest. Then, the atlas information was propagated until the stopping

criterion was reached. The stopping criterion was defined by the percentage of voxels

that change their segmentation label after a new atlas propagation. This threshold was

set to 0.05 for all experiments. The rest of the parameters in the AMAS method were

set as described in [10]. The method was implemented using Matlab2008, and elastix6

version 3.93 was used for volume registration, as suggested in [10].

CaudateCut method

The CaudateCut method was implemented using Matlab2008 and the SPM toolbox. In

all the experiments the parameters were set to ke = 4, kd = 10, c = 3, r = 5, a = 0.5,

Sp = [1, 1.5, ..., 6], ℓ = 0, gk Î [0.02,0.03,..., 0.3] and sj Î [0.5,1,..., 5]. The parameters s
and b were estimated for each image, as explained above. The parameter δ was tuned

by cross-validation and was set to 50 for the URNC dataset and 100 for the IBSR data-

base. In order to train the SVM classifiers for computation of the supervised unary

term, we performed a subsampling of pixels from each slice. In particular, we took all

the pixels labeled as caudate in the GT, and the same number of background pixels.

The background pixels were subsampled in a stratified way, trying to select pixels from

all parts of the background.

Manual method

Experts use MRIcro [42] to manually delineate the caudate boundaries slice by slice.

See [1] for more details of the procedure.

Figure 4 Sample control and ADHD MRIs from URNC and IBSR databases. Control (a) and ADHD (b)
example MRI slices from the URNC database and an example MRI slice from the IBSR database (c).
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4.3 Validation

The quality of a segmentation can be evaluated in many different ways. Plausible eva-

luation criteria may depend on the purpose of the segmentation procedure. In order to

be sufficiently general, we evaluated several volumetric measures, as well as voxel by

voxel comparison measures. We focused on the six metrics detailed below, as proposed

in [9]. In all of them, R corresponds to the estimated segmentation, G to the GT seg-

mentation and | · | denotes the cardinal of a set.

1. Volumetric similarity index (or mean overlap), in percent:

SI = 2

∣∣∣∣R ∩ G
R + G

∣∣∣∣ · 100.

2. Volumetric union overlap, in percent:

VO =

∣∣∣∣R ∩ G
R ∪ G

∣∣∣∣ · 100.

3. Relative absolute volume difference, in percent:

VD =

∣∣∣∣VOLR − VOLG
VOLG

∣∣∣∣ · 100,

where VOLR and VOLG correspond to the total volume of the R and G seg-

mentations, respectively.

4. Average symmetric surface distance, in millimeters:

AD =

(
N∑
i=1

d(BSi, BR)
2+

M∑
i=1

d(BS, BRi)
2
)

|BS| · |BR| ,

where BS and BR correspond to the set of border voxels in R and G, respec-

tively, and d(·,·) returns the minimum Euclidean distance between two sets of

voxels.

5. Root Mean Square (RMS) symmetric surface distance, in millimeters:

RMSD =
√
AD.

6. Maximum symmetric surface distance, in millimeters:

MD = max
i,j

(
d(BSi, BR), d(BSi, BRj)

)
.
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Note that the volumetric measures VO and SI have 100 as a perfect segmentation

and 0 as the lowest possible value, when there is no overlap at all between the esti-

mated segmentation and GT. In the case of VD, the perfect value is 0, which can also

be obtained for a non-perfect segmentation, as long as the volume of that segmenta-

tion is equal to the volume of the reference. For voxel comparison measures, AD,

RMSD and MD, the perfect value is 0.

In order to validate the AMAS and CaudateCut methods (SVM classifiers for super-

vised unary term computation), we followed a leave-one-out strategy. Finally, Student’s

paired t-test [43] was used to evaluate the statistical significance between pairs of seg-

mentation algorithms with a particular dataset (threshold of p < 0.05). The null

hypothesis corresponds to the hypothesis that the two groups belong to the same dis-

tribution and is called H0. Matlab2008 was used to perform this test.

4.4 Results and Discussion

We divide the results into two sections corresponding to two related experiments: seg-

mentation evaluation and ADHD volumetric quantitative analysis.

4.4.1 Segmentation Evaluation

A) Quantitative segmentation results We compared the performance of the Caudate-

Cut, AMAS and AB methods. Table 3 shows the results obtained in the experiments

on both URNC and IBSR datasets. For all six validation measures, our proposed Cau-

dateCut produced better results than both AB and AMAS for both databases. With

regard to the volumetric measures, CaudateCut achieved good mean rates of 80, 75%

for SI, 68, 02% for VO, and 16, 22 for VD. Voxel by voxel mean measures are also

acceptable, with 0.0024 mm for AD, 0.0733 mm for RMSD, and 35.70 mm for MD.

The large MD values are due to the recurrent errors present in the internal boundaries

of the caudate defined between caudate head and body, as is clarified in the visual

results below. For the IBSR database, the AMAS method obtained larger VO and SI

values than the AB method, whereas, in the URNC database, the AB method improved

on the result of the AMAS method. This could be due to the fact that the AB para-

meters were tuned in the URNC database. In this sense, CaudateCut was able to prop-

erly overcome this inconvenience and improve on the AMAS results in the IBSR

database. It is important to note that CaudateCut showed robustness to AB

performance.

B) Qualitative segmentation results Figure 5 shows qualitative CaudateCut results for

the MRI slices of a control subject. In most of the slices, the CaudateCut segmentation

result (red line) is highly comparable to the GT (green line). However, segmentation

differences occur in the first and last caudate frames, where some voxels are classified

as caudate by CaudateCut, but not by the GT (false positives). The inherent ambiguity

of the caudate boundaries makes the expert’s task of manually defining the caudate

start and end slices arduous. This introduces variability and produces errors in MRI

atlas information corresponding to the end slices. It is difficult for CaudateCutThis to

rectify this kind of error. The AB method introduces fake seeds in these positions and

CaudateCut propagates these errors, since it can not remove the seeds. In the second

column of the second row, some voxels are not classified as caudate, while they should

be, according to GT (false negatives). This particular sample slice corresponds to the

transition between caudate head and body, where the caudate shape changes abruptly
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from the rounded head to the elongated body [5]. Due to the intra-subject variability of

the caudate shape, in the caudate internal transition, atlas priors are less reliable and

introduce errors. This inconvenience, together with the lack of a well-contrasted

boundary defining the caudate body in the first slices, makes these mistakes difficult to

be rectify.

Figure 6 compares qualitative results of left caudate segmentation of URNC database

MRI slices using the AMAS (second column), AB (third column) and CaudateCut

(fourth column) methods. Note that the best segmentation results were obtained by

the novel CaudateCut segmentation method, followed by AB, and finally, by the

AMAS strategy. In general, CaudateCut improves AB segmentation and obtains a bet-

ter fit to the caudate boundaries. Only in a few cases (examples in rows 2 and 3), does

CaudateCut agree with the AB segmentation, and the GC strategy did not apply

changes to the final segmentation. It can be seen that the registration strategy applied

for the AMAS method was unable to correctly fit the caudate boundaries. At several

locations, the caudate boundaries are not clearly defined. For example, in the first row

example, the lower boundary mostly consists of partial volume effect voxels. Thus, the

caudate was over-segmented by all the methods.

C) Statistical analysis We performed four different statistical t-tests: CaudateCut vs.

AB and CaudateCut vs. AMAS for the two databases (URNC and IBSR) based on the

VO measure. Table 4 presents the results of the tests. In the table, the t-test result is

true (accept H0) or false (reject H0), t is Student’s t statistic, p represents the p-value,

and CI means the confidence interval of differences. The results of the four tests were

favorable for CaudateCut, showing that the differences in the overlap measures

between CaudateCut and AB and AMAS were significant.

Table 3 Quantitative results of AB, AMAS and CaudateCut

Database Method SI VO VD AD RMSD MD

AB 79.85 66.55 9.63 0.0029 0.0861 48.31

URNC AMAS 66.67 51.45 24.81 0.0091 0.0913 48.11

CaudateCut 82.60 70.49 9.10 0.0028 0.0780 47.97

AB 74.02 58.85 23.34 0.0030 0.0950 30.86

IBSR AMAS 75.00 60.14 25.54 0.0024 0.0750 28.37

CaudateCut 78.91 65.55 17.80 0.0019 0.0687 23.43

Quantitative results of AB, AMAS and CaudateCut methods applied to URNC and IBSR databases. Validation measures
are, SI: volumetric similarity index (in %); VO: volumetric overlap (in %); VD: relative absolute volume difference (in %);
AD: average symmetric surface distance (in mm); RMSD: root mean square symmetric surface distance (in mm); MD:
maximum symmetric surface distance (in mm).

Figure 5 Qualitative CaudateCut results. Example of CaudateCut results. GT is shown in green and
CaudateCut segmentation in red.
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D) Difference analysis Figure 7 shows the values of SI obtained using CaudateCut

depending on the area of the slice of the caudate nucleus. As can be seen, the SI values

are lower for smaller areas and tend to increase for larger caudate regions. This corro-

borates the claim that smaller structures are more difficult to automatically segment.

E) Computational differences Concerning the computational time, AMAS was the

most costly method in terms of testing time, since multiple registration had to be per-

formed for each subject segmentation. On average, 2-3 registrations were performed

for each volume segmentation and each registration took 7 minutes on a standard

high-end PC, thus making 17.5 minutes for the whole volume segmentation. The AB

method was the fastest, taking around 5 minutes on average for the whole volume seg-

mentation. CaudateCut involves applying the AB method and later the GC

Figure 6 Segmentation comparison of AMAS, AB, and CaudateCut. Some left caudate segmentation
results from the URNC database. First column: Original image crop. Second column: AMAS result. Third
column: AB result. Fourth column: CaudateCut result. GT is shown in green and automatic segmentation
result in red.
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minimization process method. The total time was around 6 minutes for the whole

volume segmentation.

F) Inter-observer variability Finally, the inter-observer variability was computed using

manual left caudate segmentations from the URNC database by means of two different

experts. Table 5 shows the validation measures computed using these two GT segmen-

tations. As mentioned in the introduction, obtaining an accurate manual segmentation

is difficult even for experts, because of the low contrast and resolution of the caudate

regions. Note that the measure values are comparable to those obtained with

CaudateCut.

4.4.2 ADHD Volumetric Quantitative Analysis

The a priori hypothesis that developmental anomalies exist in the caudate nucleus of

people with ADHD is generally accepted. Previous imaging studies have analyzed this

hypothesis [4,2,3].

In this work, we analyzed right and left caudate volumetric differences between

ADHD and control subjects in the URNC database. To this end, we performed a com-

parison of mean volume values applying Student’s t-test for independent samples (with

a threshold of p < 0.05). The aim of this experiment was to show that the analysis per-

formed using automatic CaudateCut segmentation was coherent with the results of

manual analysis. To carry out the manual and automated statistical analysis we consid-

ered GT and CaudateCut segmentations, respectively. ROI measures in voxels were

Table 4 Statistical test results

Database Test t-test t p CI(95%)

CaudateCut vs. AB false 4.08 0.0001 0.02 to 0.0586

URNC CaudateCut vs. AMAS false 11.36 3.28-10-18 0.24 to 0.34

IBSR CaudateCut vs. AB false 3.23 0.0028 0.0248 to 0.1092

CaudateCut vs. AMAS false 2.49 0.0177 0.01 to 0.0982

Four different statistical t-tests for the two databases: URNC (first row) and IBSR (second row). In the third to sixth
columns: t-test, t-test result; t, Student’s t statistic; p, p-value; CI, confidence interval of differences.

Figure 7 SI values using CaudateCut Similarity index (SI) values (in %) depending on the caudate area
(in mm) for the slices.
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transformed into cubic millimeters, mm3 (ROI total number of voxels multiplied by

voxel dimensions).

Table 6 and Table 7 show the results of the manual and automatic analyses, respec-

tively. Both tables contain mean volume measures, and standard deviation of control

and ADHD groups for the right and left caudate separately. Moreover, the results of

Student’s t-tests are presented: the t-test corresponds to a true (accept H0) or false

(reject H0) result, t is Student’s t statistic, p represents the p-value, and CI means the

confidence interval of differences. As can be observed, the ADHD group has lower

right and left mean caudate volume than the control group in both the manual and

automatic analysis. Moreover, the results of the statistical test were the same in the

manual and automatic analysis: the volume measure was found to be statistically differ-

ent between the groups for the right caudate but not for the left. Comparing volume

values, it can be seen that the automatic CaudateCut segmentation method under-seg-

ments the caudate nucleus compared with the manual delineation. However, these dis-

crepancies in the segmentations do not prevent coherent results between the two

methods in the statistical analysis of the groups considered.

Finally, we qualitatively compared the manual and CaudateCut automatic analysis.

Figure 8 shows both control and ADHD caudate volume distributions using GT seg-

mentation (a, b) and CaudateCut segmentation (c, d). First column plots (a, c) corre-

spond to right caudate volume measures and second column plots (b, d) to left

caudate volume measures. The histogram of caudate volume for the ADHD and con-

trol groups are depicted in dashed black and solid red lines, respectively. Two Gaussian

functions were fitted to the histograms. It can be appreciated that the differences

between the ADHD and control distributions were larger for the right caudate in both

the manual and the automatic analysis. The immediate conclusion is that CaudateCut

generates results that are comparable to gold-standard analyses in differentiating neu-

roanatomical abnormalities between healthy controls and the group of individuals with

ADHD.

5 Conclusion
In this work, we present a new method, CaudateCut, for caudate nucleus segmentation

in brain MRI. CaudateCut combines the power of an atlas-based strategy and the

Table 5 Quantitative Measures of IO Variability

Database SI VO VD AD RMSD MD

IO on URNC 80.56 67.80 22.84 0.003 0.092 92.54

Quantitative measures of IO variability for URNC databases. Validation measures are, SI: volumetric similarity index (in %);
VO: volumetric overlap (in %); VD: relative absolute volume difference (in %); AD: average symmetric surface distance (in
mm); RMSD: root mean square symmetric surface distance (in mm); MD: maximum symmetric surface distance (in mm).

Table 6 Manual Control and ADHD statistical results

Manual analysis group N M std d t-test t p CI(95%)

R caudate Control 39 5031.44 660.18 312.29 false 1.9983 0.0493 1.03 to 623.56

ADHD 39 4719.15 718.81

L caudate Control 39 4882.45 643.81 195.11 true 1.1946 0.2360 -130.19 to 520.42

ADHD 39 4687.34 791.17

Manual analysis of control and ADHD volume statistical differences for right and left caudate volume. N, sample size; M,
mean volume (in mm3); std, standard deviation, d mean difference; t-test, t-test result; t, Student’s t statistic; p, p-value;
CI, confidence interval of mean difference.
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adaptiveness of the defined energy function within the GC energy-minimization frame-

work, in order to segment the small and low-contrast caudate structure. We define the

new energy function with data potentials by using intensity and geometry information,

and also making the most of the supervised learned local brain structures. Boundary

potentials are also redefined using a new multi-scale edgeness measure. CaudateCut

has different advantages for different neuroimaging researchers. First of all, it is fully

automatic, and secondly, the algorithm is reliable. The results are 100% reproducible in

subsequent runs with the same data, avoiding the inaccuracies of intra-rate and inter-

rater drift.

Table 7 Automatic Control and ADHD statistical results

Automatic analysis group N M std d t-test t p CI(95%)

R caudate Control 39 4636.72 596.66 430.19 false 2.74 0.0075 118.05 to 742.35

ADHD 39 4206.52 775.86

L caudate Control 39 4426.24 615.69 288.14 true 1.93 0.0571 -8.90 to 585.19

ADHD 39 4138.10 698.89

Automatic analysis of control and ADHD volume statistical differences for right and left caudate volume. N, sample size;
M, mean volume (in mm3); std, standard deviation, d mean difference; t, Student’s t statistic; p, p-value; CI, confidence
interval of mean difference.

Figure 8 Control and ADHD caudate volume distributions. Control and ADHD caudate volume
frequency distributions for right and left caudate volumes (in mm3). The first row corresponds to manual
analysis for right (a) and left (b) caudate nucleus and the second row corresponds to automatic analysis for
right (c) and left (d) caudate nucleus. Control (red solid line) and ADHD (black dashed line) histograms are
shown together with two Gaussian functions fitted to the histograms.

Igual et al. BioMedical Engineering OnLine 2011, 10:105
http://www.biomedical-engineering-online.com/content/10/1/105

Page 21 of 23



The method was tested on two different datasets. Although the method was tuned

on the novel URNC database, it provided outstanding results on the IBSR dataset,

showing the inherent robustness of the approach. Moreover, we obtained results com-

parable to manual volumetric analysis of children with ADHD based on automatic cau-

date nucleus volume measurements. Future lines of research include the use of

multiple-hypotheses for seed initialization in order to increase the robustness to possi-

ble errors of atlas application and the incorporation of 3D information in the caudate

segmentation. From the clinical point of view, new features based on the caudate

appearance can be added to analyze ADHD abnormalities in an automatic way.
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