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Abstract 

Background: Left ventricular enlargement (LVE) is a common manifestation of car-
diac remodeling that is closely associated with cardiac dysfunction, heart failure (HF), 
and arrhythmias. This study aimed to propose a machine learning (ML)-based strategy 
to identify LVE in HF patients by means of pulse wave signals.

Method: We constructed two high-quality pulse wave datasets comprising a non-LVE 
group and an LVE group based on the 264 HF patients. Fourier series calculations were 
employed to determine if significant frequency differences existed between the two 
datasets, thereby ensuring their validity. Then, the ML-based identification was under-
taken by means of classification and regression models: a weighted random forest 
model was employed for binary classification of the datasets, and a densely connected 
convolutional network was utilized to directly estimate the left ventricular diastolic 
diameter index (LVDdI) through regression. Finally, the accuracy of the two models 
was validated by comparing their results with clinical measurements, using accuracy 
and the area under the receiver operating characteristic curve (AUC-ROC) to assess 
their capability for identifying LVE patients.

Results: The classification model exhibited superior performance with an accuracy 
of 0.91 and an AUC-ROC of 0.93. The regression model achieved an accuracy of 0.88 
and an AUC-ROC of 0.89, indicating that both models can quickly and accurately iden-
tify LVE in HF patients.

Conclusion: The proposed ML methods are verified to achieve effective classifica-
tion and regression with good performance for identifying LVE in HF patients based 
on pulse wave signals. This study thus demonstrates the feasibility and potential 
of the ML-based strategy for clinical practice while offering an effective and robust tool 
for diagnosing and intervening ventricular remodeling.
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Introduction
In recent years, heart failure (HF) has become an increasingly significant burden on pub-
lic health [1–3], while ventricular structure remodeling has been recognized as a piv-
otal process in the development of cardiovascular diseases, particularly the progression 
of HF [4, 5]. The determinants affecting the left ventricular remodeling: (I) the inten-
sity, longevity, and quickness of elevation in pressure burden; (II) the volume load; (III) 
factors like age, racial/ethnic background, and gender; (IV) accompanying conditions 
including coronary artery disease, diabetes, obesity, and valve-related heart issues; (V) 
the hormonal environment within the nervous system; (VI) changes in the extracellu-
lar matrix; and (VII) hereditary influences [6]. Left ventricular enlargement (LVE), as a 
common manifestation of ventricular remodeling, is closely associated with symptoms 
such as cardiac dysfunction, HF, and arrhythmias [7]. The increase in left ventricular size 
due to LVE exerts a severe impact on the clinical prognosis of patients with mild with or 
without severe HF [8]. Recent studies have identified LVE as a precursor to left ventricu-
lar dysfunction and clinical HF in asymptomatic individuals [9, 10]. LVE is recognized as 
a risk factor for both the occurrence and mortality rates associated with cardiovascular 
diseases (CVDs) [11], serving as a critical indicator of cardiac events, closely associated 
with deteriorating cardiac function and unfavorable prognosis [12].

LVE provides a crucial marker in cardiac pathology, and accurate evaluation of LVE 
facilitates the diagnosis and assessment of heart diseases and enables the prediction of 
cardiac events and prognosis, providing valuable guidance for medical treatments and 
management strategies. Thus, as illustrated in Fig. 1a, the monitoring and evaluation of 
LVE are particularly important from a clinical perspective. Detection of LVE primarily 
relies on the patient’s medical history and imaging tests, with cardiac magnetic reso-
nance (CMR) often being the most precise method due to its ability to accurately assess 

Fig. 1 Illustration of a LVE and representative symptoms in CVDs, data-driven LVE detection, and b machine 
learning-based strategy for predicting LVE using pulse wave signals
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the heart’s morphology, size, and position [13–15]. CMR is not routinely available due 
to its high cost, time-consuming, and magnetic field limitations for patients with metal 
implants [16, 17]. Consequently, transthoracic echocardiography (TTE), known for its 
noninvasive and real-time imaging, is widely regarded as an effective, patient-friendly 
method for evaluating and diagnosing cardiac functions [18]. However, the accessibility 
and convenience of TTE are limited due to the requirement for specialized equipment 
and skilled operators. This research leverages pulse waves as a key informational conduit 
within the cardiovascular system (CVS) to address these limitations and offer a noninva-
sive, cost-effective solution. Building on our previous study, we demonstrate that pulse 
waves can effectively infer CVS conditions and aid in diagnosing CVDs [19]. By explor-
ing the use of pulse waveforms, this research identifies them as a promising tool for rap-
idly identifying and evaluating LVE (Fig. 1b).

The physiological signal of pulse waves has been widely utilized for health monitor-
ing and CVD prediction [20–23]. Pulse waves contain valuable information on both 
physiological and pathological states of the human CVS while providing crucial physi-
ological information associated with blood supply capacity and transportation effi-
ciency [19, 24, 25]. Noninvasive measurements of pulse wave signals can now be easily 
implemented using various low-cost home electronic devices, providing helpful infor-
mation for the low-cost and patient-friendly diagnosis of CVDs and relevant complica-
tions [26]. Recently, machine learning (ML) and deep learning (DL) methodologies have 
been employed for the analysis of pulse wave signals, demonstrating high potential and 
feasibility in terms of pulse wave pattern classification and cardiac function prediction 
[22, 27–30]. Wang et al. successfully classified 407 datasets of pulse waveforms into five 
patterns by developing a Bayesian network based on six pulse-waveform parameters 
of depth, width, length, frequency, rhythm, and intensity, achieving classification with 
a success rate of 84% [31]. Xu et al. classified 320 datasets of pulse waveforms into 16 
patterns using a fuzzy neural network to extract the differences in pulse shape, width, 
position, and specific local parameters, enabling a classification success rate of 90% [32]. 
Li et al. proposed a CNN model to classify the pulse waveforms associated with five dis-
eases of hypertension, atherosclerosis, hyperlipidemia, type 2 diabetes, and hypertension 
with concurrent atherosclerosis with a success rate of 95% [33]. More recently, in our 
previous study [19], Wang et al. established an optimized ML strategy that enables fast 
and accurate predictions of three cardiovascular functional parameters based on a pulse 
wave database of 412 patients, demonstrating the feasibility and potential of ML-driven, 
pulse wave-based predictions of cardiac function. In this study, we aim to propose and 
establish a pulse wave signal-driven ML-based strategy for identifying and evaluating 
LVE in HF patients and to provide a clinically effective, patient-friendly, low-cost, and 
noninvasive tool for early diagnosis and monitoring of CVDs.

Results
Fourier series calculation

Through data screening and pre-processing, we successfully generated two high-qual-
ity pulse wave data sets specifically tailored to LVE and non-LVE patients. As shown 
in Fig. 2a, the representative waveforms of the two groups obtained based on K-means 
clustering show noticeable differences. Harmonic power decomposition (Fig.  2b) was 
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performed using the 1st to 3rd order Fourier coefficients to examine how the harmon-
ics contribute differently to the waveforms of the two groups. The pulse waveform in 
LVE is mainly dominated by the 1st order Fourier coefficient, but less by the 2nd order: 
the LVE group has a significantly higher power, but a slightly lower power than the non-
LVE group, and there is rarely a discrepancy in the 3rd order. This implies that the LVE-
induced irregular movement of the LV exerts an essential impact by the 1st order on 
dominating the feature of the pulse waves.

We further analyzed the harmonic frequency dependency of the two pulse wave 
datasets through independent sample t-tests, summarized in Table 1. In the frequency 
domain, we observed a significant difference between the  1st− and 2nd-order harmon-
ics (p < 0.05), while the influence of the 3rd-order harmonic was a margin (p > 0.05). This 
indicates that the datasets of the LVE and non-LVE groups are primarily affected by the 
1st- and 2nd-order harmonics, while there is a notable frequency domain distinction 
between them. This provides further evidence of the validity associated with the data-
set creation and an available guideline for data selection in subsequent classification and 
regression tasks, substantially enhancing the accuracy of pulse wave-driven identifica-
tion of LVE.

Classification model

For a classification model performance test, the accuracy results of three models (WRF, 
SVM, and FCNN) are compared in Table 2. The WRF model shows the best classification 
performance with an accuracy of 91%: its specific classification metrics, as summarized 

Fig. 2 Comparison of representative pulse waveforms associated with LVE and non-LVE patients. a 
Normalized amplitudes vs. normalized sample points. b Harmonic powers vs. harmonic order

Table 1 T-tests on the 1st-, 2nd-, and 3rd-order harmonics

Data are presented as the mean ± SD; p values were calculated using the independent samples t-test, where p < 0.05 
represents significant differences

Harmonic order Non-LVE LVE p

1 3.11 ± 0.65 2.92 ± 0.74 0.048

2 0.61 ± 0.21 0.69 ± 0.35 0.027

3 0.13 ± 0.10 0.12 ± 0.09 0.363
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in Table 3, for the LVE and non-LVE groups achieve an overall accuracy of 0.91, which 
is a remarkably high-accuracy classification, while the non-LVE group presents a slightly 
better performance (accuracy 0 = 0.93, recall H1 = 0.93, F1-score = 0.93) compared to 
the LVE group (accuracy 1 = 0.89, recall H2 = 0.89, F1-score = 0.89). This indicates that 
the current WRF classification model can achieve high prediction precisions with high 
recalls and F1 scores in identifying and predicting the most positive samples.

The classification performance was further visualized using the confusion matrix, 
which, as shown in Fig. 3a, was employed to illustrate the classification outcomes of the 
LVE and non-LVE groups. While 2 out of 17 in the LVE group and 2 out of 29 in the 
non-LVE group were misclassified, the classification model overall demonstrated a capa-
bility to achieve the high-accuracy prediction of 93% for the non-LVE group and 88% 
for 5 LVE patients, even for the limited number of patients. To quantify the sensitivity 
and specificity of the classification model, we plotted the ROC curves in Fig. 3b, where 
a scalar metric of the AUC was employed at an AUC of 0.93 for the WRF model. The 
results indicate that the current classification model enables excellent differentiation 
between the LVE and non-LVE groups in up to 93% of cases compared to the perfect 
case of AUC = 1.

Regression model

A Dense Net was utilized to predict the left ventricular diastolic diameter index (LVDdI) 
to optimize the ML network during the training process. The mean squared error (MSE), 
adopted as a loss function, displays a rapid and monotonic decline during the first sev-
eral epochs (Fig. 4), converging quickly to a stable and minimum level after 100 training 
epochs. The relevant parameters and weights gained for the optimized model were then 
employed for the testing and machine learning-based predictions. As a result, the opti-
mized regression model can achieve a prediction accuracy of 0.88.

To evaluate the consistency between the Dense Net predictions and clinical measure-
ments, we applied the Bland‒Altman method to examine the mean values and differ-
ences, illustrated in Fig. 5, with an interval of 95% confidence. The Dense Net predictions 
are in good agreement with the clinical measurements, with most of the predicted 
LVDdI plots scattered within the 95% confidence interval. We presented the confusion 

Table 2 Comparison of classification accuracy among the three methods

ML-models Number Accuracy

WRF 227 0.91

SVM 227 0.81

FCNN 227 0.77

Table 3 Classification performance of the WRF model

Precision Recall F1-score Support

Non-LVE 0.93 0.93 0.93 29

LVE 0.89 0.89 0.89 17

Accuracy 0.91 46
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Fig. 3 Confusion matrices and receiver operating characteristic (ROC) curves. a Confusion matrix of 
classification model. b Confusion matrix of regression model. c ROC curve of classification model, AUC = 0.93. 
d ROC curve of regression model, AUC = 0.89 (AUC: area under the curve)

Fig. 4 Learning the MSE curve of the DenseNet model
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matrix of the regression model based on the predicted LVDdI for a clearer comparison 
with the classification model, as shown in Fig. 3c. In this model, 3 cases from the LVE 
group and 3 cases from the non-LVE group were misclassified, which is slightly higher 
than the classification model. However, the regression model still demonstrated a high 
overall prediction accuracy of 88%. In addition, as shown in Fig. 3d, the ROC curve of 
the regression model, which estimates the LVDdI as a binary classification of the LVE 
and non-LVE groups, presents an AUC-ROC of 0.89, slightly lower than that of the clas-
sification model.

Discussion
Left ventricular enlargement (LVE) plays a pivotal role in the clinical evaluation of HF. In 
this study, we demonstrate that employing pulse wave signals combined with advanced 
machine learning (ML) techniques can provide a promising avenue for quantitative 
identification with LVE and non-LVE in heart failure (HF) patients.

With two high-quality pulse wave datasets of 264 patients for the LVE and non-
LVE groups, the ML-based prediction strategy was implemented using classification 
and regression models, which were validated through comparison with clinical meas-
urements capable of achieving fast and accurate LVE identification in HF patients. Of 
the three established classification models, weighted random forest (WRF) model can 
achieve a remarkable differentiation between the LVE and non-LVE groups with a sig-
nificantly high accuracy of 93%. In contrast, the dense net regression model enables 
an accuracy of 88% in directly predicting the left ventricular diastolic diameter index 
(LVDdI). The results demonstrate that the proposed methods and ML-driven methodol-
ogy have high potential and feasibility to accomplish both LVE classification and LVE 
identification in HF patients based on pulse wave signals.

From a clinical perspective, the current pulse wave-driven, ML-based identification 
methodology can provide a noninvasive and low-cost tool for evaluating and diagnos-
ing LVE in HF patients. As a noninvasive, real-time cardiac imaging technique to detect 
LVE, transthoracic echocardiography (TTE) is widely utilized. However, it has certain 
limitations regarding accessibility and convenience, which may lead to delayed medical 
treatments. This issue becomes even more crucial with expensive, high-sensitivity medi-
cal equipment such as nonenhanced multilayer spiral CT [34]. Recently, some attempts 
to utilize artificial intelligence methods have been conducted. Nam et al. [35] developed 

Fig. 5 Comparison between Dense Net predictions and clinical measurements based on Bland–Altman 
analyses for LVDdI
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a way to detect left atrial enlargement (LAE) and LVE on chest X-rays using deep learn-
ing algorithms, but the results for LVE detection were all p > 0.05 compared to those for 
LAE, suggesting a need for inclusion of more images. The current ML-based methods 
demonstrate a patient-friendly and feasible tool for the first time to effectively differen-
tiate LVE patients from the LVE and non-LVE groups using pulse wave signals. With 
the rapid advances in portable electronics and wearable devices such as smartphones 
and smartwatches, the noninvasive measurement of such physiological data has become 
more convenient and cost-effective. Pulse waves can thus be utilized for LVE detection, 
holding immense potential in assisting clinical management and treatment.

There are limitations in this study in terms of the relatively small sample size of data, 
the limited data scope, the singular data source, and a lack of pertinent clinical informa-
tion. While we employed stringent methods in data selection and successfully created 
two high-quality datasets for classification and regression models, validation based on 
preliminary experiments remains open for further improvement; the data source from 
only one institution may not represent the diverse HF patient population. Additionally, 
the lack of healthy subjects and patients with other cardiovascular diseases may bring a 
potential bias, as it fails to encompass the entire HF demographic. To augment the gen-
eralizability of the ML models, there is an urgent need to expand the dataset by including 
a more diverse patient cohort. Further improvements in predictive accuracy and robust 
feasibility of the ML-based methodology to meet practical clinical applications may be 
accomplished by integrating multiple data sources, such as TTE and clinical biochemi-
cal markers, which will be our future endeavors. More efforts will improve the precision 
and reliability in training and testing with larger datasets, amalgamating relevant clinical 
information, and attempting patient classification based on LVE severity.

Conclusion
In this study, the ML-based strategy successfully identified the patients with LVE in 
HF from those without LVE in HF. The proposed ML methods are verified to achieve 
effective classification and regression with excellent performance for identifying LVE 
in HF patients. This points to the potential and superiority of identifying patients 
with LVE based on pulse waves. Our study thus underscores the significance of the 
ML-based methodology for clinical practice, offering a robust tool for diagnosing and 
intervening in cardiac remodeling.

Methods
Our machine learning framework consists of four parts: data processing, data screening, 
Fourier series calculation, and machine learning model analysis, as shown in Fig. 6:

Ethics approval

This research received ethical approval from the Ethics Review Board of Chiba Uni-
versity Graduate School of Medicine in 2021 (Approval Number: M10089). The clini-
cal data collection and analysis adhered to the applicable guidelines and regulations.
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Clinical data

All data were collected from 264 patients with HF, consisting of raw extremity pulse wave 
data and relevant clinical, physiological, and pathological information. HF was diag-
nosed based on the Framingham HF diagnostic criteria [36]. All patients were admit-
ted to Chiba University Hospital between January 2019 and December 2022. After the 
acute HF condition stabilized, blood pressure/pulse wave detection equipment (Omron 
203RPEIII) was used to measure and record the pulse waves and blood pressure. All 
patients underwent TTE (Vivid E9; GE Healthcare, Horten, Norway) within one week 
before or after the pulse wave tests. The measured parameters of relevant clinical infor-
mation (e.g., age and body mass index) were also collected. None of the patients were 
confirmed to consume spicy food or alcoholic drinks during hospitalization.

Pulse waves

Pulse wave signals were collected from the left upper arms of HF patients, followed by 
applying denoising and normalization techniques grounded in methodologies from 
previous studies [37, 38]. First, we utilized wavelet transform decomposition to remove 
noise from the signals [39]. Then, to prevent distortion of the pulse wave signals, we set 
the number of sampling points for each pulse wave cycle to 100, considering the Nyquist 
theorem and the actual sampling frequency [32, 40]. Since our study focused on vari-
ations in the pulse wave model, we normalized the pulse wave amplitude within each 
cycle to a range of 0 to 100.

Datasets

Rigorous data screening was undertaken to ensure data quality. The 264 patients with 
HF were confirmed to satisfy the following screening criteria: (1) pulse wave data were 
collected from the left upper arms of the patients; (2) for each patient, five or more valid 
pulse wave cycles were recorded; and (3) LV size, including LV diastolic diameter (LVDd) 
and LV systolic diameter (LVSd), was measured by transthoracic echocardiography. 
Our clinical data were used to evaluate the LVE of each patient based on the guidelines 

Fig. 6 Framework of the machine learning process. a Data processing. b Data screening. c Fourier series 
calculation. d Machine learning models
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provided by the American Society of Echocardiography (ASE) [36]. LVE was defined as 
LVDd with an index, namely, LVDdI > 36 mm/m2 for males and > 37 mm/m2 for females 
[12].

The clinical data for 264 patients underwent classification, as depicted in Fig. 7. This 
dataset excluded 37 patients because of incomplete records. Among the remaining 227 
qualified patients, 137 were identified as non-LVE patients, while 90 were diagnosed 
with LVE. The K-means clustering algorithm derived characteristic waveforms from 
these two datasets. These waveforms were then decomposed into 3rd-order Fourier 
series to explore the variances between the datasets, detailed as follows:

where A0 is the period-average value, A1-A3 and B1-B3 are the 1st-order to 3rd-order 
Fourier series coefficients, respectively, t is time, and ω is the angular frequency. Inde-
pendent sample t-tests were then conducted to statistically analyze the difference 
between the patient datasets with LVE and non-LVE.

Machine learning models

Two ML models were developed and validated for classification and regression tasks. 
The classification model is a binary classifier that analyzes the pulse waveforms to exam-
ine whether the HF patients suffered from LVE; the regression model is employed to 
estimate the LVDdI based on the pulse waveforms.

Classification

In this study, our objective was to address the classification problem between patients 
with LVE and non-LVE. We constructed a pulse wave dataset using data from 227 HF 
patients. The dataset was divided into two subsets, with approximately 80% allocated to 

(1)
F(t) = A0+A1 cos (ωt)+ B1 sin (ωt)+ A2 cos (2ωt)

+ B2 sin (2ωt)+ A3 cos (3ωt)+ B3 sin (3ωt),

Fig. 7 Flowchart of patient screening under screening criteria a, b, c, and d: (1) exclusion of 22 subjects 
with incomplete  informationa, (2) exclusion of 97 patients with other cardiac  remodelingb, (3) creation of a 
non-LVE patient group of 137  Subjectsc, and (4) creation of an LVE patient group of 90  Subjectsd
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the training dataset and the remaining 20% to the testing dataset. To select an appropri-
ate ML model, we conducted numerous preliminary experiments to test and compare 
the predictive performance among different models, such as the weighted random forest 
(WRF) model, support vector machine (SVM) model, and fully convolutional neural net-
work (FCNN) method. Due to the imbalance in the data from the two groups of patients, 
we employed the WRF method, where different weights were assigned to the two groups 
during the training process. We utilized the class weight parameter of the random forest 
classifier from the scikit-learn library to adjust the weights based on the class distribu-
tion, aiming to improve the performance of the minority class. We extensively investi-
gated various weight settings and substantially determined weight parameters of 1 and 4 
for non-LVE and LVE patients, respectively. To mitigate the risk of overfitting, we used 
fivefold cross-validation and recorded the average scores to evaluate the model’s perfor-
mance more accurately.

Regression

The densely connected convolutional network (Dense Net) was employed for regression 
prediction of LVDdI, a recently established, innovative network architecture capable of 
excelling in efficient feature extraction and regression prediction tasks [41]. In the con-
text of our limited dataset, the dense net is verified, enabling the effective employment of 
data features, and achieving high performance while mitigating overfitting. The relation-
ship between the input and output of the (n + 1)th layer (feature map) associated with 
the dense block module is given as:

G denotes multiple operations, including the rectified linear unit (ReLU), batch nor-
malization, and convolution.

(2)Outputn+1
= featuremap = Gn

(

Output1,Output2, . . . ,Outputn
)

,

Fig. 8 Schematics of densely connected convolutional networks (Dense Nets) for regression modeling
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The specific network architecture, as shown in Fig. 8, consists of a dense net with two 
hidden layers: the 1st and 2nd hidden layers, which comprised 128 neurons and 32 neu-
rons, respectively. The output layer has a single neuron dedicated to regression predic-
tion. The ReLU is used as the activation function in the two hidden layers. Additionally, 
dropout layers are inserted between the 1st and 2nd hidden layers to mitigate overfitting.

The model was trained using the Adam optimizer under the following conditions: 
learning rate = 0.001, ε = 0.001, ρ1 = 0.9, ρ2 = 0.999, and δ = 1E − 8 [42] while using the 
MSE as the loss function. The ML networks were trained with TensorFlow (v2.0.0rc, 
Python 3.7) on an NVIDIA Quadro K4000 GPU, encompassing 100 epochs, with each 
batch having 128 samples. The model performance was evaluated for validation based 
on 10% of the training dataset.

Performance evaluation

The performance of the weighted RF-based classification model was evaluated with 
standard classification metrics of accuracy, recall, F1 score, and AUC-ROC, as defined 
below:

Here, TP and TN represent the total count of correctly detected positive and nega-
tive events, while FP and FN denote the total count of erroneously detected positive and 
negative events.

To evaluate the model’s discrimination capability for the two datasets, we employed 
ROC analysis to derive the AUC. From the plots of the false-positive rate (FPR) on the 
x-axis and the true positive rate (TPR) on the y-axis, the ROC curve was obtained to cal-
culate the AUC. TPR and FPR are given as follows:

The confusion matrix was further visualized to assess the model performance regard-
ing the training and testing datasets.

(3)Accuracy =
TP + TN

TP + PN + FP + FN
,

(4)Recall =
TP

TP + FN
,

(5)Precision =
TP

TP + FP
,

(6)F1 score =
2Precision× recall

Precision+ recall
.

(7)TPR =
TP

TP + FN
,

(8)FPR =
FP

FP + TN
.
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For the regression model, we used the metrics of accuracy and AUC-ROC to evaluate 
the performance. Given that the mean absolute percentage error (MAPE) is defined as 
an error function:

where y and ŷ denote the clinically measured value and the ML-predicted value of the 
cardiac function parameters, respectively; n is the quantity of the test dataset; thus, the 
accuracy is given as:

Moreover, we conducted consistency analysis between clinical measurements and 
ML-based predictions using the Bland‒Altman method. The Bland–Altman analysis 
reveals the trends, clustering patterns, and correlations of parameters between the 
clinical measurement datasets and ML-based prediction datasets. When the param-
eters fall within an acceptable range, good agreement is obtained between the two 
datasets, and then both methods can be used interchangeably [43].
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