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Abstract 

Background:  Over 60% of epilepsy patients globally are children, whose early diag-
nosis and treatment are critical for their development and can substantially reduce 
the disease’s burden on both families and society. Numerous algorithms for automated 
epilepsy detection from EEGs have been proposed. Yet, the occurrence of epileptic 
seizures during an EEG exam cannot always be guaranteed in clinical practice. Models 
that exclusively use seizure EEGs for detection risk artificially enhanced performance 
metrics. Therefore, there is a pressing need for a universally applicable model that can 
perform automatic epilepsy detection in a variety of complex real-world scenarios.

Method:  To address this problem, we have devised a novel technique employing 
a temporal convolutional neural network with self-attention (TCN-SA). Our model com-
prises two primary components: a TCN for extracting time-variant features from EEG 
signals, followed by a self-attention (SA) layer that assigns importance to these features. 
By focusing on key features, our model achieves heightened classification accuracy 
for epilepsy detection.

Results:  The efficacy of our model was validated on a pediatric epilepsy dataset we 
collected and on the Bonn dataset, attaining accuracies of 95.50% on our dataset, 
and 97.37% (A v. E), and 93.50% (B vs E), respectively. When compared with other deep 
learning architectures (temporal convolutional neural network, self-attention network, 
and standardized convolutional neural network) using the same datasets, our TCN-SA 
model demonstrated superior performance in the automated detection of epilepsy.

Conclusion:  The proven effectiveness of the TCN-SA approach substantiates its 
potential as a valuable tool for the automated detection of epilepsy, offering significant 
benefits in diverse and complex real-world clinical settings.

Keywords:  Convolutional neural network, EEG, Epileptic seizure, Pediatric epilepsy, 
Attention mechanism

Background
Epilepsy (EP), a prevalent chronic condition of the nervous system [1], is character-
ized by irregular neuronal activity and transient cerebral dysfunction resulting from 
hyper-synchronous discharges. Around 65 million [2] people worldwide suffer from 
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EP, the majority of whom live in low- and middle-income countries. The prevalence of 
active EP is 6.38%, and the annual incidence is 614.4/106 population [3]. Although the 
majority of EP patients have a good prognosis and can live ordinary lives, about 35% 
of them develop refractory EP due to ineffective drug treatments [4]. Childhood EP 
incidence is notably high [4], with youths representing over 60% of the patient demo-
graphics [5, 6]. Moreover, severe EP may hinder a child’s growth and cognitive devel-
opment, intensifying the familial and social impacts of the disease [7]. Thus, early 
detection of EP in children is imperative in expediting treatment and minimizing the 
development of refractory EP.

EEG waveforms indicative of EP are traditionally diagnosed visually by physicians, a 
method subject to intra-observer variability, thereby diminishing accuracy. As EEGs are 
multi-channel one-dimensional sequences, it is inefficient to rely on physicians to mark 
abnormal EEG segments. Given that classification and prediction tasks based on EEG 
signals are popular multivariable time-series tasks, the automatic identification of EP 
from EEG signals has long been a research topic of interest to clinical physicians. The 
advent of machine learning in computing has enhanced the automated analysis of EP 
[8, 9], demonstrating promising classification capabilities across time [10–12], frequency 
[13, 14], and time–frequency domains [15], as well as measures of complexity and syn-
chrony [16–22].

Methods based on machine learning have performed well but have the following limi-
tations. First, feature extraction is highly operator-dependent, introducing subjectivity 
[23]. Second, EEGs inherently feature low signal-to-noise ratios and are susceptible to 
artifacts from both environmental noise and patient movement, complicating the analy-
sis [23]. Third, the normal EEGs of neurologically asymptomatic individuals can exhibit 
minor variations [24]. Therefore, automatic identification models based on EEG sig-
nals should have high stability that can accommodate person-to-person and temporal 
differences.

The rapid increase in computing power has made deep learning the fastest-developing 
branch of machine learning. Its good generalisability, high accuracy, and high stability, 
coupled with its network architecture, make the technique suitable for the discovery of 
high-dimensional features and potential associations [23]. Three types of deep learning 
are currently used for the automatic identification of EEG signals. The first is a convolu-
tional neural network (CNN) [25–28]. Acharya et al. [26] proposed a 13-layer deep CNN 
for identifying targets from normal, interictal, and seizure EEGs. A system was proposed 
by Thomas et al. [29] to classify EP based on the interictal EEG, which consists of a Con-
volutional Neural Network (CNN)-based IED detector, a Template Matching-based IED 
detector, and a spectral feature-based classifier, and which yielded a mean Leave-One-
Institution-Out cross-validation area under curve (AUC) of 0.826 on datasets from six 
centers. The second is a recurrent neural network (RNN) [30–33]. Li et al. [30] devel-
oped a fully convolutional long-term memory, which showed 97.62% sensitivity with the 
Freiburg hospital database and 94.07% sensitivity with the Children’s Hospital Boston-
Massachusetts Institute of Technology scalp EEG database. The third combines two or 
more neural networks to obtain the main architecture and constructs a deep learning 
network; for instance, any neural network [34]. Besides, some recent innovations in deep 
learning have been utilized for the automatic detection task of EP, such as the attention 
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mechanism [35]. Currently, little research has been done using attention mechanisms for 
EP detection using EEG signals [36, 37].

Although CNNs and RNNs have shown good performance in the automatic detec-
tion of EP, they have inherent limitations. In the face of sequential tasks, CNNs, which 
simulate human visual perception in the receptive field, must limit their receptive fields 
as one cannot predict current and historical information based on future information. 
Therefore, when employing EEG sequence data, it is imperative to constrain the recep-
tive field’s orientation appropriately. Parameters such as hyper-parameters can drasti-
cally affect the performance of CNNs. RNNs are the preferred network architectures for 
multivariate time-series-related tasks. However, RNNs may also face the problem of gra-
dients exploding or vanishing during gradient descent when applied to long sequences. 
For the automatic detection task of EP, RNNs still struggle to capture a sufficient abnor-
mal activity information of temporal context under sequences of finite length for highly 
accurate predictions of EP. Presently, this problem only can only be lessened by the 
improvement of RNNs like long short-term memory (LSTM) and gated recurrent unit 
(GRU), and cannot be solved. Besides, the working mode of RNNs cannot support par-
allel computing, and RNNs require a long computing time, because they compute the 
output of each moment by depending on that of the previous moment. If their face dif-
ficulties when analyzing sequences with long-term associations [38–40], further limiting 
it development for sequence tasks.

Combining the advantages of CNNs with those of RNNs, Lea et al. [41, 42] proposed 
a new convolutional method and constructed temporal convolutional neural networks 
(TCNs). These TCNs captured the long-term associations of sequences with variable-
size receptive fields by flexibly changing the dilated values [43, 44]. Models utilizing 
residual connections not only ensure that the input and output lengths are the same but 
also address the problem of gradients exploding or vanishing, which is faced by RNNs. 
Unlike CNNs, TCNs support parallel computing, can handle different types of time-
series tasks, and perform better than traditional sequential modeling networks such as 
RNNs [45–49]. For the automatic detection of EP, Zhang et al. [50] utilized a TCN to 
classify the Bonn dataset [51] and achieved excellent performance.

However, TCN has some insufficiencies for the automatic detection of EP, especially 
when the EEG recordings have the period of interictal and seizure at the same time. 
Interictal and seizure EEG have different patterns. In the real-world EEG examination, 
the proportion of the interictal period and the ictal period in EP are highly imbalanced. 
Sometimes, seizures may not manifest during an entire EEG examination. When it 
extracts features information from EEG sequences with causal and dilated convolution 
at equal intervals, TCN will learns the interictal and seizure EEG with the same weight, 
which will lead to inflated efficiency metrics. Therefore, it is not suitable for the task of 
EP in the real world. Consequently, a more adaptable model suited for the complexity of 
real-world EP detection is essential—one that can handle various conditions, including 
recordings capturing solely interictal activity.

This problem can be elegantly addressed by combining TCNs with self-attention (SA) 
layers. The TCN-SA model was first proposed by Dai et al. [53] for the detection of daily 
living activities in long-term untrimmed videos. Our study is the first to use a TCN-SA 
model for the automatic detection of EP in the real world. For the automatic detection 
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task of EP, by learning the interictal abnormal activities and epileptic seizures, our deep 
learning model extracted their related information as potential features. In the TCN-SA 
model, the TCN block not only ensures computation at the current moment to circum-
vent the influence of future information but also captures sufficient abnormal activity 
information with flexible size in the receptive fields for highly accurate predictions of EP. 
Additionally, the SA block adapts the learning weights during network training to rec-
ognize seizures, reducing computational demands and enhancing accuracy. We evalu-
ated the TCN-SA model’s performance against other deep learning models (TCN, SA 
and standard CNN models), using cross-validation to confirm its stability and reliability.

The rest of this article is organized as follows. Sect. “Results” introduces the TCN-SA 
model and related theory. Sect.  “Discussion” describes the datasets and experimen-
tal settings. The experimental results are listed in Sect.  “Conclusions”, where we also 
describe the utilization of cross-validation to evaluate the stability and reliability of the 
TCN-SA model. Sect.  “Methods” comprises the discussion, and Sect.  6 concludes the 
study.

Results
Our EEG dataset

Our EEG dataset was randomly divided into training and testing sets at a ratio of 7:3. We 
then used the TCN-SA model to identify patients with EP based on our EEG data. The 
training accuracy, test accuracy, training loss, and test loss were obtained, as shown in 
Fig. 1a, b. Additionally, to compare with our model, we implemented three deep learning 
models on the same dataset: a standard CNN, an SA neural network, and a TCN. The 
specific training and test results are shown in Fig. 1c–h.

Figure 1 shows that the TCN-SA model had the highest training and testing accuracy 
and the lowest training and testing loss among the four models. In terms of training and 
testing, that of TCN-SA model decreased at the fastest speed; it also had a lower final 
training and test loss than the TCN model. This result indicated that adding the SA layer 
improved the training and test accuracy of the model.

Fig. 1  Accuracy and loss of the training, valid, test results of the four models. a, b TCN-SA model; c, d TCN 
model; e, f CNN model; and g, h SA model
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At the performance testing stage, the four models were subject to fivefold cross-val-
idation. The participants in each fold are listed in Table 1. The average accuracy, sensi-
tivity, specificity, precision, and F1-score (with standard errors) of the four models are 
shown in Table 2. The average receiver-operating characteristic (ROC) curve and aver-
age area under the curve (AUC; with standard errors) are shown in Fig.  2. The accu-
racy, sensitivity, specificity, precision, and F1-score of the TCN-SA model were 95.50%, 
91.22%, 98.72%, 98.20%, and 0.94699, respectively; these were the highest of all the mod-
els. Compared with the CNN and TCN models, our method showed average accuracy 
improvements of 5.86 and 5.26%, respectively, sensitivity improvements of 8.25 and 
7.23%, respectively, specificity improvements of 3.96 and 3.69%, respectively, precision 

Table 1  Participants in each fold

Fold Participant IDs

From healthy control group From 
children 
with EP

1 20,24,28,33 3,6

2 14,15,22,29,31 0,9,11

3 17,19,25,32 5 8,12

4 16,23, 27,30 1,2,13

5 18,21,26,34 4,7,10

Table 2  Performance of TCN-SA, TCN, SA, and CNN models

Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-scores (%)

TCN-SA 95.50 ± 1.69 91.22 ± 2.92 98.72 ± 0.93 98.19 ± 1.13 94.54 ± 1.49

TCN 90.23 ± 3.85 83.99 ± 6.38 95.04 ± 2.94 93.19 ± 2.58 88.15 ± 3.11

SA 92.50 ± 2.37 88.87 ± 2.17 95.08 ± 3.27 93.45 ± 3.14 91.06 ± 1.66

CNN 89.63 ± 3.57 82.96 ± 5.71 94.77 ± 3.27 92.67 ± 3.24 87.35 ± 2.61

Fig. 2  Average ROC curve, confidence interval, and average AUC of the four models in the fivefold 
cross-validation
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improvements of 5.52 and 5.00%, respectively, and F1-score improvements of 0.0719 and 
0.0639, respectively. Compared with the CNN model, the TCN model showed improve-
ments in the average accuracy, sensitivity, specificity, precision, and F1-score, which 
were 0.60%, 1.03%, 0.27%, 0.52%, and 0.0080, respectively.

Figure 2 illustrates that the ROC curve of the TCN-SA model is proximate to the opti-
mal position in the upper left corner and possesses the most constrained confidence 
interval among the models studied. This signifies that the model conferred the most 
favorable critical value. Utilizing this point for classification yielded high sensitivity and 
specificity while ensuring the combined false-positive and false-negative rates remained 
low. The AUC area of the TCN-SA model was 0.95 ± 0.01, outperforming the other mod-
els by showcasing the highest mean and least variability. The AUC of the TCN, SA, and 
CNN models was 0.89 ± 0.03, 0.92 ± 0.02, and 0.89 ± 0.03, respectively.

In a comprehensive assessment using the F1-score to rank the fivefold cross-validation 
outcomes, the TCN-SA model maintains superiority in both training and testing accu-
racy and loss, eclipsing the best performances of three models (TCN, SA, and CNN) 
(See Appendix: Fig. 11).

To further illustrate the performance of our model, we constructed a confusion matrix 
(Fig.  3). The color depth in the confusion matrix reflects accuracy and the values are 
marked in white within each color block. The matrix reveals specificity and sensitivity 
in the top left and lower right squares, while the upper right and lower left squares rep-
resent false-positive and false-negative rates, respectively. The sensitivity and specificity 
of the TCN-SA model with the best performance were 94.12% and 99.49%, respectively, 
and those of the worst performances were 89.41% and 98.12%, respectively.

We further compared the overall accuracy of each participant in terms of the segment-
based evaluation criteria across the four models. After obtaining the predictions for 
every segment for one participant, we concluded that the overall accuracy indicated the 
correct percentage of all the segments. In Fig. 4, the vertical axis labels the participants, 
with yellow and blue bar graphs representing the accurate and erroneous segment per-
centages, respectively, aided by red and green lines denoting thresholds at 0.2 and 0.1. 
The same notations hold for the other models (See Appendices Fig. 15).

In Fig. 4, the length of the yellow bar is < 0.2 (red line) for the majority of participants, 
indicating the overall accuracy exceeding 80% for almost all of the participants; of these, 
five participants had a yellow bar length greater than > 0.1 (green line), indicating that 

Fig. 3  The best and worst confusion matrices for the fivefold cross-validations of the model
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the overall accuracy surpasses 90% for the remaining 29 participants, with 12 partici-
pants even having accuracies reaching 100%. Some participants display overall accu-
racies below 80% (as seen in Appendices 15), with a few approximating a 50% overall 
accuracy.

The bonn EEG dataset

We conducted two experiments for the classification of healthy children and those with 
EP by combining different subsets, A-E and B-E, and adopting threefold cross-validation 

Fig. 4  Accuracy of the TCN-SA model for participants following segment-based evaluation criteria
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of the four models. The average accuracy, sensitivity, specificity, accuracy, and F1-score 
(with standard errors) of the four models are shown in Table 3. The average ROC curve 
and AUC are shown in Figs.  5 and 6. The accuracy, sensitivity, specificity, precision, 
and F1-score of the TCN-SA model for A-E were 97.37%, 94.88%, 99.91%, 99.91%, and 
0.9730, respectively, whereas those for B-E were 93.50%, 88.07%, 99.00%, 98.86%, and 
0.9311, respectively. For A-E, compared with the CNN and TCN models, our method 
showed average accuracy improvements of 3.57% and 2.48%, respectively, sensitivity 
improvements of 6.87% and 5.00%, respectively, and F1-score improvements of 0.0387 
and 0.0267, respectively. For B-E, our method showed average accuracy improvements 
of 4.37% and 1.85%, respectively, sensitivity improvements of 6.81% and 2.69%, respec-
tively, and F1-score improvements of 0.0491 and 0.0203, respectively, over the CNN and 
TCN models. Even if the performances of the SA and TCN-SA models were roughly the 
same in two experiments with the Bonn dataset [51], with the SA model even perform-
ing slightly better than the TCN-SA model, the performance of the SA model was the 
worst of the four models in experiments with our EEG data.

Table 3  Performances of the TCN-SA, TCN, SA, and CNN models with the Bonn dataset

Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-scores (%)

A-E

 TCN-SA 97.37 ± 1.74 94.88 ± 3.33 99.91 ± 0.06 99.91 ± 0.07 97.30 ± 1.79

 TCN 94.89 ± 0.36 89.88 ± 0.51 99.91 ± 0.06 99.90 ± 0.07 94.63 ± 0.30

 SA 97.54 ± 1.92 95.90 ± 3.55 99.17 ± 0.27 99.13 ± 0.31 97.46 ± 1.99

 CNN 93.80 ± 0.60 88.01 ± 0.91 99.61 ± 0.11 99.56 ± 0.12 93.43 ± 0.56

B-E

 TCN-SA 93. 50 ± 2.37 88.07 ± 4.10 99.00 ± 0.56 98.86 ± 0.64 93.11 ± 2.54

 TCN 91.65 ± 1.03 85.38 ± 2.38 97.97 ± 0.54 97.67 ± 0.65 91.08 ± 1.15

 SA 94.11 ± 0.64 92.37 ± 1.13 95.88 ± 1.22 95.73 ± 1.31 94.00 ± 0.60

 CNN 89.13 ± 0.94 81.26 ± 2.16 97.06 ± 0.60 96.50 ± 0.75 88.20 ± 0.95

Fig. 5  Average ROC curve, confidence interval, and average AUC of the four models in the threefold 
cross-validation for A-E



Page 9 of 26Huang et al. BioMedical Engineering OnLine           (2024) 23:50 	

Figures 5 and 6 show that the AUC for A-E with the TCN-SA, TCN, SA, and CNN 
models is 0.97 ± 0.02, 0.94 ± 0.00, 0.97 ± 0.02, and 0.94 ± 0.01, respectively, whereas 
that for B-E is 0.93 ± 0.02, 0.92 ± 0.01, 0.94 ± 0.01, and 0.89 ± 0.01, respectively. For 
A-E, the ROC curve of the TCN-SA model is closer to the upper left corner, with the 
TCN-SA and SA models having the largest AUC. For B-E, the ROC curve of the SA 
model is closer to the upper left corner, with the narrowest confidence interval of the 
curve.

In addition, the F1-score was used to sort the cross-validation models and compare 
the best performances of the four models with the worst performance of our model in 
the threefold cross-validation (See Appendix: Figs.  11, 12). The result shows that our 
model had the highest accuracy among the best performances of the four models. How-
ever, the worst performance of our model was at an intermediate level.

Finally, Figs. 7 and 8 show confusion matrices. In both experiments, the specificity of 
the TCN-SA model exceeded 98%. The sensitivity of the TCN-SA model at peak perfor-
mance was 97.31% and 90.93%, respectively, for the A-E and B-E subsets. Its sensitivity 
at worst performance was 90.18% and 82.27%, respectively, for the A-E and B-E subsets.

Fig. 6  Average ROC curve, confidence interval, and average AUC of the four models in the threefold 
cross-validation for B-E

Fig. 7  The best and worst confusion matrices for the threefold cross-validation of the TCN-SA model with the 
A-E subset
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Discussion
In this paper, we propose a deep learning model (TCN-SA) for the automatic detection 
of EP in real world, which can adapt to complex conditions of the real-world scenario. By 
combining TCN with SA, our method provided a general model that can simultaneously 
handle the interictal and seizure EEGs; accordingly, our model is highly suitable for clin-
ical applications. When only interictal EEG was included in EEG recordings, the TCN 
module extracted effective features with the same weighting from abnormal activity 
and normal activity in EEG sequences, and the SA module focused on the characteristic 
information of abnormal activity and increased the learned weight of abnormal activ-
ity to identify patients with EP during training. When interictal EEG and seizure EEG 
simultaneously in the EEG recordings, the TCN module extracted effective features with 
the same weighting from abnormal activity and normal activity in EEG sequences, and 
the SA module focuses on the abnormal activity of interictal EEG and seizure, changing 
a learned weight of interictal abnormal activity and seizure with their intensity differ-
ence. It can achieve efficient identification of patients with EP if the model prefers to 
learn information of seizure when the EEG recordings contain interictal EEG and sei-
zure EEG simultaneously. This method was evaluated using two experiments performed 
with the pediatric EP dataset from the Shenzhen People’s Hospital and the Bonn dataset 
[51]. The results showed that our method performed well at the participant’s level in the 
EP detection task. The results of two datasets showed that our model can adapt to com-
plex real-world scenarios and used as a clinically useful model for automatic detection of 
EP.

For our EEG dataset, the TCN-SA model showed the highest accuracy, sensitivity, 
specificity, precision, and F1-score of all four tested models. The performance of the 
TCN model was also better than that of the CNN model. This indicated that adding 
the SA layer enhanced the ability of the model to identify patients by focusing on key 
information, improving its overall performance. The ROC curve of the TCN-SA model 
had the best performance and narrowest confidence interval, indicating that our model 
had the best performance and stability. Regarding the overall accuracy for each partici-
pant in terms of segment-based evaluation criteria, the overall accuracy with our model 
was > 80% for almost all of the participants; for the 29 remaining participants, the overall 
accuracy exceeded 90%, and 14 participants had accuracies that reached 100%. For some 
participants, the overall accuracy was about 50% when the other three models were 

Fig. 8  The best and worst confusion matrices for the threefold cross-validation of the TCN-SA model with the 
B-E subset
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used. Despite the negative influence of individual differences, our model had the best 
performance in detection, reflecting its high stability. Compared with the CNN model, 
the TCN model had better performance in terms of the overall accuracy of participants 
in the healthy control group; it was also superior in the EP detection task.

For the Bonn dataset [51], the performances of the SA and TCN-SA models were 
roughly the same in two experiments (A-E and B-E). However, there are some clear dif-
ferences in EP status between the Bonn [51] and our EEG datasets. The E subset con-
sisted of mainly epileptic seizures, whereas our EEG dataset contained the interictal 
and ictal states, with the interictal state being predominant. Upon comparing the data 
status of our EEG and the Bonn datasets, we found that the SA model performed bet-
ter in identifying epileptic seizures. However, when comparing the best performances 
of all four models, our model had the highest accuracy; its worst performance was at an 
intermediate level. It also confirmed that compared the task of identifying EP using the 
period of interictal state, the general deep learning model can easier achieve good per-
formance identifying epileptic seizures.

Although the results of the TCN-SA model with the Bonn and our EEG datasets were 
roughly the same, the degree of difficulty of experiments with our EEG dataset was 
higher than that with the Bonn dataset [51]. First, the Bonn dataset [51] consisted of 
single-channel signals, whereas our EEG dataset comprised multi-channel signals. Com-
pared with single-channel signals, multi-channel signals are more complex and redun-
dant and hence contain more useful information regarding epileptic seizures. Second, as 
the experiment with our EEG dataset was evaluated based on subjects; the problem of 
inflating extrapolation ability was avoided using EEG fragments from the same subject 
only in either the training or testing set. Third, the E subset in the Bonn dataset [51] 
comprised epileptic seizures, whereas our EEG dataset contained the interictal and ictal 
states, with the interictal state being predominant; specifically, three subjects exhibited 
no seizures during the EEG recordings. Our model showed high classification accuracy 
in the experiment with the Bonn dataset [51], verifying that it could handle the task of 
automatically detecting EP from a general epileptic EEG dataset.

To further evaluate the effectiveness of our model, we compared it with other works 
for the automatic detection of EP from EEG signals. As shown in Table 4, the results of 
our method and those of other methods were evaluated using the Bonn dataset [51]. Our 
method appeared to perform equivalently to others. For the A-E subset, our method was 
second best but differed from the best method by only 0.63%. For the B-E subset, our 
method was the best.

Although our model showed high classification accuracy, it has some limitations. 
First, we only verified our model using a dataset from children with EP. Future research 
will aim to acquire adult EP patient data to broaden the model’s applicability. Moreo-
ver, although our model achieved great classification for the EEG dataset we collected, it 
cannot be utilized to locate seizures for online detection. In our EEG dataset, abnormal 
discharge segments and normal segments from the raw EEGs were extracted by us under 
the guidance of professional neurologists before data preprocessing. In the future work, 
the TCN-SA model can be utilized to locate seizures for online detection after the auto-
matic data preprocessing so as to apply to the pre-consultation to the neurologist at the 
Outpatient Department [69–71]. Finally, our model also lacks interpretability. Although 
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this is an effect of the general black-box nature of deep learning approaches, it is neces-
sary to interpret models in the medical field [72]. We aim to improve the interpretability 
of our model by taking the advantage of outstanding machine learning algorithm in the 
automatic detection of epilepsy [73–75].

Conclusions
In this study, the TCN-SA model was used for the first time for the automatic detec-
tion of EP from EEG data. The TCN extracts EEG features and the SA layer enhances 
the identification of key features, thereby lowering the computational cost and time. The 
TCN-SA model achieved 95.40% accuracy in the classification of EP among children; 
compared with the TCN, SA, and CNN models, its accuracy was improved by 5.33%, 
6.79%, and 6.24%, respectively. In addition, our method achieved high classification 
accuracies with the Bonn dataset [51] (A-E and B-E subsets). The validity of the TCN-SA 
model shows that it is worthy of implementation for the automatic detection of EP from 
EEG data.

Methods
Data description

A new dataset that we generated ourselves was used to verify our model, and the Bonn 
dataset [51] was used as the external validation.

Our EEG data

We obtained EEG data from the Department of Pediatrics, Shenzhen People’s Hos-
pital, China, between January 2019 and June 2021. The raw data were anonymized 
before analysis. This study was approved by the Ethics Committee of the School of 
Public Health, Sun Yat-sen University (No.2021–081), and informed consent was 
obtained from the research participants. In accordance with the international 10–20 
system, an EEG instrument has 19 electrodes (FP1, FP2, F3, F4, C3, C4, P3, P4, O1, 
O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz) and two reference electrodes (A1 and 

Table 4  Comparing the performance of the TCN-SA model with that of other models

Method Study Accuracy (%)

A-E

 TCN-SA Our model 97.37
 STFT spectrogram + Effi-cientNet B7 Ilias et al. [62] 96.50

 MWT + ApEn + ANN Guo et al. [63] 96.00

 Nonlinear prepossessing filter + LAMSTAR​ Nigam et al. [64] 97.20

 dWT + ME Subasi [65] 94.50

 1D-TP + ANN Kaya et al. [66] 98.00

 P-1D-CNN Ihsan Ullah et al. [68] 99.90

 LSTM Ahmedt-Aristizabal et al. [67] 97.00

B-E

 TCN-SA Our model 93.50
 1D-TP + ANN Kaya et al. [66] 93.00

 LSTM Ahmedt-Aristizabal et al. [67] 92.50

 P-1D-CNN Ihsan Ullah et al. [68] 99.00
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A2). Resting-state EEGs were recorded at 500  Hz with a Nicolet recording system 
(Thermo Nicolet Corporation, USA). Based on the guidelines listed by the Interna-
tional Alliance Against Epilepsy [54], the inclusion and exclusion criteria were set as 
follows:

1. 	 Inclusion criteria:

(1)	 At least two unprovoked (or reflex) seizures occurring > 24 h apart
(2)	 One unprovoked (or reflex) seizure and probability of further seizures similar to the 

general recurrence risk (at least 60%) after two unprovoked seizures
(3)	 Diagnosis of an EP syndrome.

2. 	 Exclusion criteria:

(1)	 Other neurological diseases in addition to EP
(2)	 Significant progressive disorders or unstable medical conditions requiring acute 

intervention
(3)	 Cognitive impairments precluding psychiatric and clinical evaluations
(4)	 Any history of anti-seizure medication use.

The EEG data from healthy children were normal, whereas those from children 
with EP covered their interictal and ictal states. In our dataset, the abnormal dis-
charge segments were of two types: seizures in their ictal state, and spike and wave 
complexes in their interictal and ictal states. However, seizures were not recorded 
in the EEG data of every child with EP; three children did not have seizures when 
recording EEGs.

The dataset after selection consisted of 35 children is divided into two groups: one 
group of healthy children (n = 21, average age: 6.9 ± 3.6 years, male = 12, female = 9) 
and one group of children with EP (n = 14, average age: 7.6 ± 3.7, male = 8, female = 6). 
The two groups were homogeneous in terms of sex and age; the Chi-square test 
showed no significant differences in sex ( X2 < 0.001 , P = 1.000 ), and two-tailed 
Mann–Whitney U tests showed no significant differences in average age groups 
( U = 125.500 , P = 0.466).

The bonn dataset

The Bonn dataset [51] has five subsets (A, B, C, D and E). Each contains 100 sin-
gle-channel segments, and each signal lasts 23.6  s and was obtained at a sampling 
rate of 173.61  Hz. The EEG segments of subsets A and B were collected from five 
healthy volunteers, whereas those of subsets C, D and E were collected from five 
patients with EP. Table  5 shows details of the Bonn dataset [51]. All the segments 
were selected and removed from the continuous multi-channel EEG recordings after 
visual inspection for artifacts such as muscle activity and eye movements.
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Data preprocessing

Under the guidance of professional neurologists, we extracted abnormal discharge 
segments from the raw EEGs of the children with EP and then extracted normal seg-
ments from the raw EEGs of the healthy children, without interference. Moreover, 
the raw data needed to be preprocessed before conducting formal EEG analysis. To 
reduce the computational burden, we downsampled the data at 100 Hz. First, high-
pass filtering was carried out at a frequency of 1.6 Hz, after which low-pass filtering 
was carried out at 70  Hz. Then, band-pass filtering was used to remove the power 
frequency interference (50 Hz). Finally, the original data were divided into non-over-
lapping fragments with lengths of 2 s using a sliding time window. The preprocessed 
fragment set of each patient was thus obtained. Each fragment size was 19 (chan-
nels) × 200 (sampling points).

For the Bonn dataset [51], we also down sampled the data at 100 Hz and conducted 
the same preprocessing with filtration. The EEG signals were divided into non-over-
lapping fragments of equal size, with each fragment size being 1 (channels) × 100 
(sampling points).

The data were standardized to the range of [0,1] using the following formula to 
prevent numerical overflows and improve prediction accuracy. These preproc-
essing steps were performed using the EEGLab toolbox [55] in MATLAB (Math-
Works). Subsequently, standardized segmented data are then input into a neural 
network, correspond to an input size of 19(channels) × 200(sampling points), 1(chan-
nel) × 100(sampling points), respectively

Model architecture

The architecture of the TCN-SA model primarily consists of the TCN and SA blocks, 
as shown in Fig. 9. In the model, the TCN block is utilized to learn sequences of EEGs 
in each sample after preprocessing, capture the long-term features of EEG signals, 
and then output feature sequences. The SA layer, placed after the TCN block, is used 
to obtain the inner links of feature sequences and compute associations between pairs 
of features to discriminate interictal and seizure EEGs. We used attention weights to 
increase the effectiveness of neural network training and obtain classification predic-
tion outputs through the full connection.

(1)Zxit =
xit − xtmin

xtmax − xtmin

Table 5  Characteristics of the Bonn dataset

Subset Subject State Electrode placement

A Healthy Awake state with eyes open International 10–20 system

B Healthy Awake state with eyes closed International 10–20 system

C Epileptic Interictal Hippocampus opposite to hemisphere

D Epileptic Interictal Epileptogenic zone

E Epileptic Ictal Epileptogenic zone
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The details of the proposed model are described in the following subsection.

Temporal convolutional neural network

Temporal convolutional neural network is a new type of CNN originally proposed by 
Lea et al. [41, 42]. This type of network is used to analyze input data by combining causal 
and dilated convolution. They adopt a residual network to generate the outcome.

Causal and dilated convolution  A key characteristic of a sequence model is that the 
prediction of each moment only depends on the observation of its historical moment and 
not on future observations. Causal convolution [41, 42] requires that the output of the 
current moment to be obtained only via a convolutional calculation using features of the 
historical moment. This implies that causal convolution is a one-way convolution from 
the historical moment to the current moment.

Causal convolution has an important advantage of supporting parallel operation but 
requires an infinite number of convolutions when it is adopted for super-long sequences. 
To overcome this, a dilated convolution was applied to causal convolution to dynami-
cally change the receptive field size of causal convolution by adjusting the dilated value 
to reduce the number of convolutions. For any causal convolution layer, as the dilated 
value can increase in the form 2i(i = numberofconvolutionlayer) when there is more 
than one layer of causal convolution in the network, the length of the historical sequence 
based on dilated convolution is determined by the following formula:

where d represents the dilation factor, k represents the filter size and length is the length 
of the historical sequence calculated.

(2)length = d × (k − 1)

Fig. 9  Overview of the proposed TCN-SA model
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Figure 10 shows an example of causal convolution combined with dilated convolution.

Residual module  For a residual module, the input is computed by combining causal 
dilated convolution with non-linear mapping, whereas the output is exported following a 
full connection layer. As each residual module contains both a dropout and weight nor-
malization layer, the full connection layer not only improves the stability of the neural 
network but also ensures that the lengths of the input and output remain consistent. The 
formula is as follows:

where o and x are the output and input to the model, respectively, and activation repre-
sents the activation function.

SA mechanism

Attention mechanisms tend to focus on the attention of human beings, the underlying 
process of which is similar to that of vision. An attention mechanism can improve the 
performance of a model in a stepwise manner [56] by focusing on key information. There 
are four types of attention mechanism: softness of attention, forms of input features, 
input representations, and output representations [57]. The SA mechanism belongs to 
the category of input representations. In time-series models, the SA mechanism may 
weigh observations for each moment with the correlations between them. For multi-
ple convolutional layers, the SA mechanism significantly compresses the characteristic 
matrix of the convolution output and retains important information. In addition, com-
pared with the traditional sequence model that performs well in identifying long-term 
associations, SA has been more widely applied in various fields [58–61].

To measure self-attention, a data sequence of length of N was first encoded 
into keyM = {m1,m2, . . . ,mn−1,mn} and expressed as a key value in the form 
(M,V ) = [(m1, v1), (m2, v2), . . . ., (mn−1, vn−1), (mn, vn)] . Note that mi corresponds 
uniquely to one in V. M and V are different representations of a data sequence that indi-
cate attention distribution and contextual information [55], respectively. For each query 
Q from M, similarity with all values of M were calculated using a score function known 

(3)o = activation(x + F(x)),

Fig. 10  Causal and dilated convolution: a represents the causal convolution with a convolution kernel size 
of 2, b represents the dilated convolution with a convolution kernel size of 3, and (c) represents the causal 
convolution with a dilated value of 3 and convolution kernel size of 2
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as the scaled multiplicate [34]; the standardized attention score of each key M to V  was 
then obtained using the function softmax . Finally, sequence V  was weighted to the nor-
malized attention score as the attention weight and named the SA value. The formula is 
as follows:

where d represents the dimensions of an input sequence.

Training and testing

At the model comparison stage, we randomly selected 70% of the subjects from whom 
we obtained EEG data to be part of the training set, the remaining subjects were made 
part of the testing set, and we randomly selected 20% of the training set to serve as a 

(4)attention(Q,M,V ) = softmax

(

QMT

2
√
dm

)

V ,

Table 6  Parameters settings the TCN-SA model

Parameters Value

Kernel size 4

Learning rate 0.01

Epochs 100

Batch size 12

Optimization function ‘SGD’

Output parameters 2 neurons, Softmax

Table 8  Accuracy (%) of TCN-SA and TCN models with different kernel size

Methods Kernel size

2 4 6 8 16 32 64

TCN-SA 96.86 96.61 96.48 96.92 59.05 59.05 59.05

TCN 87.75 88.88 89.51 59.05 59.05 59.05 59.05

Table 9  Accuracy (%) of TCN-SA, TCN, and SA models with different activation function

Methods Activation function

Sigmoid Softmax Tanh

TCN-SA 93.78 96.61 59.05

TCN 88.63 88.88 88.13

SA 40.95 90.14 58.98

Table 7  Accuracy (%) of TCN-SA, TCN models with different layers

Methods Layers

2 3 4

TCN-SA 96.61 96.92 59.05

TCN 88.88 90.14 91.02
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validation set. The training and testing sets comprised the fragment set of the corre-
sponding subjects. To avoid inflating the extrapolation ability, we ensured that there 
were no fragments from the same subject simultaneously in the training and testing sets. 
At the performance testing stage, we utilized fivefold cross-validation to evaluate the 
stability and reliability of the TCN-SA model for the task of automatically detecting EP. 
For this cross-validation technique, the training set was split into five groups, with each 
group containing 6–8 participants. This process was repeated five times, with one group 
in each run serving as a source of validation data and the rest of the groups serving as 
the training set. In other words, we randomly selected 20% of the subjects from each 
training set to serve as a validation set. The validation sets were then used to adjust the 
hyper-parameters during model training to avoid overfitting.

To compare with our previous study, we verified our model using the Bonn dataset 
[51] and threefold cross-validation. The EEG data were divided into three subsets, of 
which two served as the training sets and one served as the testing set. This process was 
repeated 3 times, and the average value of the evaluation measurement over these three 
runs was computed. Each validation set was selected from 20% of each training set.

Experiment settings

The experiment was performed on the high-performance computing cluster platform at 
the School of Public Health, Sun Yat-sen University. We also used Python 3.8, run on an 
Intel Xeon E5-2682 v4 CPU, a GTX1080TI GPU and a CUDA11.0 acceleration environ-
ment using the PyTorch deep learning framework. Table 6 shows our model parameters 
settings.

In our work, the computational complexity of our model measured by the number 
of floating-point operations (FLOPs) and model parameters. The experimental results 
show that our model parameters was 0.42 M, and the FLOPs was 4.04 GFLOPs.

Tables 7–9 present a comparative analysis of our model across various configurations 
of layers, kernel sizes, and activation functions. For layers and kernel size, we compared 
our model and TCN model when the SA block shares the layers and kernel size because 
of the entirety of the TCN and SA blocks. In Table 7, accuracy of TCN model increased 
with the number of layers, while accuracy of TCN-SA model was stable (layers ≤ 3), and 
the same experimental results can be shown in Table 8 (kernel size ≤ 8), so layers with 2 
and kernel size with 4 would be the optimal choice with high efficiency and low energy 
consumption. The different change between TCN model and TCN-SA model verified 
that the SA layer can effectively attribute for the output accuracy when it focuses on the 
abnormal activities of interictal EEG and seizure by changing the learning weights of the 
TCN during neural network training. For activation function, we compared three mod-
els. As shown in Table 9, the softmax activation function yielded high and stable output 
accuracy among three models (TCN, SA, TCN-SA), and loss function corresponding to 
softmax activation function is cross-entropy.
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Evaluation criteria

An average preformation of cross-validation was used to obtain stable results for our 
network model. The performance of a network model is measured by five indicators: 
precision, sensitivity, specificity, F1-score, and accuracy.

Appendix
A. Comparison of the five-fold cross-validations of the four models.

B. Accuracy of the three models for participants following segment-based evaluation 
See Figs. 11, 12, 13, 14, 15, 16

Fig. 11  Accuracy and loss of the best and worst effects of the four models in the fivefold cross-validation. a 
Accuracy; b loss
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Fig. 12  Accuracy and losses of the best and worst performances of the four models in the threefold 
cross-validation for A-E. a Accuracy, b loss
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Fig. 13  Accuracy and losses of the best and worst performances of the four models in the threefold 
cross-validation for B-E. a Accuracy, b loss
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Fig. 14  Accuracy of the CNN model for participants following segment-based evaluation criteria

Fig. 15  Accuracy of the TCN model for participants following segment-based evaluation criteria
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