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Abstract 

Background: The monitoring and analysis of quasi-periodic biological signals such 
as electrocardiography (ECG), intracranial pressure (ICP), and cerebral blood flow veloc-
ity (CBFV) waveforms plays an important role in the early detection of adverse patient 
events and contributes to improved care management in the intensive care unit (ICU). 
This work quantitatively evaluates existing computational frameworks for automatically 
extracting peaks within ICP waveforms.

Methods: Peak detection techniques based on state-of-the-art machine learning 
models were evaluated in terms of robustness to varying noise levels. The evalua-
tion was performed on a dataset of ICP signals assembled from 700 h of monitoring 
from 64 neurosurgical patients. The groundtruth of the peak locations was established 
manually on a subset of 13, 611 pulses. Additional evaluation was performed using 
a simulated dataset of ICP with controlled temporal dynamics and noise.

Results: The quantitative analysis of peak detection algorithms applied to individual 
waveforms indicates that most techniques provide acceptable accuracy with a mean 
absolute error (MAE) ≤ 10 ms without noise. In the presence of a higher noise level, 
however, only kernel spectral regression and random forest remain below that error 
threshold while the performance of other techniques deteriorates. Our experiments 
also demonstrated that tracking methods such as Bayesian inference and long short-
term memory (LSTM) can be applied continuously and provide additional robustness 
in situations where single pulse analysis methods fail, such as missing data.

Conclusion: While machine learning-based peak detection methods require manu-
ally labeled data for training, these models outperform conventional signal process-
ing ones based on handcrafted rules and should be considered for peak detection 
in modern frameworks. In particular, peak tracking methods that incorporate temporal 
information between successive periods of the signals have demonstrated in our 
experiments to provide more robustness to noise and temporary artifacts that com-
monly arise as part of the monitoring setup in the clinical setting.

Introduction
The monitoring of quasi-periodic biological signals such as arterial blood pressure 
(ABP), intracranial pressure (ICP), and electrocardiography (ECG) plays a fundamen-
tal role in the study of numerous disorders and diseases. These biological signals have 

*Correspondence:   
fabien.scalzo@pepperdine.edu

1 Department of Electronic 
and Information, Zhongyuan 
University of Technology, 
Zhengzhou, China
2 Department of Neurology, 
University of California, Los 
Angeles (UCLA), Los Angeles, 
USA
3 Keck Data Science Institute, 
Pepperdine University, Malibu, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-024-01245-9&domain=pdf


Page 2 of 20Wei et al. BioMedical Engineering OnLine           (2024) 23:61 

something in common; they all exhibit characteristic variations that clinicians can use 
as markers of physiological change and provide additional insights through further 
analyses. This comparative study focuses on the ICP waveform, which is a quasi-peri-
odic signal. As visualized in Fig. 1, each pulse can be associated with three peaks due 
to its triphasic nature [1]. Therefore, ICP morphological analysis often relies on iden-
tifying these three peaks. Based on their latency (i.e., time) and elevation (i.e., height), 
it is possible to characterize the morphology over time and then compute statistics 
of the ICP waveform for a particular time interval. We provide in this paper a com-
parative analysis of techniques for detecting the three peaks across the periods of the 
signal.

The study of the variations of the ICP signal is particularly important for patients of 
the NICU treated for traumatic injury (TBI) as the morphological variations observed 
in the ICP waveform may reveal the compensatory ability of the brain in the pres-
ence of cerebrovascular disruptions. Several computational frameworks have been 
developed to study how the changes observed in the morphology of the ICP signal 
are associated with the development of cerebral vasospasm [2], intracranial hyperten-
sion [3, 4], and abrupt changes in the cerebral blood carbon dioxide (CO2) levels [1, 
5], and changes in the craniospinal compliance [6]. In addition to the average change 
of the ICP, studies [7, 8] have linked the morphology of the ICP waveforms with the 
prognosis of patients with a head injury. Hence, exploring ICP morphological char-
acteristics such as peaks may help monitor pathophysiological intracranial changes.

Traditionally, peak detection in biological signals has been achieved using signal 
processing methods, including threshold-based and filtering methods [9, 10]. More 
recently, machine learning (ML)-based methods [11, 12] have been developed to 
solve this problem. ML methods are usually built on top of signal processing meth-
ods to obtain more robustness to noise by capturing the characteristics of the peaks 
and adapting to the noise profile of the signal specific to the context in which it is 
acquired. Many machine learning models are available, including neural networks, 
random forests, support vector machines (SVM), long short-term memory (LSTM) 
[13], etc. In the context of ICP analysis, these models can be grouped into two main 
categories depending on whether they are processing a single pulse at a time or if 
they are processing the continuous signal instead. It remains unclear, however, which 
methods are the best-performing ones on ICP signals.
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Fig. 1 Example of continuous real-time monitoring of ICP waveform from a patient included in our dataset. 
Red dots depict the three peaks within each triphasic waveform
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This study compares ICP peak detection methods. After a technical review and 
description of the literature, we describe our peak detection experiments performed on 
actual and simulated ICP datasets.

State‑of‑the‑art
Summary

Peak detection techniques on quasi-periodic signals can be grouped into two categories 
depending on whether they are processing individual waveforms or utilizing temporal 
patterns from previous waveforms to identify peaks in the current waveform. Tradition-
ally, peak detection on individual waveforms has been achieved using signal processing 
techniques. In that scenario, a single beat/period of the signal waveform is used as input 
to a model, and the output corresponds to the latency and/or elevation of the peaks 
within that beat. It is common to assume that a peak is simply a local extrema of the cur-
vature of the signal. In the context of peak detection in biomedical signals such as ICP, 
however, artifacts and noise make peak recognition challenging when relying on pre-
defined heuristics only and often result in false positive detections. To tackle this prob-
lem, peak detection techniques have been improved using data-driven approaches (i.e., 
machine learning) that utilize a training set of data samples to learn a peak detection 
model. Data-driven techniques have demonstrated significant promise to improve the 
robustness of peak detection in biomedical signals.

Because strong correlations may exist between the peak locations of successive wave-
forms, tracking techniques such as Kalman filter, long short-term memory (LSTM), 
Bayesian inference, or MOCAIP (Morphological Clustering and Analysis of ICP Pulse) 
[14] can capture the temporal information between successive pulses to refine the loca-
tion of the peaks. We review in the following sub-sections the techniques available in the 
literature to perform peak detection on individual (Section II-B) and continuous (Sec-
tion II-C) waveforms.

Peak detection on individual waveforms

Peak detection is assumed here to be performed on individual ICP pulses previously 
segmented from continuous ICP waveforms [10, 15]. In particular, we divide the single 
waveform methods into two sub-groups depending on whether they are based on signal 
processing only or if they also utilize data-driven models during processing.

Signal‑processing techniques

In signal processing, it is common to think of peak detection as a search for a local 
extrema in the curvature of the signal. Most of signal-based methods utilize the local 
structure of the signal to identify the peaks. Among them, we identify threshold-based 
processes [16, 17], derivative-based techniques [18], and transform domain techniques 
[19–21]. Other methods perform peak detection by incorporating a larger context to 
describe the signature of each peak within the beat, which includes intensity weighted 
variance [22], filter-based techniques [23, 24], histogram-based techniques [25, 26], 
techniques using entropy [27], momentum [28], stochastic resonance [29], higher-order 
statistics [30], nonlinear energy operator [31], empirical mode decomposition [32]. More 
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advanced techniques such as the wavelet transform and entropy of coefficients [33, 34] 
have also achieved promising results.

While peak detection techniques based on signal processing perform well on a wide 
range of applications, they encounter significant challenges when applied to real-world 
ICP data due to the variability across subjects, motion artifacts, and hardware acqui-
sition noise characteristic of ICP waveforms. As described in the next subsection, 
these challenges have pushed researchers to utilize more robust techniques for these 
variations.

Data‑driven techniques

Data-driven techniques utilize training data samples to infer a model optimized for peak 
detection. While the learning algorithm algorithms can take many different forms, many 
approaches formalize peak detection as a regression analysis problem between the input 
ICP waveform and the location of each peak (as the target output). This section gives an 
overview of ML methods used to detect ICP peaks and will be evaluated in our experi-
ments. These methods include spectral regression (SR) [35], neural networks (NN) [36], 
support vector machines (SVM) [37], and extremely randomized decision trees (Extra-
Trees) [38].

Spectral regression (SR). The SR algorithm [35] is a nonlinear regression method 
incorporating graph-based analysis with regularized linear regression. Assuming a set 
of N input data samples {x0, x1, . . . , xN−1} and their corresponding predicted output 
{ŷ0, ŷ1, . . . , ŷN−1} , the objective is to learn a regression model that outputs similar pre-
dictions ŷi for input samples xi near each other in a graph representation The regression 
model is obtained by minimizing the following measure φ:

where Wi,j is the affinity matrix W ∈ R
N×N that assigns a value to Wi,j to indicate the 

similarity of the two input samples xi, xj ; where i, j are used to represent the index of the 
ith and jth data samples, respectively.

While SR has been developed to solve linear problems, it can be extended to nonlin-
ear problems using a kernel projection, which projects the original observation xi into 
a higher dimension using a nonlinear kernel. In the kernel version of SR, referred to as 
kernel spectral regression (KSR), the data input samples xi are replaced by the projected 
vectors in Eq.(2). In this study, we use the radial basis function (RBF) kernel:

Neural networks (NN). Neural networks is another popular machine learning model 
that can infer peak locations from an ICP waveform. Numerous neural network archi-
tectures exist; we focus here on a feed-forward network that comprises input, hidden, 
and output layers. The Levenberg–Marquardt algorithm [39] was used for its efficiency 
in training moderate-sized NNs. The SSE is used as the fitness function.

Supper vector machine (SVM). A support vector machine (SVM) [37] is a super-
vised learning method that constructs a set of hyperplanes in a high-dimensional 

(1)φ =

N
∑

i,j=1

(ŷi − ŷj)
2 Wi,j ,

(2)R(xi, x) = exp(−β||xi − x||
2), β > 0.
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space. SVM has been proven to be an effective tool in real-value function estimation. 
In the context of regression, SVM (also called support vector regression (SVR)) uses a 
n-dimensional tube to fit the data. During learning, the optimization process adopts 
an ǫ-insensitive loss function, penalizing predictions farther than the threshold ǫ from 
the desired output. The value of ǫ determines the diameter of the tube; a smaller value 
indicates a lower tolerance for error and affects the smoothness of the overall pre-
dictions. For regression problems, SVM aims to identify the parameters of a set of 
hyperplane(s)/tube(s) that best fit the data using the following metric:

where SV is a subset of the input data samples x called “support vectors”, α+ , α− repre-
sents the learned dual coefficients, R(xs, x) is the response of the RBF kernel (Eq. 2) of 
the data sample xs , and b is the bias.

Extremely randomized decision trees (extra-trees). Extra-Trees [38] is a regres-
sion method based on an ensemble of randomized decision trees. The learning of a 
randomized decision tree is performed by starting at the tree’s root node and succes-
sively splitting its left and right sub-trees. Each split (i.e., threshold) is obtained by 
sampling according to a Gaussian distribution estimated from the training samples. 
The process is repeated until a node has constant output values for all the training 
inputs. By building many randomized decision trees (e.g., N > 100 ), the model can 
make predictions by using a new input through each tree and computing the average 
prediction across all the trees.

Peak tracking on continuous waveforms

Although peak detection on individual pulses can achieve reasonable accuracy by 
identifying the signal signature of these peaks or learning a regression model between 
the waveform and the peak location with machine learning, processing pulses indi-
vidually has some limitations. Hardware noise and human disturbance (such as 
motion artifacts) are inevitable in a clinical environment. These may cause distortion 
or even temporary loss of ICP waveform, making detecting and tracking peaks based 
solely on a single pulse challenging. Achieving continuous and real-time analysis of 
ICP waveforms is a high-level requirement of ICP monitoring in the NICU. Here, we 
describe techniques developed to process the continuous ICP signal and locate the 
peaks using temporal properties between successive beats as prior information, effec-
tively tracking them across different periods. In the following, we describe Kalman 
filtering [40], Bayesian tracking [41], and LSTM (long short-term memory) [13], and 
MOCAIP (Morphological Clustering and Analysis of ICP Pulse) [14].

Kalman filtering. The Kalman filter algorithm [42] is a recursive algorithm that 
estimates the distribution of unknown variables from the measured noisy data. After 
several iterations, the estimated value is expected to converge to the actual value of 
the unknown variables; the location of the peaks in our case. The process is efficient 
as it only needs the current measured input, the previous state, and the uncertainty 

(3)
n

∑

s∈SV

(α+

s − α−

s )R(xs, x)+ b,
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state matrix to calculate the predicted value when the subsequent measurement is 
observed. The Kalman filter is composed of a prediction and an updating step.

The state variable x̂−k  and its covariance Pk are estimated during the prediction step:

where A is the state-transition matrix, B is the control-input model, and Q represents 
the covariance of the noise.

During the updating step, these estimates are evaluated using a weighted average, such 
that a greater weight is set to estimations with greater confidence:

where H represents the observation matrix, x̂−k  and x̂k are the prior and posterior state 
estimates at step k. R is the measurement error covariance, zk and uk are the measure-
ments and the control vectors at step k, and K represents the Kalman filtering gain.

Bayesian tracking. Nonparametric belief propagation (NBP) [43] is a probabilistic 
inference algorithm applied in computer vision to track the movements of people, ani-
mals, robots, cars, etc. We previously used NBP [41] to track ICP peaks in real-time. 
Bayesian inference associates continuous probability distributions as the location of each 
peak.

During detection, NBP utilizes a dynamic graph where nodes represent the location 
of each peak. Information between the different peaks of a current pulse, and between 
the peaks at the prior time point are propagated in the graph via a message-passing algo-
rithm called Belief propagation. At the nth iteration, the message m passed from node a 
to b is expressed as:

where ha ∈ h represents the hidden variable at node a. Ca\b represents the set of nodes 
connected to a (except node b). φa(ha, oa) is the observation potential between hidden 
variable ha and observation variable oa of node a, φa,b(ha, hb) is the compatibility poten-
tial between hidden variables ha and hb . After several iterations, the approximation of nth 
iteration p̂n(ha|o) converges to the true marginal distribution p(ha|o) is:

In NBP, the message ma,b(ha) is expressed as a mixture of D kernels:

(4)x̂−k = Ax̂k−1 + Buk ,

(5)P−

k =APk−1A
T
+ Q,

(6)Kk =P−

k H
T (HP−

k H
T
+ R)+ Q

−1
,

(7)x̂k = x̂−k + Kk(zk −Hx̂−k ),

(8)Pk = (I − KkH)P−

k ,

(9)mn
a,b(ha) ←

∫

φa,b(ha, hb)φa(ha, oa)
∏

c∈Ca\b

mn−1
c,a (ha)dha,

(10)p(ha|o) ∼ p̂n(ha|o) ← φa(ha, oa)
∏

b∈Ca

mn
a,b(ha).
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where ωi
a is the weight of the ith kernel with mean µi

a and variance �i
a . D is the number 

of particles used for estimation. The observation potential is represented as weighted 
mixtures of Gaussian density functions.

Long short time memory (LSTM). LSTM [13] is a type of recurrent neural network 
(RNN) that allows information to persist inside the network via loops in its architecture. 
LSTMs are particularly well suited to represent time series such as ICP waveforms. An 
LSTM cell is defined by a state that changes according to three types of gates:

• Input gates It ∈ RN update the state of the cell and decide which values should be 
updated.

• Forget gates Ft ∈ RN are used to select relevant information with respect to a previ-
ous state.

• Output gates Ot ∈ RN determine the final cell state and the output value.

Given an input sequence x = {x1, x2, . . . , xT } of length T with corresponding memory 
cell unit Ct ∈ RN and hidden unit ht ∈ RN at time t, the parameters of the model are 
updated sequentially, as follows:

The function σ(x) = 1/(1+ e−x) used to compute Ft , It ,Ot is a sigmoid function whose 
values lie within the range [0, 1]. In addition to input, forget, and output gates previously 
described, the LSTM makes use of a memory cell unit Ct obtained from the sum of the 
previous memory cell unit Ct−1 modulated by Ft , and a function of the current input xt 
and previous hidden state ht−1 modulated by the input gate 〉t . The output gate Ot is then 
used to determine what parts should be considered and then multiplied with the tanh 
of the memory cell state Ct to produce the hidden unit ht . By learning how much of the 
memory cell state Ct should be transferred to the hidden state ht based on the input xt 
and previous state, this structure allows the LSTM to capture complex temporal dynam-
ics such as the ones present across ICP waveforms.

MOCAIP algorithm. The Morphological Clustering and Analysis of ICP Pulse 
(MOCAIP) [14] framework was designed to extract morphological variations of ICP 

(11)ma,b(ha) =
1

D

D
∑

i=1

ωi
aN (ha;µ

i
a,�

i
a),

(12)Ft = σ(Wf .[ht−1, xt ] + bf ),

(13)It = σ(Wi.[ht−1, xt ] + bi),

(14)Ot = σ(Wo[ht−1, xt ] + bo),

(15)C̃t = tanh(Wc.[ht−1, xt ] + bC),

(16)Ct = {t ∗ Ct−1 + It ∗ C̃t ,

(17)ht =Ot ∗ tanhCt .
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pulses. MOCAIP utilizes a Gaussian distribution as prior model for the peak location. 
The detection of ICP peaks is performed through the three main following steps:

• Pulse segmentation: The continuous ICP signal is segmented into a series of indi-
vidual pulses using a dedicated algorithm [44] that utilizes ECG QRS markers [45]. 
A hierarchical clustering algorithm is utilized to extract a representative pulse over a 
segment of 1 min.

• Peak candidates detection. Candidate peaks are detected on the ICP pulse using its 
second derivative. They are extracted from the convex region and the concave region 
on the ascending edge of the signal or the concave part and the convex part on the 
falling edge of the signal.

• Peak Designation. The three peaks are selected from the set of candidate peaks such 
that they maximize the likelihood of belonging to a previously trained Gaussian mix-
ture model (i.e., prior model).

Methods
Problem formulation

When acquired at a high enough frequency, ICP signals typically exhibit a sequence of 
waveform pulses such that each pulse includes three peaks, as illustrated in Fig.  2. We 
decompose the peak detection process on a raw signal by assuming that the continuous ICP 
waveform has been segmented into a set of individual beats ( s1, s2, . . . , sn ) using a standard 
beat segmentation algorithm [10, 15]. This is generally achieved with high accuracy - espe-
cially when the ECG signal is available. Assuming a segmented ICP waveform, we focus on 
two formulations of the peak detection problem. In the first case, we consider the task of 
detecting the three peaks within a single ICP pulse. In the second case, the peak detection is 
achieved by a tracking algorithm that exploits the estimated position of the peaks from pre-
vious pulses. In both formulations, a peak location is defined in terms of its temporal loca-
tion l ∈ R and intracranial pressure elevation e ∈ R , such that pi∈1,2,3 = {l, e} denotes the 
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Fig. 2 Illustration of a segmented pulse from a continuous ICP waveform and its three peaks (p1, p2, p3)
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ith peak of the pulse. The goal is to obtain automatically the position of the peaks in each 
beat si using a peak detection algorithm Pd , which can be denoted as Pd(si) = {p1, p2, p3}.

ICP data

Clinical dataset

The dataset of ICP signals used in this study was collected from 64 patients receiving treat-
ment for various ICP-related disorders in the Neuro ICU. The ICP was acquired using 
intraparenchymal microsensors placed in the right frontal lobe. The raw ICP waveform 
was recorded continuously at a sample rate of either 240Hz or 400Hz. 153 segments of ICP 
signal lasting almost 5 h were extracted. ICP and ECG signal were then pre-processed to 
segment individual beats to produce a set of 14,230 raw pulses. Among them, 13,611 valid 
pulses were obtained and formed the clinical dataset used for our simulation. The dataset 
is particularly challenging because there is a large variability in the ICP signals due to each 
patient’s condition.

In our experiments, the raw ICP waveforms were pre-processed before being used as 
input for single waveform or tracking analysis. The learning models used require a fixed 
length for the input data. ICP waveforms were first resampled to a fixed length because the 
waveforms’ lengths are dependent on the patient’s heart rate, which is variable. Each beat 
sample �Si ∈ S was resampled to a vector of 400 values. A left shift was then performed to 
align the beats. We define the alignment point to be the minimum of each beat waveform:

and perform a circular shift to set this point as the first element of each beat vector, 
where n is the length of �Zi.

Since there is usually noise in ICP waveforms, which results in the distortion of the 
waveform, especially for sharp noise, the absolute magnitude of the waveform can be 
unreliable in clinical settings. To reduce this impact, each sample �Xi is normalized so 
that its AUC is 1.

Three experienced researchers established the groundtruth by reviewing each ICP pulse 
and manually assigning the position of the three peaks. Specifically, the researcher’s task 
was to select the suitable peak candidates for each peak (p1, p2, and p3) among those 
automatically detected at curve inflections. Researchers cross-validated their results 
and, if necessary, harmonized them using the annotation of the previous and following 
pulses as reference. For a few difficult cases where the researchers could not agree on the 
position of some peaks, the pulse was removed from the dataset. This procedure ensured 
that the groundtruth is not biased to a specific researcher. A custom-made annotation 
tool allowed for flagging missing peaks. In our dataset, p1 was missed in 1717 pulses, 
p2 in 265 pulses, and p3 in 34 pulses. Data from two patients were removed due to the 

(18)start = arg min
i

(�Zi),

(19)�Ni =
�Z(i+start)mod(n).

(20)�Xi,j =

�Xi,j
∑J

j=1
�Xi,j
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device malfunction. The data were acquired at the Ronald Reagan Medical Center at the 
University of California, Los Angeles (UCLA), and the UCLA Internal Review Board 
(IRB) approved the usage of this archived dataset.

Simulated dataset

To verify the effectiveness of the peak detection algorithms under controlled variability, 
we created a simulated dataset of ICP waveforms. A probabilistic generative model was 
used to simulate realistic shape variations of an ICP pulse. The model was formalized 
as a Gaussian Mixture Model (GMM) composed of three Gaussian components. The 
Gaussian Mixture model is a linear combination of Gaussian distributions:

where πk is the weight associated with the kth component, and the number of compo-
nents K was set to 3 in our experiments. The parameters πk ,µk ,�k were fitted using the 
clinical data using a random sample of 1, 500 ICP waveforms.

A series of pulses was then generated from this GMM model by incorporating an inde-
pendent temporal change ci∈1,2,3 = sin(z) on the mean of each component µk ∈ R2 . The 
model of the temporal dynamic was formalized as a sine wave function whose value ck 
was added to its corresponding mean µk . It should be noted that two independent sine 
functions were used: one that acts on the latency and the other on the pressure of each 
peak. The generative model was then used to reconstruct individual waveform pulses at 
a sampling rate of 400Hz. The range of the sine wave was constrained by the fluctuation 
range observed in our clinical datasets. Figure 3 illustrates the variations induced by the 
sine wave on the latency of the three peaks.

Experiments

Our experiments aim to compare the accuracy of several machine-learning models in 
locating the peaks within the ICP signal. For both the clinical and simulated datasets, we 
evaluate the accuracy of the models in detecting the peaks under a varying amount of 
noise. We also perform evaluations to evaluate the robustness to missing data.

(21)p(x) = �K
k=1πk N (x|µk ,�k),
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Experiment #1: peak detection on clinical dataset

The evaluation performed as part of this experiment is carried out on individual wave-
forms where the input provided to the regression model does not include any context 
or waveforms from previous time points. The algorithms evaluated in our benchmark 
are spectral regression (SR), kernel spectral regression (KSR), neural networks (NN), 
support vector machines (SVM), and long short-term memory models (LSTM).

A tenfold cross-validation, performed at the patient level, is performed separately 
on the clinical and simulated datasets. For each training iteration, a threefold cross-
validation is used on the training set to optimize the hyperparameters - this proce-
dure is commonly referred to as a nested cross-validation. The ICP waveforms with 
missing peaks were included as part of the experiments. However, the missing peaks 
were ignored from the computation of the error. The input provided to the machine 
learning algorithms for both datasets is the ICP waveform re-sampled at 400Hz. The 
mean absolute error (MAE) and the root mean square error (RMSE) are used as a 
metric of accuracy and computed per peak and for each algorithm:

where yi represents the ith observation, ŷi is the prediction of yi for the given model, 
and n denotes the total number of observations. The average error is computed across 
the 3 peaks between the actual value of the peaks yi = (p1, p2, p3) and the prediction 
ŷi = (p̂1, p̂2, p̂3) of the regression method.

The monitoring of ICP can be adversely impacted by various noise and artifacts 
(including electromagnetic interference from other equipment and self-noise). In 
practice, it is manifested by abnormal fluctuations in the ICP waveform. To reflect 
these signal perturbations and evaluate the robustness of peak detection algorithm 
to them, we create noisy replication of our ICP datasets by adding varying uniform 
random noise levels (from 5 to 15% of the signal range) on the original ICP waveform.

Hyperparameters were optimized using nested cross-validation using only the 
training folds at each iteration. Specifically, we list below the optimized parameters 
for each method and list the implementation source. Matlab implementation of spec-
tral regression and kernel spectral regression was obtained from Prof. Deng Cai’s 
academic website at http:// www. cad. zju. edu. cn/ home/ dengc ai/. The spectral regres-
sion hyperparameters were the kernel type used for the affinity matrix W, the reg-
ularizer parameter α , and the number of neighbors used to compute W. For kernel 
spectral regression, an additional hyperparameter was used to control the standard 
deviation of the RBF kernel, which was also the optimized hyperparameter for SVM. 
For the neural network, the number of hidden layers/nodes, learning rate, optimizer 
were optimized. For the random forest, we optimized the number of decision trees. 
For LSTM, the number of hidden nodes was the only parameters fine-tuned. Except 
for spectral regression and kernel spectral regression (obtained from Deng Cai), the 

(22)MAE =
|yi − ŷi|

n
,

(23)RMSE =

√

∑n
i=1(yi − ŷi)2

n
,

http://www.cad.zju.edu.cn/home/dengcai/
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implementation of all the methods obtained from Matlab official toolboxes as of ver-
sion R2022a.

Experiment #2: peak detection simulated dataset

In this second experiment, the evaluation is conducted on a series of ICP pulses. In 
particular, we assume that a regression algorithm first predicts the position of the 3 
peaks. Such prediction, affected by noise and artifacts, is then filtered using a tracking 
algorithm to obtain a refined position of the peaks by utilizing temporal dependencies 
between successive ICP pulses. The tracking algorithms evaluated are MOCAIP [14], 
nonparametric Bayesian tracking [41], Kalman filter [42], and LSTM [13]. The regression 
model used to obtained candidate peaks on single waveforms is KSR. Similarly to our 
previous experiment, we repeat the evaluation by adding various noise levels (5–15%) to 
the simulated data. The noise was uniformly distributed relative to the range of the data 
and added independently to the latency and elevation values.

All the tracking code was implemented in Matlab and executed under the version 
R2022a. MOCAIP and the Bayesian version of MOCAIP are available on GitHub under 
https:// github. com/ Neuro Resea rchCo re/ track Light.

In some cases, the patient’s movement or other physiological activities will cause a loss 
of connectivity, resulting in data loss in the ICP waveform. Without a signal, traditional 
ICP peak detection algorithms based on a single waveform will fail. We modified the 
simulated dataset to set some intervals to null to simulate this situation. This helps verify 
whether the tracking algorithm can utilize prior information to keep track of the peak 
over time. To simulate the missing ICP waveform, we divide the simulated waveform 
into several groups, and two or three missing segments of various lengths (2–4 pulses 
missing) are produced in each group to ensure the randomness of the missing situation 
and the dispersion of its distribution in the whole waveform.

Results
Experiment #1: peak detection on clinical dataset

The mean absolute error (MAE) of six peak detection algorithms on individual wave-
forms is reported in Table 1 after a tenfold cross-validation. The table summarizes the 
results for each of the three peaks. Each sub-table corresponds to the performance 
concerning one of the peaks. The fourth sub-table represents the average performance 
across all peaks. The columns correspond to the noise levels (0–15%). The MAE values 
(in milliseconds) were mapped to a color such that blue indicates lower error, and yellow 
indicates higher error.

On average, the results on the clinical dataset show that the error is the smallest for 
p2 , followed by p1 , and finally, p3 . This is because the position of p2 is more stable than 
other peaks. Without added noise, KSR, SVM, and Random forests perform best (RMSE 
= 0.08, MAE ≤ 4 ms) when considering the average of the three peaks. In the presence 
of 15% noise, the estimated error of KSR is the smallest (RMSE = 0.13, MAE ≤ 10 ms) 
as it appears to be less affected by noise. As expected, the MAE and RMSE of all algo-
rithms increases due to the noise level. We note that not all algorithms grow at the same 
rate than the noise. For example, the error of spectral regression and neural networks 
increases much higher than in other methods.

https://github.com/NeuroResearchCore/trackLight
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Similarly, Table 2 provides the results after evaluating the peak detection methods 
on the simulated dataset. When the error is averaged over the three peaks, KSR offers 
the best performance among the six algorithms regardless of the noise level. The 
RMSE of spectral regression, LSTM, neural network, and random forests are higher 
(RMSE ≥ 0.29 , MAE ≤ 10 ms) and are greatly affected by noise. From the results sum-
marized in Tables 1 and 2, we conclude that KSR performs better than the algorithms 
when considering a single waveform at a time.

Experiment #2: peak detection on simulated dataset

The results of the peak tracking methods (Bayesian tracking, Kalman filter, LSTM, 
and MOCAIP) on continuous ICP are summarized in Table 2 and illustrated in Figs. 4 
and 5. In Fig. 4, each plot includes the latency of the peak with noise (gray) and the fil-
tered position of the tracking algorithm (color curves). These curves are repeated for 
each of the three peaks ( p1 , p2 , and p3 ), which can be judged according to the value 
range of its Y-axis. Figure  5 displays the results regarding the elevation of the first 
peak. For better visibility, we opted only to show the tracking of the first peak, as all 
peaks tend to be within the same elevation range in our simulated dataset.

Table 1 Performance of peak detection algorithms in terms of mean absolute error in milliseconds 
(ms) after evaluation on clinical ICP data with varying noise levels (from 0 to 15%)
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The results illustrated in Table 2 indicate that all tracking methods outperform single 
waveform techniques, especially in high noise. All tracking techniques perform equally 
well with a RMSE of 0.04–0.05 and MAE ≤ 3 ms. This result is confirmed across the 
three peaks.

The accuracy of each tracking algorithm can be observed based on how close the esti-
mate is to the groundtruth (shown in Fig. 3b). The tracking results of the Bayesian track-
ing and Kalman filtering framework on the three peaks closely follow the original peak 
latency. Although the signal is affected by noise, the tracking results still reflect the trend 
of the original position very well. We can conclude that the tracking algorithm effectively 

Table 2 Performance of peak detection and tracking algorithms in terms of mean absolute error in 
milliseconds (ms) after evaluation on simulated ICP waveforms with varying noise levels (from 0 to 
15%)
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tracked the continuous waveform under this noise setting (i.e., 5% ). The tracking result 
of LSTM is inconsistent with the groundtruth location, and its tracking result behaves 
differently for each peak and in different periods. The tracking result of p1 is better than 
that of p2 and p3 . For p3 , the detection is poor at the beginning and end of the track-
ing. The initialization phase of the LSTM could cause inconsistency in the initial part. 
Finally, the tracking result of MOCAIP captures the overall variations of the peak loca-
tion but does not offer the same level of granularity as other techniques. MOCAIP is 
based on a clustering process to achieve peak detection. The input data are obtained by 
using a 1-min cluster average. However, it is worth mentioning that MOCAIP does not 
require a training process.

The tracking results in the presence of missing data are illustrated in Fig. 6, where the 
blue curve represents the waveform with missing segments, and the red represents the 
inferred output using one of the tracking algorithms. To enhance contrast, only track-
ing results for the missing data are displayed. The missing data segments are randomly 
distributed in the whole waveform range. In most cases, the tracking algorithm recovers 
the missing data by effectively capturing the trend of the data.

By observing the output predictions of the MOCAIP algorithm, we can see it can approx-
imate the trend of the peak position even when data is missing. Although MOCAIP does 
not follow the details of the changes, it is still useful for getting an approximate estimation 
for missing data segments. On the other hand, LSTM provides a more refined estimate of 
the missing data. It should also be pointed out that only LSTM and MOCAIP algorithms 

Fig. 4 Tracking results on a simulated ICP dataset with 5 % additive noise. Color curves represent the filtered 
peak latency on our simulated dataset using four different tracking models: Bayesian tracking, Kalman filter, 
LSTM, and MOCAIP
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are used for missing data simulation because both Bayesian tracking and Kalman filter 
frameworks rely on the input for tracking, and the frameworks will not work when no input 
data are provided.

Fig. 5 Tracking results on a simulated ICP dataset with 5 % additive noise. Color curves represent the filtered 
elevation of the first peak on our simulated dataset using four different tracking models: Bayesian tracking, 
Kalman filter, LSTM, MOCAIP
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Fig. 6 LSTM and MOCAIP tracking results of peak latency are illustrated in the presence of missing data 
segments. Blue segments represent the peak latency detected on observed ICP waveforms, while the red 
segments represent the peak latency estimated in the presence of missing ICP waveforms
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Discussion
Over the last two decades, machine learning algorithms have produced significant 
breakthroughs in various domains. In this study, we demonstrated the ability of sev-
eral machine learning models to achieve high accuracy in a peak detection problem 
on a quasi-periodic signal, the intracranial pressure signal (ICP). Among the evalu-
ated techniques, the peak detection error of kernel spectral regression (KSR) was the 
lowest, whether based on simulated or clinically acquired data.

We provided comparative results regarding tracking methods used to filter the 
peaks continuously. Bayesian inference, Kalman filtering, LSTM, and MOCAIP algo-
rithms can represent the temporal dependence of neighboring pulses in the peak 
prediction process. The results of our experiments show that such frameworks are 
remarkably robust to noise and missing data. This could be explained by the fact that 
the temporal dependencies can play a significant role in maintaining the correct posi-
tion of the peaks over time, as they are unlikely to change drastically between succes-
sive heartbeats.

ICP pulses arise from the blood pressure variation in the cerebral vasculature. In 
an ICP pulse, the specific distribution of sub-peaks is affected by capillary, arterial, 
and venous blood pressure pulses and their interactions with three major intracra-
nial parts, including the brain tissue, the cerebral vasculature, and the cerebrospinal 
fluid circulatory system. Consequently, it is conceivable that ICP pulse morphologi-
cal changes may provide reasonable indications of changes in these compartments. 
Also, these changes can be triggered by various pathological incidents, such as the 
narrowing cerebral arteries (vasospasm) after subarachnoid hemorrhage and the 
development of mass-occupying lesions after a brain injury. Therefore, the long-
term continuous monitoring and recording of the ICP waveform provide the chang-
ing trend of the patient’s physical condition, which is helpful for doctors to conduct 
pathological analysis of the state. Moreover, the tracking algorithm can predict the 
position of the ICP peak in a short period, which is also helpful for predicting the 
development of the disease in the clinical setting. In addition, given the interaction 
between biological signals, further study on the relationship between ICP and other 
biological signals to assist ICP waveform analysis is another direction to improve 
peak detection technology.

While we have made a special effort to identify techniques relevant to peak detec-
tion in ICP signals, the list of methods we have compared is not meant to be exhaus-
tive. However, the set of experiments and the data can provide a baseline accuracy for 
developing and benchmarking future peak detection and tracking methods on ICP.

All the data and code used as part of our experiment will be made publicly available 
on the lab website of Prof. Scalzo (http:// www. fabie ns. net). To the best our knowl-
edge, this would become the first publicly available and curated dataset of ICP signals 
with both simulated and clinical sources. This is provided with the hope that the data 
and experimental protocol can serve a as benchmark for the development and evalua-
tion of future peak detection methods in ICP.

http://www.fabiens.net
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Conclusion
This paper demonstrates that tracking of ICP waveform morphology can be per-
formed in real-time with high accuracy using machine learning models such as kernel 
spectral regression (KSR), support vector machine (SVM), and LSTM. The acquisition 
of the ICP signal in a neuro-intensive care unit is often associated with signal loss and 
severe artifacts. To address these issues, our study demonstrated that peak detection 
models can be coupled with tracking models such as Kalman filter and nonparamet-
ric Bayesian inference to obtain robustness to temporary signal loss and improve the 
detection accuracy of the three landmarks. This paper also provides an ideal frame-
work to benchmark future peak detection and tracking models. Although these track-
ing frameworks are demonstrated on ICP waveforms, they could, in principle, be used 
as part of the detection process of other quasi-periodic biological signals, such as 
ECG and CBFV.
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