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Abstract
Background: It is generally accepted that cartilage adaptation and degeneration are mechanically
mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain
state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that
the swelling of soft tissues is associated with mechanical, chemical, and electrical events.

Method: The purpose of the present study was to implement the triphasic theory into a
commercial finite element tool (ABAQUS) to solve practical problems in cartilage mechanics.
Because of the mathematical identity between thermal and mass diffusion processes, the triphasic
model was transferred into a convective thermal diffusion process in the commercial finite element
software. The problem was solved using an iterative procedure.

Results: The proposed approach was validated using the one-dimensional numerical solutions and
the experimental results of confined compression of articular cartilage described in the literature.
The time-history of the force response of a cartilage specimen in confined compression, which was
subjected to swelling caused by a sudden change of saline concentration, was predicted using the
proposed approach and compared with the published experimental data.

Conclusion: The advantage of the proposed thermal analogy technique over previous studies is
that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic
pressure in the interstitial fluid.

Background
The extracellular matrix (ECM) of articular cartilage is neg-
atively charged and hydrated [1,2]. Under normal physio-
logical conditions, the fixed negative charge in ECM is
electrically neutralized by mobile cations and anions con-
tained in the synovial fluid. The difference in ion concen-
tration between the ECM and synovial fluid introduces a
fluid pressure difference between them, the so-called
Donnan osmotic pressure [3]. At equilibrium, the swell-
ing pressure, which consists of the Donnan osmotic pres-
sure and a charge-to-charge expansion stress within the

tissue, is counteracted by structural elements in the solid
matrix.

It is well accepted that the swelling of soft tissues is asso-
ciated with mechanical, chemical, and electrical events.
The triphasic theory [4], which was generalized by Gu et
al. [5] to include multiple ion species, is the only realistic
model currently available to describe the mechanics of ar-
ticular cartilage swelling. Gu et al. [6] and Gu [7] used the
triphasic theory to analyse the coupling between fluid and
ion transport, streaming potential, and deformation of
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cartilage during compression tests. Bryant and McDonnell
[8] applied the triphasic theory to analyse corneal swell-
ing under steady-state conditions in which the effects of
fluid flow were neglected. Recently, Hon et al. [9] devel-
oped a rigorous numerical algorithm of the triphasic
model for two-dimensional problems based on radial ba-
sis functions. However, all numerical/analytical ap-
proaches mentioned above are problem-oriented, and
cannot be used for solving realistic biological problems,
which are usually nonlinear, three-dimensional, irregular
and complex in geometry, and undergo large
deformations.

In order to apply the triphasic theory to biological sys-
tems, or applied biomechanical problems, the triphasic
constitutive equations must be implemented into a finite
element model (FEM). Simon et al. [10] proposed a po-
roelastic finite element formulation that included trans-
port and swelling effects in soft tissue. This model might
be considered a special case of the triphasic model by Lai
et al. [4]. Simon et al. [10] developed a one-dimensional
FEM that was used to demonstrate the properties of
triphasic materials. However, it could not be used for
practical problems in two- or three-dimensional space.
Sun et al. [11] developed sophisticated FEM formulations
that included the coupling between mechanical, electrical
and chemical events in articular cartilage. However, the
approach proposed by [11] still in a conceptual stage and
needs substantial research and development until it can
be used for solving realistic biological problems.

Because the process of diffusion is mathematically equiv-
alent to the process of thermal transfer, the transport of
ions in cartilage may be analysed using a thermal analogy.
Myers et al. [12] simulated swelling of articular cartilage
using a thermal analogous technique. Kaufmann et al.
[13] analysed poroelastic problems with swelling defor-
mation using a commercially available FEM software
package (ABAQUS). In these last two studies, the diffu-
sion process of ion concentrations was analysed by ne-
glecting convection, i.e., by assuming that the velocity of
the tissue and the diffusion of ions are decoupled. For
most substances, the diffusion process is strongly coupled
with the velocity of the media. Therefore, the coupling be-
tween the velocity of the tissue and the diffusion of ions
may have non-negligible effects in physiological
problems.

Understanding the mechanisms of swelling and deforma-
tion is important when investigating the mechanics and
adaptative behaviour of articular cartilage. The triphasic
theory [4,5] can be used to describe swelling and transport
of ions in articular cartilage. However, a commercial finite
element tool based on the triphasic theory, which bioen-
gineers can use to analyse swelling and deformation be-

haviour for real-life biophysical problems, does not exist.
The purpose of this study was to implement the triphasic
theory [4,5] into a commercially available finite element
software package (ABAQUS), and to validate the pro-
posed approach using the one-dimensional numerical so-
lutions by Simon et al. [10], and the experimental results
of confined articular cartilage compression obtained by
Eisenberg and Grodzinsky [14]. In order to solve the prob-
lem using ABAQUS, the triphasic model was converted
into a thermo-mechanical interaction problem with con-
vective heat transfer. It was assumed that the volume oc-
cupied by ions is small and that the effect of electric
current on the flow of ions can be ignored.

Method
Governing Equations
Articular cartilage was assumed to obey the triphasic mod-
el proposed by Lai et al. [4] and Gu et al. [5]. For infinites-
imal deformation, the constitutive equation is expressed
as

where I is the unit tensor; σs, σf, and σt represent the stress-
es in the solid phase, in the interstitial fluid, and in the to-
tal tissue; λ and µ are the first and the second Lamé
constants; p and ε are fluid pressure and strain of the solid
phase, respectively. The stress in the solid phase (σs) is de-
composed here into three parts: a component associated
with the fluid pressure (-ΦspI), a chemical expansion

stress (TcI), and an elastic stress  associated with the

deformation of the matrix. Φs and Φf are the solid and flu-
id volume fractions, respectively. Assuming that the volu-
metric fraction of ions, Φ- and Φ+, is negligible, as
suggested by Gu et al. [5] and Sun et al. [11], one can write
the equation of the mixture in the form:

Φs + Φf + Φ- + Φ+ ≈ Φs + Φf = 1  (2)

The ECM is negatively charged, with a fixed charge density
of cF. Everywhere within the tissue under physiological
conditions, the electroneutrality condition is maintained
by

c+ = c- + cF  (3)

where c+ and c- are concentrations of mobile cations and
anions, respectively. c+, c-, and cF are measured in moles
per unit fluid volume.
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The conservation of momentum is satisfied everywhere in
the tissue

(4)             

where υs and υf are the velocities of solid and fluid, k is the
hydraulic permeability (open circuit). The continuity con-
dition holds everywhere in the tissue, such that

.(Φfυf + Φsυs + Φ-υ- + Φ+υ+) = 0  (5)

Darcy's law is obtained from the second equation of the
conservation of momentum (4).

Wi= Φf(υf - υs) = -k p  (6)

where Wi is the effective fluid flux.

Fluid pressure p is composed of hydrostatic pressure, p0;
and osmotic pressure [15], ∆π:

p = p0 - ∆π  (7)

The osmotic pressure is associated with the chemical po-
tential and is expressed explicitly

π = ξRT [c + A0c2 + A1c3 + ··· ];

∆π = π - π0  (8)

where π0 is the initial state of the system; ξ is the osmotic
coefficient describing the character of the ion transport
through the semi-permeable membrane (tissue). ξ ap-
proaches 1 for an ideal membrane, i.e., no ions can pass
through the tissue. R and T are the gas constant and abso-
lute temperature, respectively. c is the effective NaCl con-
centration within the tissue which is related to the
concentration of c- and c+ by [14]:

In a first order approximation, Eq. (8) takes the form of
van't Hoff's equation:

π = ξR·T·c;

∆π = π - π0.  (10)

The dependence of the chemical expansion stress, Tc, on
the ion concentration has not been quantified based on a
strict theory. Eisenberg and Grodzinsky [14] proposed a
chemical expansion stress as a function of c

where β0 and cβ are material parameters.

Another form of Tc as a function of c- and cF was proposed
by Lai et al. [4]

where a0 and κ are material parameters; γ and γ* are the
activity coefficients of NaCl in the tissue and the external
solution, respectively.

Conservation of mass requires

where ρα is the the apparent density for component α; the
superscripts α = s, f, +, - represent the solid and fluid
phase, and cations and anions, respectively; t is time.

Using the relations [4] ρα = cα Mα (α = +, -) with M+ and
M- being the atomic weight of Na+ and Cl-, respectively,
Eq.(13) can be written for electrolytes as

The diffusion of the electrolytes can be described using
Fick's law

-Dα cα = cα (υα - υs) α = -, +  (15)

where Dα is the diffusion coefficient for component α.

Fick's diffusion law (15), combined with mass conserva-
tion (Eq.(14)), results in the governing equation of the
convective diffusion process
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where the effects of the volume strain rate of the solid
phase on the diffusion process have been neglected. The
diffusion problem (Eq. (16)) can be solved using a con-
vective, thermal analogy, i.e., cα → θ with θ denoting
temperature.

The equations of motion for fluid and electrolytes (c+ and
c-) in the triphasic model of Lai et al. [4] [their Eqs. (30–
32)] are reduced to Darcy's law (Eq. (6)) and Fick's law
(Eq. (15)) when the effects of the electrical potential, the
friction between ions and fluid, the friction between ions
and anions, and the effects of the volumetric deformation
rate of the solid phase on the fluid phase are neglected.

Solution Procedure
For a practical problem with three components, only c-

needs to be solved, because c+ can be obtained from Eq.
(3). In order to solve the triphasic problem, the triphasic
constitutive relation (1) was converted into a biphasic
equation [2] with thermal expansion,

ε = εe + εc = εe + K∆cI  (17)

where ε is the total tissue strain, εe is the elastic strain as-
sociated with mechanical loading, and εc is the strain as-
sociated with the chemical expansion stress ("thermal
strain"); K = K(c) is a "thermal expansion coefficient", de-
fined as

where E is the Young's modulus of the tissue.

Eq. (17) is in a form that can be implemented into a gen-
eral, commercial software package. A practical problem
can now be solved using an iterative technique as follows:

(a) The initial c distribution within the tissue is obtained
by solving the diffusion equation (16) using υs = 0. The
problem is equivalent to the diffusion of c through the tis-
sue in a steady-state. The boundary condition, i.e., the dis-
tribution of c on the surface of the tissue, is known.

(b) The triphasic problem [Eqs. (1)] is solved using the
distribution of c in the tissue obtained in the previous
step. The problem is solved using a thermal analogous
procedure, as discussed previously. From this step, the dis-
tributions of the stress/strain and the displacement rate of
the solid phase (υs) were obtained.

(c) The diffusion equation (16) is solved again using the
updated υs obtained in the previous step. This is realized
using a convective thermal analogous procedure, as dis-
cussed previously.

The iterations [steps (b) and (c)] are continued until the
problem has converged. The distributions of the stress/
strain and the displacement rate of the solid phase (υs)
were extracted from the simulation results via a custom-
ized subroutine, and the iterations were run manually. In
the present simulations, the effective salt concentration in
the bath is assumed to be constant.

Numerical Tests
In order to validate the proposed FEM approach, our re-
sults were compared to those obtained by Simon et al.
[10] and Eisenberg and Grodzinsky [14]. All simulations
were performed using a confined compression configura-
tion (Fig. 1). The tissue specimens were compressed in a
confining chamber with a rigid, porous platen connected
to a load cell. The concentration of NaCl in the bathing
solution, (c(t)), and the compression displacement of the
sample, (δ(t)), were prescribed, while the compression
force (F(t)) was predicted in all simulations. ABAQUS
(version 5.8) was used in all simulations [16]. In the anal-
ysis, thermal expansion of the fluid was neglected. All nu-
merical simulations were carried out using 8-node,
biquadratic, axi-symmetric elements. The distribution of
NaCl concentration within the bathing solution was con-
sidered to be uniform throughout the tests.

Numerical Test A was designed to reproduce the one-di-
mensional, finite element results by Simon et al. [10]. The
cartilage specimen had a thickness of 5.0 mm and a diam-
eter of 30.0 mm. The specimen was compressed using a
prescribed displacement and, at the same time, the ion
concentration at the surface of the specimen was changed.
The c- concentration was chosen as the reference parame-
ter in the simulations. At t = 0, the specimen was in a
strainless equilibrium condition and had an original, uni-
form c- concentration of 0.001 M. The specimen was com-
pressed via a prescribed step function (Fig. 2a); the c-

concentration on the surface of the specimen was in-
creased suddenly and then kept constant (Fig. 2b) for the
remainder of the test. All material parameters (D, k, HA,
and v) were assumed to be constant (Tables 1, 2, 3).

Numerical Tests B and C were designed to reproduce the
confined compression experiments by Eisenberg and
Grodzinsky [14]. The articular cartilage specimens had a
diameter of 6.40 mm, and had an original thickness of
0.540 mm and 0.565 mm for Tests B and C, respectively.
The specimens were compressed initially by an amount of
δ0 = 0.0560 mm and 0.0185 mm for Tests B and C, respec-
tively. The initial NaCl concentrations in the bathing
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solution were c* = 0.10 and 0.005 M for Tests B and C, re-
spectively. The specimen was kept in this state for 2000
seconds until the predicted force reached a steady-state
(F0 = 2.31 N and 2.28 N for Tests B and C, respectively).

Once the steady-state force had been reached, the NaCl
concentration was changed suddenly from the initial val-
ue (c*) to 0.15 M and 0.10 M, for tests B and C, respective-
ly, while the compression of the specimen was kept

Figure 1
Schematics of the numerical tests simulating the confined compression experiments by Eisenberg and Grodzinsky [14]. The 
cartilage specimen was compressed in a rigid, impermeable chamber. The displacement δ(t) and the NaCl concentration of the 
bathing solution c(t) were controlled, while the reaction force, F(t), was measured in the physical experiments [14] or was pre-
dicted in the numerical tests.
Page 5 of 11
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Figure 2
Displacement and c- concentration at the central line of the specimen as a function of time for TEST A: (a) displacements at the 
bottom (z = 0.0, prescribed) and at the center of the specimen (z = 0.5 h, predicted) as a function of time; (b) c- concentrations 
at different locations within the specimen as a function of time. The concentration at the surface of the specimen was pre-
scribed, while the concentration within the specimen was predicted using the present model. The setup for the numerical test 
is shown in Fig. 1, with d = 32.0 mm and h = 5.00 mm. The material properties used are listed in Table 1 (TEST A).
Page 6 of 11
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Table 1: Geometry and Constant Material Parameters used in the Simulations. These parameters were taken from the literature 
[14,10]

Parameter Unit Test A Test B Test C

Specimen Dimension:
Diameter, d [mm] 30.00 6.40 6.40
Thickness, h [mm] 5.00 0.540 0.565

Constant Parameters:
Poisson's Ratio [-] 0.10 0.10 0.10

Diffusion Coefficient, D [m2/s] 0.20·10- 0.59·10-9 0.82·10-9

Hydraulic Permeability, k [m4/N·s] 1.51·10-10 1.10·10-15 1.50·10-15

Osmotic Parameter, ξRT [MPa/M] 3.0·104 3.0·104 3.0·104

Table 2: Aggregate Modulus used in the Simulations. A constant aggregate modulus was used for Test A [10]. A NaCl concentration-
dependent aggregate modulus was used for Tests B and C [14]

Test A:
Constant Aggregate Modulus

HA [MPa] 0.98

Tests B & C:
Variable Aggregate Modulus

HA =  + (  - ) exp (-c/cH)

[MPa] 0.27

[MPa] 1.17

cH [M] 0.12

Table 3: Parameters for the Chemical Expansion Stress used in the Simulations. The parameters of the chemical expansion stress [i.e., 
Eq. (12)] for Test A were from Lai et al. [4] and Gu et al. [5]. The parameters for the chemical expansion stress [i.e., Eq. (11)] for Tests 
B and C were from Eisenberg and Grodzinsky [14]

Test A

a0 [MPa/m] 0.05
κ [M-1] 7.50
γ [-] 1.00
γ* [-] 1.00
cF [M] 0.10

Tests B & C

β0 [kPa] 31.0
cβ [M] 0.032
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constant. The predicted and the measured [14] forces were
normalized to the steady-state force F0, and were plotted
as a function of time. The aggregate modulus, HA, was as-
sumed to be linearly dependent on c. Other parameters
(D, k, and v) were assumed to be constant (Tables 1, 2, 3)
[14].

Van't Hoff's equation [Eq. (10)] was used in all simula-
tions to evaluate the osmotic pressure.

Results
The numerical results of Test A are illustrated in Figs. 2
and 3. The predicted displacement at the center of the
specimen and the c- concentration at different locations
across the thickness of the specimen as a function of time

are shown in Fig. 2a and 2b, respectively. c- concentration
distributions across the thickness of the articular cartilage
specimen as a function of time are shown in Fig. 3. In or-
der to compare our three-dimensional (axi-symmetrical)
simulation to the one-dimensional FEM simulation by Si-
mon et al. [10], only the results on the central line of the
specimen were used in these plots. The numerical results
of Simon et al. [10] are also shown in these figures.

The numerical results of Tests B are shown in Fig. 4. The
time-histories of the c- concentration prescribed on the
top of the specimen (z/h = 1), together with those predict-
ed at a depth of z/h = 1/8 and 7/8 on the central line of the
specimen, are shown in Fig. 4a. The prescribed displace-
ment at the top of the specimen as a function of time is

Figure 3
The predicted c- concentration distributions across the thickness of the specimen (at the central line) as a function of time for 
TEST A. The setup for the numerical test is shown in Fig. 1, with d = 32.0 mm and h = 5.00 mm. The material properties used 
are listed in Table 1 (TEST A).
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Figure 4
NaCl concentration at the central line of the specimen, the compression displacement (δ(t)), and the reaction force, F(t), as a 
function of time for TEST B. (a) NaCl concentration at the central line and at three different locations (z/h = 1, 1/4, and 7/8) 
within the specimen as a function of time. The concentration at the surface of the specimen (z = h) as a function of time was 
prescribed throughout the test. (b) The prescribed compression displacement, δ(t), as a function of time. (c) The predicted 
reaction force as a function of time, F(t). The reaction force reached a steady-state value (F0) within 2000 s. The setup for the 
numerical test is shown in Fig. 1, with d = 32.0 mm and h = 5.00 mm. The material properties used are listed in Table 1 (TEST 
B).
Page 9 of 11
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depicted in Fig. 4b. The predicted specimen reaction force
as a function of time, in response to the variations in salt
concentration and displacement, are shown in Fig. 4c. Ap-
proximately 2000 s after the specimen was exposed to
0.10 M NaCl in the bathing solution and was compressed
to δ0 = 0.056 mm, an equilibrium state (F0 = 2.31 N) was
reached (Fig. 4c).

The predicted total reaction force on the specimen as a
function of time, normalized to the steady-state force, F0,
were compared with the experimental measurements by
Eisenberg and Grodzinsky [14] in Fig. 5a and 5b, for Tests
B and C, respectively. t = 0 (Fig. 5) is the time when the
specimens reached equilibrium (Fig. 4c).

The interaction between mechanical and chemical stresses
and deformations during cartilage deforma-tion was dem-
onstrated in our numerical simulations. For example, a
sudden change in the deformation state of the tissue
caused a change in ion concentration across the thickness
of the cartilage specimen (Fig. 2a and 2b), while a change

in NaCl concentration caused to a change in stress within
the articular cartilage (Fig. 4a,4b,4c).

Discussion and Conclusion
Experimental animal models have shown that articular
cartilage becomes thicker [17,18], softer [19], and more
permeable [20] in the initial stages of osteoarthritis (OA).
It is assumed that the adaptation and degeneration of ar-
ticular cartilage is associated with the stress-strain state of
articular cartilage during normal, everyday loading. The
stress-strain state of articular cartilage is associated with
the swelling and deformation of the cartilage, which is in-
fluenced by the changing mechanical and chemical envi-
ronment. A general FEM tool using the triphasic theory,
which bioengineers can use to analyse practical swelling
and deformation behaviour for physiologically relevant
problems, does not exist. Because of the mathematical
identity between thermal and mass diffusion processes
[21], it is possible to transfer the triphasic model into a
suitable form for implementation into commercial finite
element software to simulate the swelling and deforma-
tion behaviour of articular cartilage. The main difference
between the proposed approach and the triphasic model
[4] is that the electrical potential and its influence on the
transfer of electrolytes (i.e., NaCl concentration) was ne-
glected in the current analysis. The advantage of the pro-
posed thermal analogous technique over previous studies
[12,13] is, that it accounts for the convective diffusion of
NaCl concentrations and the Donnan osmotic pressure in
the interstitial fluid.

Our simulations (Test A) (Figs. 2b and 3) on the time-de-
pendent distributions of concentrations on the central
line of the specimen agree well with the one-dimensional
finite element results obtained by Simon et al. [10]. The
displacement at the center of the specimen (z/h = 0.5)
showed a sudden change (Fig. 2a) when the prescribed
displacement at the specimen surface was changed using
a step function (Fig. 2a). This behaviour was not predicted
by Simon et al. (their Fig. 3) [10], who gave no
explanation why they did not predict this behaviour
which should occur when considering the articular carti-
lage as a continuous material.

In order to reach an initial compression force (F0), the car-
tilage specimen must be compressed long enough for the
force to reach a steady-state. It was found that the amount
of initial compression to reach a given compression force
in our numerical tests was smaller than the corresponding
compression in the experiments by Eisenberg and
Grodzinsky [14]. This difference in the magnitude of com-
pression between theory and experiment is likely associat-
ed with the fact that in real tests, there is space between the
lateral surface of the cartilage specimen and the chamber
wall; while in our numerical simulations, the lateral

Figure 5
The predicted reaction force as a function of time compared 
with the experimental results by Eisenberg and Grodzinsky 
[14]. (a) TEST B; (b) TEST C. t = 0 is the moment when the 
specimen reached a steady-state (i.e., F reached F0, as shown 
in Fig. 4) and the concentration of the bathing solution was 
increased to a new level (Fig. 4). The reaction force was nor-
malized to its value at the steady-state (F(t)/F0). The setup for 
the numerical test is shown in Fig. 1, with d = 32.0 mm and h 
= 5.00 mm and 6.00 mm for TESTS B and C, respectively. 
The material properties used are listed in Table 1 (TESTS B 
and C).
Page 10 of 11
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boundary of the specimen was assumed to be fixed
ideally.

The proposed approach differs from the poroelastic finite
element formulation by Simon et al. [10] in that the fluid
pressure, which is the sum of the hydrostatic and Donnan
osmotic pressure, is governed by Darcy's law; while in the
model by Simon et al. [10], the effect of the Donnan os-
motic pressure was included into the fluid pressure
through a "generalized Darcy's" law [Eq. (12b) in [10]].

Compared to the general triphasic model by Lai et al. [4]
and Gu et al. [5], the effects of the electrical potential, the
friction between ions and fluid, the friction between
cations and anions, and the effects of the volumetric de-
formation rate of the solid phase on the fluid phase were
neglected in the proposed approach. The effects of friction
between cations and anions and the volumetric
deformation rate of the solid phase on the fluid phase are
believed to be negligible [5,11].

The major difference between the proposed approach and
the rigorous formulation by Sun et al.'s [11] is that the
friction between ions and fluid was neglected in our mod-
el formulation. However, the effects of the friction be-
tween ions and fluid are included in the diffusion
coefficient (Dα) in our model. Our model represents a rea-
sonable approximation of complex biological systems
and the associated problems, since the friction between
ions and fluid cannot be measured directly, while the dif-
fusion coefficient, which includes the effects of ions/fluid
friction, can be determined experimentally.

In the present simulations, a constant osmotic coefficient,
hydraulic permeability, and diffusion coefficient was
used. However, in reality, these coefficients are not con-
stant; they change as a function of the deformation state
of the matrix, the ion concentration, and the electrical po-
tential [6,7]. Deformation-and ion concentration-de-
pendent coefficients (osmotic coefficient, hydraulic
permeability, and diffusion coefficients) can be incorpo-
rated into the proposed approach.

In summary, we have developed an approach that con-
verts the triphasic analysis into a problem of convective
thermal diffusion coupled with a poroelastic thermal
stress analysis. The proposed approach makes it possible
for bioengineers to analyse triphasic physiological sys-
tems using commercially available FEM software.
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