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Abstract 

Objectives:  This study was designed to explore and validate the value of different 
machine learning models based on ultrasound image-omics features in the preopera‑
tive diagnosis of lymph node metastasis in pancreatic cancer (PC).

Methods:  This research involved 189 individuals diagnosed with PC confirmed 
by surgical pathology (training cohort: n = 151; test cohort: n = 38), including 50 cases 
of lymph node metastasis. Image-omics features were extracted from ultrasound 
images. After dimensionality reduction and screening, eight machine learning algo‑
rithms, including logistic regression (LR), support vector machine (SVM), K-nearest 
neighbors (KNN), random forest (RF), extra trees (ET), extreme gradient boosting 
(XGBoost), light gradient boosting machine (LightGBM), and multilayer perceptron 
(MLP), were used to establish image-omics models to predict lymph node metasta‑
sis in PC. The best omics prediction model was selected through ROC curve analy‑
sis. Machine learning models were used to analyze clinical features and determine 
variables to establish a clinical model. A combined model was constructed by com‑
bining ultrasound image-omics and clinical features. Decision curve analysis (DCA) 
and a nomogram were used to evaluate the clinical application value of the model.

Results:  A total of 1561 image-omics features were extracted from ultrasound images. 
15 valuable image-omics features were determined by regularization, dimension 
reduction, and algorithm selection. In the image-omics model, the LR model showed 
higher prediction efficiency and robustness, with an area under the ROC curve (AUC) 
of 0.773 in the training set and an AUC of 0.850 in the test set. The clinical model 
constructed by the boundary of lesions in ultrasound images and the clinical feature 
CA199 (AUC = 0.875). The combined model had the best prediction performance, 
with an AUC of 0.872 in the training set and 0.918 in the test set. The combined model 
showed better clinical benefit according to DCA, and the nomogram score provided 
clinical prediction solutions.

Conclusion:  The combined model established with clinical features has good diag‑
nostic ability and can be used to predict lymph node metastasis in patients with PC. It 
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is expected to provide an effective noninvasive method for clinical decision-making, 
thereby improving the diagnosis and treatment of PC.

Keywords:  Ultrasound, Radiomics, Machine learning, Pancreatic cancer, Lymph node 
metastasis

Introduction
Pancreatic cancer (PC) is currently one of the most common highly lethal malignancies, 
with a 5-year survival rate of 12%. It is expected to become the third leading cause of 
cancer-related deaths by 2025 and is characterized by high malignancy, rapid progres-
sion, and extremely poor prognosis [1, 2]. Approximately 80% of PC cases are already 
in advanced or locally advanced stages when detected, and currently, most treatment 
options have limited effectiveness, leading to poor overall prognosis [3]. Lymph node 
metastasis is one of the vital factors affecting the prognosis of PC [4]. If the lymph node 
metastasis status of PC can be accurately determined before surgery, targeted treatment 
plans can be developed for patients’ subsequent care. Therefore, accurate preoperative 
assessment of lymph node metastasis in PC patients is particularly important clinically. 
Currently, preoperative imaging of pancreatic tumors includes ultrasound, magnetic 
resonance imaging (MRI), and computed tomography (CT), all of which play an impor-
tant role in PC diagnosis, treatment evaluation, prognosis prediction, etc. However, 
conventional imaging features can provide limited clinical information and cannot com-
prehensively and accurately reflect the tumor’s characteristics. Radiomics can extract 
high-throughput imaging data from routine imaging images that are unrecognizable 
to the human eye, capture characteristic data reflecting tumor heterogeneity noninva-
sively, and integrate these features with clinical information for comprehensive analysis, 
thereby improving treatment efficacy and patient prognosis [5, 6]. Machine learning, as 
a new method based on computer data analysis, can learn from patterns in the dataset to 
discover more interactions between variables and outcomes and has been widely applied 
in clinical medical research [7–9]. Recent research has explored the utilization of radi-
omics and machine learning in pancreatic tumors, leveraging the advancements in arti-
ficial intelligence and machine learning algorithms [10–12]. These studies have shown 
that radiomics machine learning prediction models have stability, effectiveness, and 
high accuracy, demonstrating guiding significance for personalized and precise treat-
ment of PC patients; the models are helpful in solving clinical problems and optimizing 
treatment plans. However, there is currently no research on different machine learning 
models based on ultrasound radiomics and clinical information parameters for the pre-
operative prediction of lymph node metastasis in PC. In this investigation, we selected 
different machine learning methods for radiomics models, developing and validating 
combined models based on ultrasound radiomics and clinical features for noninvasive 
preoperative prediction of lymph node metastasis status in PC patients.

Results
Extraction and selection of radiomics features

Based on the inclusion and exclusion criteria of this study, a total of 189 patients with 
PC confirmed by postoperative pathological findings were enrolled (102 males and 87 
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females), including 50 patients with lymph node metastasis (25 males and 25 females). 
These patients were randomly assigned to a training group and a testing group in an 
8:2 ratio, with 151 cases in the training group and 38 cases in the testing group. We 
extracted 1561 high-throughput radiomics features from the region of interest (ROI) of 
each patient’s ultrasound images and normalized the quantized radiomics features with 
Z score regularization. Through the Pearson correlation test and principal component 
analysis (PCA) of feature data, we used the least absolute shrinkage and selection opera-
tor (LASSO) regression and mean squared error (MSE) algorithm to finally determine 
15 nonzero coefficient radiomics features (Fig. 1). Rad score is shown as follows:

Rad score = 0.2771177243528842
+ 0.053686 ∗ lbp_3D_m1_firstorder_10Percentile

− 0.042696 ∗ lbp_3D_m2_gldm_SmallDependenceLowGrayLevelEmphasis
+ 0.012872 ∗ original_glszm_HighGrayLevelZoneEmphasis
− 0.086265 ∗ wavelet_HHH_gldm_LargeDependenceHighGrayLevelEmphasis
+ 0.021036 ∗ wavelet_HHH_gldm_LowGrayLevelEmphasis
+ 0.036746 ∗ wavelet_HHH_glrlm_ShortRunHighGrayLevelEmphasis
− 0.020433 ∗ wavelet_HHH_glszm_SmallAreaEmphasis
− 0.055978 ∗ wavelet_HHH_glszm_SmallAreaLowGrayLevelEmphasis
+ 0.024903 ∗ wavelet_HHL_glcm_Correlation
+ 0.023112 ∗ wavelet_HLH_glrlm_GrayLevelVariance
− 0.071616 ∗ wavelet_LHH_glcm_Imc2
+ 0.022336 ∗ wavelet_LHH_gldm_LowGrayLevelEmphasis
− 0.072566 ∗ wavelet_LHH_glrlm_LowGrayLevelRunEmphasis
− 0.028400 ∗ wavelet_LLH_glrlm_RunPercentage
+ 0.105875 ∗ wavelet_LLH_glrlm_ShortRunHighGrayLevelEmphasis

Fig. 1  A histogram of radiographic scoring based on the final selected radiomics features
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Construction of the radiomics model

Eight machine learning algorithms (including logistic regression (LR), support vec-
tor machine (SVM), K-nearest neighbors (KNN), random forest (RF), extra trees (ET), 
extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and 
multilayer perceptron (MLP) were used to construct radiomics models on the training 
group and validate them on the testing group. Among the constructed radiomics mod-
els, the logistic regression model showed better predictive performance in the testing 
dataset (AUC = 0.850, 95% CI 0.712–0.989). The ET and XGBoost models in both the 
training and testing groups showed overfitting trends. To ensure the effectiveness and 
stability of the model, the LR model was ultimately selected as the best radiomics model 
(Fig. 2a, 2b).

Fig. 2  Receiver operating characteristic (ROC) curve set of radiomics-clinical parameter features. ROC curve 
set of radiomics models on the training a and testing b sets. ROC curve set of clinical parameter models on 
the training c and testing d cohorts. E. Collection of ROC curves of training e and testing f sets based on the 
logistic regression (LR) machine learning algorithm joint model
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Construction of the clinical model

In the training group, significant differences were observed in the location distribution, 
echogenicity, boundary, and tumor markers CEA and CA199 between PC patients with 

Table 1  Characteristics of pancreatic cancer patients in the training and testing datasets regarding 
lymph node metastasis

Values are presented as number (%), mean (SD) or median (IQR)

CEA carcino-embryonic antigen, CA cancer antigen, AFP alpha fetoprotein

Variable Total (N = 189) Training dataset 
(N = 151)

Testing dataset 
(N = 38)

P value

Age (years) 58.00 ± 11.35 57.32 ± 11.68 60.68 ± 9.58 0.144

CEA (ng/ml) 40.43 ± 304.30 45.44 ± 339.34 20.52 ± 56.14 0.803

CA125 (U/ml) 109.47 ± 242.72 96.81 ± 220.78 159.76 ± 313.83 0.735

CA153 (U/ml) 23.82 ± 33.77 24.00 ± 36.97 23.07 ± 15.96 0.276

CA199 (U/ml) 2661.07 ± 4409.41 2380.49 ± 4215.79 3775.97 ± 5014.07 0.536

AFP (ng/ml) 3.49 ± 4.65 3.56 ± 5.14 3.21 ± 1.61 0.887

Serum amylase (U/l) 266.84 ± 539.09 286.58 ± 597.47 188.38 ± 146.96 0.953

Duration (days) 64.71 ± 78.08 60.63 ± 73.12 80.94 ± 94.66 0.097

Maximum diameter 
(cm)

3.80 ± 1.48 3.82 ± 1.49 3.72 ± 1.48 0.885

Gender (n, %) Female 87 (46.03) 71 (47.02) 16 (42.11) 0.718

Male 102 (53.97) 80 (52.98) 22 (57.89)

Location (n, %) Head/ neck 137 (72.49) 107 (70.86) 30 (78.95) 0.427

Body/ tail 52 (27.51) 44 (29.14) 8 (21.05)

Echo (n, %) High/mixed 41 (21.69) 33 (21.85) 8 (21.05) 1.000

Hypoecho 148 (78.31) 118 (78.15) 30 (78.95)

Boundary (n, %) Clear 79 (41.80) 65 (43.05) 14 (36.84) 0.611

Unclear 110 (58.20) 86 (56.95) 24 (63.16)

Differentiation (n, %) High/ Moderate 164 (86.77) 133 (88.08) 31 (81.58) 0.430

Low 25 (13.23) 18 (11.92) 7 (18.42)

Table 2  Univariate and multivariate logistic regression analysis used for selecting clinical machine 
learning model development

CEA carcino-embryonic antigen, CA cancer antigen, AFP alpha fetoprotein

Variable Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

Gender 0.959 (0.862–1.067) 0.514

Age (years) 1.005 (1.002–1.010) 0.079

CEA (ng/ml) 1.001 (1.002–1.009) 0.033 1.000 (1.003–1.006) 0.108

CA125 (U/ml) 1.064 (1.001–1.003)  < 0.001 1.000 (1.004–1.005) 0.223

CA153 (U/ml) 1.001 (0.999–1.002) 0.554

CA199 (U/ml) 1.151 (1.001–1.010)  < 0.001 1.042 (1.116–1.318)  < 0.001

AFP (ng/ml) 0.993 (0.982–1.004) 0.313

Serum amylase (U/l) 1.000 (1.001–1.008) 0.649

Duration (days) 1.000 (0.999–1.000) 0.213

Maximum diameter (cm) 1.001 (0.966–1.038) 0.949

Location 0.858 (0.763–0.966) 0.034 0.911 (0.823–1.008) 0.131

Echo 1.317 (1.163–1.493)  < 0.001 1.051 (0.931–1.188) 0.499

Boundary 1.476 (1.339–1.627)  < 0.001 1.276 (1.142–1.426)  < 0.001

Differentiation 1.224 (1.048–1.430) 0.033 1.024 (0.889–1.179) 0.782
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or without lymph node metastasis in ultrasound images. In the testing group, statisti-
cally significant differences were found in the boundary of lesions, serum amylase, and 
CA199 in the images (Table  1). Univariate and multivariate logistic regression analy-
ses showed that the boundary of lesions in 2D ultrasound images (OR = 1.276, 95% CI 
1.142–1.426) and the tumor marker CA199 (OR = 1.042, 95% CI 1.116–1.318) were 
independent predictors of lymph node metastasis in PC (Table  2). Using these two 
clinical feature parameters, a clinical machine learning model was constructed, and the 
logistic regression model showed better predictive performance in the testing group 
(AUC = 0.875, 95% CI 0.765–0.986), outperforming the other seven machine learning 
models (Fig. 2c, 2d).

Fig. 3  Calibration curves in the training a and testing b sets. Decision curve analysis (DCA) of radiomics, 
clinical parameters, and joint models in the testing c cohort. Clinical application of omics model in lymph 
node metastasis of pancreatic cancer d 
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Construction and evaluation of the combination model

By integrating the 15 radiomics features and clinically independent predictors 
(boundary of lesions and tumor marker CA199), we developed a combination model 
using the LR machine learning model that was used to predict the lymph node 
metastasis status of PC patients before surgery. In the training and testing groups, 
the combination model outperformed the radiomics and clinical machine learning 
models, demonstrating the best predictive performance (training group AUC = 0.872, 
95% CI 0.809–0.935; testing group AUC = 0.918, 95% CI 0.823–1.000) (Fig.  2e, 2f ). 
The Hosmer‒Lemeshow test indicated good consistency of the calibration curves 
of the combination model in the training and testing datasets, with radiomics fea-
tures (P = 0.761), clinical information features (P = 0.801), and the combined model 
(P = 0.160) (Fig. 3a, 3b). We also evaluated each model using decision curve analysis 
(DCA), and the combination model showed better clinical utility in the preoperative 
prediction of lymph node metastasis in PC (Fig. 3c). The clinical application nomo-
gram score sheet displayed the clinical predictive scheme (Fig. 3d).

Discussion
PC is characterized by its insidious onset, atypical early symptoms and signs, high malig-
nancy, rapid progression, and poor prognosis [13, 14]. The sole effective approach for PC 
patients to acquire an opportunity for healing and prolonged survival is surgical resec-
tion. Radical surgery includes resection of the primary tumor and regional lymph node 
clearance, with lymph node metastasis being an important factor affecting surgical prog-
nosis [15]. Since lymph node metastasis (N stage) is determined by surgical pathology, it 
is clinically significant to be able to safely and accurately predict lymph node metastasis 
preoperatively through the analysis and modeling of PC ultrasound images and clini-
cal features. In this research, a total of eight distinct machine learning techniques were 
employed (namely LR, SVM, KNN, RF, ET, XGBoost, LightGBM, and MLP) to construct 
and verify a merged model utilizing ultrasound radiomics and clinical characteristics, 
aiming to predict lymph node metastasis status in PC patients with high diagnostic per-
formance, reveal the N stage of PC, and provide effective information for individualized 
and precise treatment of PC patients.

At present, there is no consensus on the prediction of lymph node metastasis in 
PC based on imaging and clinical information features. Therefore, a new approach or 
method is needed to assist clinical decision-making. Ultrasound, due to its convenience, 
noninvasiveness, lack of radiation, and ability to observe multiple axes, is a frontline 
diagnostic tool in clinical practice and is generally used for the initial diagnosis and fol-
low-up of PC [16]. However, the clinical information provided solely by traditional ultra-
sound image features is limited, making it difficult to differentiate lymph node metastasis 
and fully and accurately reflect the characteristics of pancreatic tumors. Radiomics is a 
noninvasive method that mainly reflects the heterogeneity of tumors by extracting high-
throughput features from images. It can be used alone or in combination with histology, 
genomics, and proteomics data to solve clinical problems [17–19]. The application of a 
combined model based on radiomics and clinical parameters provides a new approach 
and insights for establishing prediction models with multiple features. Zheng and col-
leagues discovered that a fusion of radiomics and clinical characteristics exhibited good 
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diagnostic capability in distinguishing between benign and malignant tumors in the 
parotid gland. This approach is anticipated to offer a noninvasive and efficient means for 
clinical decision-making, as stated in reference [20]. Li et al. also reported that a com-
bined feature model can noninvasively distinguish autoimmune pancreatitis from PC 
[10]. The findings of this study suggest that the combination of the radiomics texture fea-
ture model and clinical information feature machine learning model has higher diagnos-
tic performance than models constructed with individual features alone. The combined 
model can not only predict the lymph node metastasis status of PC patients comprehen-
sively but also improve the performance and accuracy of prediction, which is consistent 
with the results of Pszczolkowski’s investigation [21].

In the field of medicine, machine learning has shown great potential with its excellent 
computing capabilities in image reconstruction, segmentation, recognition, and clas-
sification. Using high-throughput imaging techniques to obtain image information and 
using machine learning as the main computational tool, the ‘‘radiomics + machine learn-
ing’’ analytical approach has become the mainstream solution for medical image analysis 
at this stage. Compared with traditional analytical methods, the ‘‘radiomics + machine 
learning’’ mode has the ability to learn from historical image data, reducing the interfer-
ence of subjective factors and ensuring the objectivity and reliability of the prediction 
results [22]. Van et  al. used spline interpolation sampling, Z score normalization, and 
PCA dimension reduction to clean and process feature data and used a multilayer per-
ceptron classifier algorithm to achieve automated diagnosis of Ménière’s disease [23]. 
Zaragori et  al. processed feature data using hierarchical clustering, Spearman correla-
tion analysis, and rank-sum test methods and used LR, neural network, RF, and SVM 
classifiers to predict IDH mutations and lp/19q codeletions in brain gliomas [24]. The 
above studies used various methods for feature selection and classification. By con-
structing multiple machine learning algorithm models and comparing their diagnostic 
performance, the accuracy and sustainability of the models can be better demonstrated. 
In this study, the LR model had the best comprehensive prediction performance (train-
ing set AUC = 0.872, test set AUC = 0.918). This may be attributed to the fact that the 
LR model is designed to binarize data by maximizing the likelihood function and using 
gradient descent. Additionally, this model is more sensitive to multicollinear data and 
imbalanced data [25, 26].

In addition to high-throughput ultrasound imaging data, the dataset of this study 
also included participants’ clinical information (clinical examination results, laboratory 
test information, pathological differentiation) as covariates in the analysis of radiomics 
machine models to improve the accuracy and precision of research predictions. This 
study is a retrospective single-center study with multiple factors affecting the research 
results, such as sample size, parameter acquisition, and extraction methods. Hence, it is 
crucial to have larger sample sizes, prospective studies, and involve multiple centers to 
authenticate the outcomes of the model and enhance its effectiveness.

In summary, our research and development have validated a machine learning model 
based on ultrasound that integrates and extracts high-dimensional data information 
from ultrasound images. This model has excellent diagnostic capabilities and can be 
used to predict the lymph node metastasis status in PC patients. It is expected to provide 
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a noninvasive and effective approach for clinical decision-making, thus improving the 
level of diagnosis and treatment of PC.

Materials and methods

The main research steps of this study include acquiring and preprocessing two-dimen-
sional ultrasound images of PC, calibrating the tumor region of interest, extracting and 
reducing the dimensionality of radiomics features, analyzing clinical parameter data, 
and establishing and evaluating prediction models (Fig.  4). We first explored the per-
formance of the machine model based on ultrasound radiomics features in predicting 
lymph node metastasis of PC. To further explore the potential biological mechanism 
of PC N staging, we also attempted to evaluate clinical tumor marker features: CEA, 
CA125, CA153, and CA199. By constructing a combined model, we aimed to achieve 
noninvasive prediction of lymph node metastasis in PC.

Patient population

This research was approved by the Ethics Committee. The medical data of patients 
with PC who underwent surgical treatment at this medical institution from Janu-
ary 2019 to May 2023 were retrospectively analyzed. The inclusion criteria were as 

Fig. 4  The machine learning workflow diagram based on ultrasound-based imaging omics
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follows: (1) Histopathologically confirmed PC; (2) preoperative comprehensive ultra-
sound examination; (3) same ultrasound equipment used with the same parameters 
for scanning; (4) clearly and unequivocally displayed target lesion on ultrasound 
images. The exclusion criteria were as follows: (1) history of tumor treatment before 
surgery; (2) incomplete clinical data; and (3) lack of detailed lymph node metastasis 
staging information in pathological reports (Fig. 5).

Image acquisition

We used the GE Logiq E9 color ultrasound diagnostic instrument (C5-1 convex array 
probe, 2.8–5.0 MHz) to acquire images, maintaining the room temperature within the 
range of 22–28 degree. The probe was sufficiently covered with a coupling agent to 
eliminate gas interference during scanning. Patients were needed to fast for 8–12 h 
before the examination and were placed in the supine or lateral position. The sequen-
tial parallel section method was used to observe and analyze the overall conditions 
of PC lesions, clearly displaying the maximum cross-sectional area of the lesions, 
and the images were saved in Digital Imaging and Communications in Medicine 
(DICOM) format.

Lesion segmentation

Two ultrasound doctors (with 8 and 21  years of diagnostic experience) independently 
used ITK-SNAP software (http://​www.​itksn​ap.​org) to trace the contours of PC lesions 

Fig. 5  The workflow diagram of inclusion and exclusion criteria for this study

http://www.itksnap.org
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along the edge of the maximum cross-sectional area of each lesion, determining the 
ROI of the tumor. To ensure the stability and repeatability of the extracted radiomics 
features, the intraclass correlation coefficient (ICC) was employed to evaluate the intra- 
and interobserver consistency of features between senior and junior doctors. A value of 
ICC above 0.9 suggests strong consistency.

Ultrasound image and clinical data analysis

Patient ultrasound images and clinical data were obtained from the Picture Archiving 
and Communication System (PACS) of our hospital. We retrospectively analyzed the 
distribution, maximum diameter, echogenicity, and border of ultrasound images as well 
as clinical parameters, including sex, age, course of disease, serum amylase, tumor mark-
ers (CEA, CA125, CA153, CA199, AFP), and postoperative pathological diagnosis.

Image feature selection and extraction

Radiomics features provide objective high-throughput imaging features for quantita-
tive analysis of intralesional heterogeneity and biological characteristics. The ultrasound 
images were processed for quantitative feature extraction using Ultimate software (GE 
healthcare). The extracted radiomics features included first-order features, gray-level 
cooccurrence matrix (GLCM), gray-level dependence matrix (GLDM), gray-level run-
length matrix (GLRLM), gray-level size zone matrix (GLSZM), neighborhood gray-
tone difference matrix (NGTDM), and shape features. Features with zero variance were 
removed, and Z score standardization was applied. Redundant features with a Pearson 
correlation coefficient (corr) greater than 0.9 were eliminated. PCA was used for feature 
dimensionality reduction. The LASSO regression model with tenfold cross-validation 
and MSE as penalty parameters were used to determine the optimal λ value as the regu-
larization coefficient, and radiomics features with nonzero coefficients were selected.

Construction and validation of the radiomics models

Radiomics models were constructed on the training set using various classifiers, includ-
ing LR, SVM, KNN, RF, ET, XGBoost, LightGBM, and MLP [26–33]. To evaluate the 
accuracy of the radiomics features in predicting PC lesions, the generated radiomics 
models were evaluated using the testing set, and the diagnostic performance of the mod-
els was quantitatively compared using AUC.

Construction and clinical application evaluation of clinical and combined models

Univariate logistic regression analysis was performed on the features of ultrasound 
images and clinical pathological parameters in the training dataset, and multivariate 
logistic regression was performed on significant indicators to obtain the predictive vari-
ables for the clinical model. A combined model was constructed by combining the best 
radiomics model and clinical features model. The performance of the constructed model 
was evaluated and validated using the test set. The clinical application value of the model 
was evaluated using the net benefit and DCA threshold probability nomogram.
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Statistical analysis

Statistical analysis was conducted using SPSS 25.0 (http://​www.​spss.​com.​hk/) and 
Python (https://​www.​python.​org/) software. Continuous variables were described 
using a t test or Mann‒Whitney U test depending on whether they followed a nor-
mal distribution, with mean and standard deviation or median. Categorical data were 
described using the Chi-square test or Fisher’s exact test with rates. Multivariate analysis 
was performed using logistic regression models, and odds ratios (ORs) were used for 
description. All statistical tests were two tailed, and p < 0.05 was considered statistically 
significant.
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