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Abstract 

Background and aim: Ovarian cancer (OC) is a prevalent and aggressive malignancy 
that poses a significant public health challenge. The lack of preventive strategies 
for OC increases morbidity, mortality, and other negative consequences. Screening OC 
through risk prediction could be leveraged as a powerful strategy for preventive pur-
poses that have not received much attention. So, this study aimed to leverage machine 
learning approaches as predictive assistance solutions to screen high-risk groups of OC 
and achieve practical preventive purposes.

Materials and methods: As this study is data-driven and retrospective in nature, we 
leveraged 1516 suspicious OC women data from one concentrated database belong-
ing to six clinical settings in Sari City from 2015 to 2019. Six machine learning (ML) 
algorithms, including XG-Boost, Random Forest (RF), J-48, support vector machine 
(SVM), K-nearest neighbor (KNN), and artificial neural network (ANN) were leveraged 
to construct prediction models for OC. To choose the best model for predicting OC, we 
compared various prediction models built using the area under the receiver character-
istic operator curve (AU-ROC).

Results: Current experimental results revealed that the XG-Boost with AU-ROC = 0.93 
(0.95 CI = [0.91–0.95]) was recognized as the best-performing model for predicting OC.

Conclusions: ML approaches possess significant predictive efficiency and interoper-
ability to achieve powerful preventive strategies leveraging OC screening high-risk 
groups.

Keywords: Machine learning, Public health challenge, Predictive efficiency, Ovarian 
cancer, Preventive strategy

Introduction
Ovarian cancer (OC) is ranked seventh and eighth with regard to tumor malignancy 
prevalence and death among women globally [1]. They rank third in mortality after uter-
ine and cervical as gynecological cancers [2]. This cancer usually emerges from ovarian 
epithelial cells in the ovary. It is frequently diagnosed at advanced stages due to poor 
prognosis and a lack of more appropriate screening test solutions [3, 4]. The mysteri-
ous progression and the high prevalence of OC among women have imposed a pub-
lic health challenge [5]. OC caused 240,000 new cases worldwide and accounts for the 
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second incidence of cancer following breast in women [6, 7]. The OC sickens 22,000 
new cases and causes 14,000 mortalities in the United States annually [8]. The risk of 
OC would be raised by increasing age, family history, changing genes, or family history 
of the syndrome among women; in contrast, some determinants such as contraceptive 
pills consumption, oophorectomy, and increasing parity have the preservative role in 
OC development [9, 10]. Despite the high prevalence of OC worldwide, in some devel-
oped countries, the incidence of the disease has diminished to some extent due to the 
mentioned supportive factors and suitable preventive and early detection strategies in 
recent decades [11, 12]. However, variation associated with OC risk exists worldwide; 
the Asian, Central and Eastern European, and Central and South American countries 
account for high-risk regions in terms of OC incidence [13]. It is estimated that OC inci-
dence and death rates will increase worldwide by 2035, requiring better judgment by 
health policymakers, especially for women older than 65 and those living in regions lack-
ing preventive or therapy services [14]. In Iran, the OC has the eighth prevalence rank 
among neoplasms, with a 61% five-year survival rate. Iran had 1966 and 1269 new cases 
and a mortality rate of OC among women in 2020 [15]. Despite the increasing trend of 
OC among women due to the decreasing birth rate and increasing elderly population, 
it has not been suggested as an effective solution for screening this disease [16, 17]. OC 
would be detected at advanced stages due to the asymptomatic nature of this disease at 
earlier stages, and even differential diagnosis to other maladies at later stages, leading to 
poor prognosis [18].

Although some aggressive methods exist for screening high-risk OC women, such as 
removing small sections of the uterus, we require a more effective preventive strategy 
due to the high false positive results rate associated with existing screening methods 
[19]. Machine learning (ML) is a subfield of artificial intelligence (AI) that leverages past 
data to build knowledge structures and learn from data to predict future events based on 
these structures achieved by past data [20]. Leveraging ML has significantly promoted 
the therapy, medication, diagnosis, prediction, and screening of medical conditions such 
as cancer [21, 22]. Past research has shown that ML-based approaches can provide prac-
tical cancer screening through high-performing risk prediction [23, 24].

Some recently invented ML algorithms indicated significant predictive capabil-
ity concerning various biomedical topics. For example, iMethyl-STTNC is recognized 
as an effective technique in the detection of methyladenosine sites in RNA [25]. iACP-
GAEnsC’ model as an evolutionary genetic algorithm-based ensemble approach gained 
efficient predictive capability in anticancer peptides classification [26]. DP-binder plays a 
crucial role in different biological processes, including rejoining, replicating, and repair-
ing DNA [27]. iHBP-DeepPSSM is considered an accurate and reliable technique for 
the identification of hormone-binding proteins [28]. Other ML approaches, including 
"iAtbP-Hyb-EnC" and the cACP-DeepGram model, are leveraged in cancer therapy and 
suggested as a fruitful ensemble technique in academic study and drug discovery [29, 
30].

One branch of ML is deep learning (DL), which uses particular artificial neural net-
work configurations to efficiently learn from more sophisticated data such as images, 
sounds, signals, etc. [31]. Despite this approach, the ML has the potential to perform 
best in structured databases that possess low and medium volume [32, 33]. Based on 
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investigating past works on leveraging ML and DL in the risk prediction of OC, no 
study was conducted on this topic. Studies are conducted on screening the OC in the 
early stages of this disease or predicting OC using malignant and benign cases [34, 35]. 
Therefore, this study aims to introduce a screening solution based on risk factors and an 
ML approach to stratify high-risk and low-risk people as a preventive strategy. To this 
aim, we first gathered the data on this topic and prepared it for mining purposes. In the 
preparation process of data, we use three strategies: eliminating the data redundancy, 
embedding the missing values, and selecting the best factors concerning prediction 
purposes. Then, we leverage ML algorithms based on the enhanced data and stratified 
factors to build the prediction model on this topic. Based on the various feature impor-
tance techniques, we assess all factors influencing the OC prediction in an explainable 
way. Previous studies leveraged this process to build the prediction model for various 
biomedical purposes. Afrash et  al. used Minimum Redundancy Maximum Relevance 
(mRMR) feature selection with the ensemble and non-ensemble ML algorithms to diag-
nose COVID-19 based on clinical data [36]. Shanbehzadeh et  al. leveraged ML algo-
rithms and preprocessing steps for breast cancer as a single-centered study approach 
[37]. They concluded that using the ML techniques plays a significant role in predic-
tion strategy. Nopour et al. developed a prediction model for the mortality of COVID-19 
patients based on statistical and computational ML techniques and phi-coefficient as a 
feature selection process [38]. Nopour et al. assessed various configurations of ANNs to 
design an intelligent tool for breast cancer prognosis. This study used the Chi-square as 
a feature selection technique in one single-centered study [39].

Results
Preprocessing database

After investigating the database, some redundant cases were identified; this sameness 
originated from different identification numbers (IDs) for the same person when inte-
grating databases due to a lack of interoperability between these centers. Thereby, 25 
duplicated records, including seven and 18 cases associated with positive and negative 
cases, respectively, were excluded from the study. Reviewing the database concerning 
lost values, we discovered that 18 cases, including five and 13 cases belonging to posi-
tive and negative, possess more than 5% missing values. So, we removed them from the 
study. Also, the values of 40 records with less than 5% missing data were imputed using 
the KNN algorithm. This way, the replacement methods using predictive algorithms 
have less bias than other methods, such as using values having the highest frequency, 
etc.; therefore, model effectiveness concerning generalizability will be maintained to a 
large extent. Finally, 1473, including 701 and 772 cases belonging to positive and nega-
tive cases, remained in the current study, as Fig. 1 shows.

The characteristics of the samples among positive and negative OC groups are pre-
sented in Table 1.

Feature selection

The results of determining the correlation of predictors associated with OC using MLR 
are shown in Table 2.
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As shown in Table  2, based on the MLR, the factors including age (β = 0.521, 
OR = 1.275, 95% CI  [1.215–1.472]), BMI (β = 0.334, OR = 1.179, 95% CI  [1.079–
1.343]), blood group (β = 0.188, OR = 1.121, 95% CI  [1.053–1.278]), menopausal age 
(β = 0.294, OR = 1.03, 95% CI  [1.012–1.196]), postmenopausal hormone therapy 
(β = 0.255, OR = 1.24, 95% CI  [1.191–1.334]), endometriosis (β = 0.451, OR = 1.645, 
95% CI  [1.572–1.837]), family history of cancer such as ovary, breast, or colorectal 
(β = 0.319, OR = 1.274, 95% CI  [1.256–1.349]), family cancer syndrome (β = 0.118, 
OR = 1.032, 95% CI  [1.011–1.056]), breast cancer (β = 0.174, OR = 1.056, 95% 
CI  [1.023–1.103]), smoking (β = 0.293, OR = 1.155, 95% CI  [1.093–1.257]), his-
tory of pregnancy and breastfeeding before age 26 (β = 0.252, OR = 1.089, 95% 
CI  [1.036–1.157]), history of PCOS (β = 0.378, OR = 1.526, 95% CI  [1.455–1.724]), 
history of chest X-ray (β = 0.412, OR = 1.256, 95% CI  [1.181–1.324]), particu-
lar food consumption, such as fried foods, whole milk, and trans fats (β = 0.434, 
OR = 2.016, 95% CI  [1.774–2.347]), history of hysterectomy (β = 0.538, OR = 1.986, 
95% CI  [1.795–2.623]), oral contraceptive pill use (β =  particular food consumption 
0.473, OR = 0.512, 95% CI  [0.345-0.679]), and aspirin use (β = −  0.225, OR = 0.498, 

Fig. 1 The preprocessing steps of the samples in the dataset
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Table 1 OC suspicious characteristics of samples

Feature Value Total frequency
(n = 1473)

Positive Negative
(n = 701) (n = 772)

Age  < 40
40–50
50–60
 > 60

205
424
617
227

85
175
320
121

120
249
297
106

BMI  < 18.5
18.5–25
25–30
 > 30

57
311
475
630

25
107
198
371

32
204
277
259

Blood group A
B
AB
O

598
257
298
320

339
102
123
137

259
155
175
183

Race Persian
Others

1150
323

519
182

631
141

Menopausal age  < 45
45–50
50–55
 > 55

52
208
655
558

23
71

349
258

29
137
306
300

Postmenopausal hormone therapy Yes
No

845
628

459
242

386
386

Endometriosis Yes
No

743
730

472
229

271
501

History of nonpregnancy Yes
No

805
668

459
249

346
419

Family history of cancer such as ovary, breast, or colorectal Yes
No

859
614

466
235

393
379

Family cancer syndrome Yes
No

375
1098

212
489

163
609

Fertility treatment use Yes
No

569
904

273
428

296
476

Breast cancer Yes
No

456
1017

277
424

179
593

Smoking Yes
No

345
1128

211
490

134
638

History of pregnancy and breastfeeding before age 26 Yes
No

779
694

318
383

461
311

History of the PCOS Yes
No

597
876

302
399

295
477

History of chest X-ray Yes
No

658
815

389
312

269
503

Alcohol consumption Yes
No

52
1421

25
676

27
745

Particular food consumption, such as fried foods, whole 
milk, and trans fats

Yes
No

852
621

596
105

256
516

History of exposure to mutagenic or chemical substances Yes
No

398
1075

202
499

196
576

High red meat consumption Yes
No

412
1061

184
517

228
544

History of hysterectomy Yes
No

358
1115

274
427

84
688

Oral contraceptive pill use Yes
No

474
999

167
534

307
465

Aspirin use Yes
No

872
601

287
414

585
187

High consumption of coffee Yes
No

257
1216

122
579

135
637
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95% CI  [0.452–0.667]) were considered as the essential factor associated with OC 
prediction at P < 0.05. In contrast, other predictors including race, fertility treatment 
use, alcohol consumption, history of exposure to mutagenic or chemical substances, 
high red meat consumption, high consumption of coffee, vegetable consumption, and 
fruit consumption did not gain significance over 95% confidence, thereby excluded 
from the study (P > 0.05).

Table 1 (continued)

Feature Value Total frequency
(n = 1473)

Positive Negative
(n = 701) (n = 772)

Vegetable consumption Low
Medium
High

504
530
439

235
269
197

269
261
242

Fruit consumption Low
Medium
High

426
518
529

243
249
209

183
269
320

Table 2 Analysis of OC predictors using MLR

β: correlation, OR: odd ratio, CI: confidence interval

Feature β OR 95% CI of OR P-value

Age 0.521 1.275 [1.215–1.472] 0.01
BMI 0.334 1.179 [1.079–1.343] 0.01
Blood group 0.188 1.121 [1.053–1.278] 0.03
Race 0.052 0.927 [0.892–1.148] 0.1

Menopausal age 0.294 1.03 [1.012–1.196] 0.04
Postmenopausal hormone therapy 0.255 1.24 [1.191–1.334] 0.01
Endometriosis 0.451 1.645 [1.572–1.837]  < 0.001
History of nonpregnancy 0.674 1.994 [1.727–2.446]  < 0.001
Family history of cancer such as ovary, breast, or colorectal 0.319 1.274 [1.256–1.349] 0.01
Family cancer syndrome 0.118 1.032 [1.011–1.056] 0.045
Fertility treatment use 0.072 0.958 [0.873–1.156] 0.07

Breast cancer 0.174 1.056 [1.023–1.103] 0.04
Smoking 0.293 1.155 [1.093–1.257] 0.03
History of pregnancy and breastfeeding before age 26 0.252 1.089 [1.036–1.157] 0.04
History of PCOS 0.378 1.526 [1.455–1.724] 0.01
History of chest X-ray 0.412 1.256 [1.181-0.1.324] 0.02
Alcohol consumption 0.163 1.163 [0.776–1.554] 0.165

Particular food consumption, such as fried foods, whole milk, 
and trans fats

0.434 2.016 [1.774–2.347]  < 0.001

History of exposure to mutagenic or chemical substances 0.062 0.974 [0.665–1.257] 0.12

High red meat consumption 0.126 1.072 [0.824–1.123] 0.08

History of hysterectomy 0.538 1.986 [1.795–2.623]  < 0.001
Oral contraceptive pill use − 0.473 0.512 [0.345–0.679]  < 0.001
Aspirin use − 0.225 0.498 [0.452–0.667] 0.01
High consumption of coffee 0.16 0.773 [0.572–1.231] 0.13

Vegetable consumption 0.075 0.892 [0.652–1.453] 0.185

Fruit consumption 0.09 0.805 [0.452–1.375] 0.123
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Model development and assessment

The results of measuring the ML-trained algorithms’ performance, along with best-
adjusted hyperparameters for development by grid search, are presented in Tables 3 and 
4. The ranges of hyperparameters used for training the ML algorithms are presented in 
Table 5.

As presented in Tables  3 and 4, the ANN-trained algorithm with 15 hidden lay-
ers and a 0.8 learning rate obtained with the maximum epoch of 100 when train-
ing obtained PPV = 0.75  ±  0.035, NPV = 0.82  ±  0.027, sensitivity = 0.81  ±  0.038, 
specificity = 0.75  ±  0.021, accuracy = 0.78  ±  0.029, and F-Score = 0.78  ±  0.03. KNN 
gained PPV = 0.70  ±  0.029, NPV = 0.74  ±  0.026, sensitivity = 0.72  ±  0.032, speci-
ficity = 0.72  ±  0.022, accuracy = 0.72  ±  0.027, and F-Score = 0.71  ±  0.029 with K 
between 3 to 7 and Euclidean as the distance scale. J-48 with 0.3 confidence fac-
tor, had PPV = 0.71  ±  0.043, NPV = 0.75  ±  0.037, sensitivity = 0.73  ±  0.046, 

Table 3 The results of ML-trained performance

Algorithm PPV NPV Sensitivity Specificity Accuracy F-score

ANN 0.75 ± 0.035 0.82 ± 0.027 0.81 ± 0.038 0.75 ± 0.021 0.78 ± 0.029 0.78 ± 0.03

KNN 0.70 ± 0.029 0.74 ± 0.026 0.72 ± 0.032 0.72 ± 0.022 0.72 ± 0.027 0.71 ± 0.029

J-48 0.71 ± 0.043 0.75 ± 0.037 0.73 ± 0.046 0.73 ± 0.035 0.73 ± 0.038 0.72 ± 0.039

RF 0.89 ± 0.021 0.89 ± 0.016 0.88 ± 0.028 0.90 ± 0.012 0.89 ± 0.021 0.88 ± 0.023

SVM 0.72 ± 0.033 0.77 ± 0.025 0.76 ± 0.036 0.73 ± 0.02 0.74 ± 0.028 0.74 ± 0.03

XG-Boost 0.94 ± 0.015 0.93 ± 0.005 0.93 ± 0.019 0.95 ± 0.002 0.94 ± 0.008 0.94 ± 0.01

Table 4 Best hyperparameters tuned

RBF: radial basis function

Algorithm Hyperparameter

ANN Number of hidden layers: 8; learning rate: 0.8; training epoch: 100; validation threshold: 50; nominal 
to binary filter: true

KNN 3 ≤ K ≤ 7; Nearest neighbor search algorithm: Euclidean; Distance weighting: 1/distance

J-48 Binary split: false; number of objects: 2; confidence factor: 0.3; reduced pruning: true; number of 
folds: 3; Use Laplace: true

RF Max_Depth: 8; number of iterations: 100; calculate out of bag: true; number of randomly chosen 
features: 6; classifiers: decision stump

SVM Kernel type: RBF; calibrator: logistic; Epsilon: 1.0E−12; c:10; tolerance parameter: Num folds: − 1; 
RBF-gamma: 0.1

XG-Boost Booster: gb-tree; nthread: MAX; eta: 0.5; Gamma: 1; max_depth: 8; mi_child_weight: 1; max delta 
step: 0; sub_sample:1; Lambda:1; alpha: 0; scale_pos_weight: 1; objective: binary:logistic

Table 5 The ranges of hyperparameters used for training ML algorithms

Algorithm Ranges of parameters used as grid-search technique

ANN Number of hidden layers [5,20]; learning rate [0.3,1]; validation threshold [20,100]

KNN K [3,7]

J-48 Number of objects [1,5]; confidence factor [0.15,0.45]; number of fold [2,6]

RF MAX_Depth [6,20]; number of randomly chosen features [5,20]

SVM c [1,100]; RBF-gamma [0.1,1]

XG-Boost Eta [0.3,1]; Gamma [0,2]; max_depth [5,20]; min_child_weight [0,5]
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specificity = 0.73  ±  0.035, accuracy = 0.73  ±  0.038, and F-Score = 0.72  ±  0.039. 
RF achieved a performance of PPV = 0.89  ±  0.021, NPV = 0.89  ±  0.016, sen-
sitivity = 0.88  ±  0.028, specificity = 0.90  ±  0.012, accuracy = 0.89  ±  0.021, and 
F-Score = 0.88 ±  0.023 through max_depth tree of 8, decision stump as the classifier, 
and number of the randomly chosen tree of 6. SVM obtained PPV = 0.72  ±  0.033, 
NPV = 0.77  ±  0.025, sensitivity = 0.76  ±  0.036, specificity = 0.73  ±  0.02, accu-
racy = 0.74 ± 0.028, and F-Score = 0.74 ± 0.03 as using RBF kernel type, regularizer = 10, 
and RBF-gamma = 0.1. Finally, XG-Boost used eta = 0.05, gamma = 1, and a maxi-
mum tree depth of 8 as best-adjusted hyperparameters obtained PPV = 0.94 ±  0.015, 
NPV = 0.93  ±  0.005, sensitivity = 0.93  ±  0.019, specificity = 0.95  ±  0.002, accu-
racy = 0.94 ±  0.008, and F-Score = 0.94 ±  0.01. By looking at performance indicators 
results associated with chosen algorithms-trained, we concluded that the XG-Boost has 
higher sensitivity, specificity, accuracy, etc., and gained better prediction capability than 
other ML-trained algorithms for OC. In contrast, the KNN obtained less performance 
efficiency than others. Regardless, we do not satisfy these criteria to compare predic-
tion capability. The area under the receiver characteristic operator curve (AU-ROC) will 
grant better insight into prediction capability contrasting aims. The ROC curve of all 
ML-trained algorithms is depicted in Fig. 2.

As it is noticeable from Fig. 2, the ROC belonging to the XG-boost algorithm is closer 
to sensitivity vertices than others. On the contrary, the KNN gained more distance from 
it. Based on Fig.  2, the XG-Boost model with AU-ROC = 0.93 (0.95 CI [0.91–0.95]) 
gained more capability than other ML-trained algorithms concerning OC prediction. 
RF-trained algorithm with AU-ROC = 0.87 (0.95 CI [0.84–0.89]) gained the second rank 
in this regard. The ANN (AU-ROC = 0.75 (0.95 CI [0.72–0.79])), SVM (AU-ROC = 0.68 
(0.95 CI  [0.65–0.70])), and J-48 models (AU-ROC = 0.65 (0.95 CI = [0.62–0.69])) 
obtained the third, fourth and fifth places to predict OC, respectively. Finally, the KNN-
trained algorithm with (AU-ROC = 0.62 (0.95 CI  [0.60–0.65])) was considered as the 

Fig. 2 The ROC of ML-trained algorithms
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weakest ML-trained algorithm regarding OC prediction. Generally, based on the perfor-
mance results obtained, we concluded that the XG-Boost-trained algorithm is the most 
efficient model for OC prediction. Another insight gained from comparing purposes was 
that the XG-Boost and RF models achieved the best performance capability concern-
ing OC prediction; hence, the ensemble algorithms have more performance efficiency in 
predicting OC than other ML algorithms.

We measured the predictors’ relative importance (RI) based on the XG-Boost as the 
best-performing algorithm. The results of the predictors’ RI are illustrated in Fig. 3.

Based on Fig. 3, the predictors, including the family history of cancer such as ovary, 
breast, or colorectal (RI = 0.38), menopausal age (RI = 0.37), history of chest X-ray 
(RI = 0.35), personal history of breast cancer (RI = 0.35), and postmenopausal hormone 
therapy (RI = 0.35) gained more importance than others. They were considered the best 
predictors influencing OC prediction based on the XG-Boost model. On the contrary, 
factors such as blood group (RI = 0.1), BMI (RI = 0.08), and aspirin use (RI = 0.05) gave 
us less predictive insight concerning OC risk prediction based on XG-Boost. We also 
depicted the importance of the current predictors concerning OC based on the permu-
tation feature score, mean SHapley Additive exPlanations (SHAP), and the SHAP values 
in Figs. 4, 5 and 6.

Based on the permutation feature score, the family history of cancer, such as ovary, 
breast, or colorectal, menopausal age, history of chest X-ray, personal history of breast 
cancer, and postmenopausal hormone therapy were considered as the best factors to 
predict OC. Also, based on the mean SHAP values and SHAP values pertaining to all 
OC cases, these factors were considered the most significant predictors concerning OC 
risk.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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BMI
History of PCOS

History of hysterectomy
Oral contraceptive pill use
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Postmenopausal hormone therapy

Breast cancer
History of chest X-ray
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Family history of cancer such as ovary, breast, or colorectal
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Fig. 3 The RI of factors associated with OC prediction
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External performance assessment

As mentioned in the method section, we used the data from two external clinical set-
tings to assess the generalizability capability of our best-performing model for predicting 
OC. Hence, we used 83 (38 and 45 positive and negative cases, respectively) and 98 (42 
and 56 positive and negative cases, respectively) OC cases from these two clinical cent-
ers. The results of classifying the external data records by TN, FP, FN, and TN leveraging 
the XG-Boost model are shown in Fig. 7.

As shown in Fig. 7, the XG-Boost model gained TP = 33, FN = 5, FP = 5, and TN = 40 
and TP = 38, FN = 4, FP = 4, TN = 52 for settings A and B, respectively. The results of 
measuring the performance of the classified cases concerning two external clinical envi-
ronments by XG-Boost are presented in Fig. 8.

As shown in Fig. 8, the XG-Boost gained PPV = 0.868, NPV = 0.888, sensitivity = 0.868, 
specificity = 0.888, accuracy = 0.879, and F-Score = 0.868 for the clinical external setting 
A, and also obtained PPV = 0.904, NPV = 0.928, sensitivity = 0.904, specificity = 0.928, 
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Family history of cancer such as ovary, breast, or…

Fig. 4 The importance of factors based on permutation feature score
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accuracy = 0.918, and F-Score = 0.904 for setting B. By evaluating the prediction capabil-
ity of the XG-Boost based on the external data cases, we observed that all the results of 

Fig. 6 SHAP values associated with OC prediction pertaining to all cases
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the performance indicators are in favorable state (> 0.8), indicating the pleasant general-
izability of the current model built to predict OC risk among women.

Also, based on the plotted ROC of the XG-Boost model when classifying external data 
cases to assess the OC prediction generalizability (Fig. 9), we obtained AU-ROC = 0.85 
(0.95 CI [0.82–0.89]) and AU-ROC = 0.89 (0.95 CI [0.86–0.93]) for settings A and B, 
respectively, when classifying external data. By comparing the AUC-ROC of the XG-
Boost model using internal data cases for the training model, AU-ROC = 0.93 (0.95 
CI [0.91–0.95]) and AU-ROC of these two external settings, we noticed that the per-
formance differences in the two states of internal and external modes were almost in 
a small amount (< 0.1 and < 0.05 AU-ROC for settings A and B, respectively) than the 
AU-ROC in internal state, indicating the pleasant comprehensiveness of the current ML 
model to predict OC risk.

Discussion
Considering the increasing OC prevalence, especially in developing countries, and 
the mysterious nature of the OC progression, leveraging effective preventive strate-
gies plays a significant role in decreasing the OC rate and their adverse outcomes 
and increasing the patient’s quality of life at the community level. So, this study 
aimed to get ML assistance as a potential predictive solution for screening OC based 
on risk factors. To this aim, we devised an ML data-driven approach; hence, we used 
a concentrated database belonging to six clinical centers associated with OC diag-
nosis. After preprocessing and preparing the database, we used chosen ML algo-
rithms and fed them using OC positive and negative data to construct prediction 
models. Finally, the best ML-trained algorithm was chosen for prediction purposes 
with the highest performance in classifying the positive and negative OC cases. 
Also, the most influencing factors associated with OC prediction were extracted 
from the best-performing ML-trained algorithm. After gaining the best predicting 

Fig. 9 The internal and external ROC of the XG-Boost model
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model for OC, we tested its generalizability using data from two external clinical set-
tings. The current study revealed that the XG-Boost model with PPV = 0.94 ± 0.015, 
NPV = 0.93  ±  0.005, sensitivity = 0.93  ±  0.019, specificity = 0.95  ±  0.002, accu-
racy = 0.94 ± 0.008, F-Score = 0.94 ± 0.01, and AU-ROC = 0.93 (0.95 CI [0.91–0.95]) 
gained more predictive efficiency than other ML-trained algorithms. The factors, 
including a family history of cancer such as ovary, breast, or colorectal (RI = 0.38), 
menopausal age (RI = 0.37), history of chest X-ray (RI = 0.35), personal history of 
breast cancer (RI = 0.35), and postmenopausal hormone therapy (RI = 0.35) were 
recognized as the influential predictors for OC based XG-Boost. Appraising the 
current model comprehensiveness through the data cases of two external clinical 
centers showed that the XG-Boost with AU-ROC = 0.85 (0.95 CI [0.82–0.89]) and 
AU-ROC = 0.89 (0.95 CI [0.86–0.93]) obtained pleasant interoperability capability in 
other clinical environments. Although no study has been conducted on leveraging 
ML for OC based on risk factors, several studies were performed on a similar topic 
concerning OC. Lu et  al. leveraged the ML algorithms to predict the OC using a 
Chinese dataset, including 49 predictors of demographics, general chemistry, tumor 
markers, and routine blood tests belonging to malignant and benign OC cases. The 
235 and 114 samples were used to train and test the simple decision tree (DT) algo-
rithm. The constructed algorithm was compared to the LR and risk of ovarian malig-
nancy algorithm (ROMA). The results showed that the DT with AU-ROC = 0.888 
gained better capability than LR (AU-ROC = 0.877) and ROMA (AU-ROC = 0.814) 
[34]. The current study used the risk factors to predict OC, contrary to Lu et  al.’s 
study conducted for malignant and benign cases; the current study devised a screen-
ing prediction model for stratifying positive and negative cases.

However, leveraging a more vigorous preventive approach based on risk factors, 
the current study obtained an interoperable XG-Boost model with AU-ROC = 0.93 
(0.95 CI [0.91–0.95]). Ahamad et  al. utilized an ML approach fed by clinical data 
from 349 benign and malignant patients to construct a model for detecting OC 
in the early stages. Based on various scenarios described by features, the gradient 
boosting machine (GBM) and light GBM with AU-ROC of 0.82 obtained the best 
performance using the blood test dataset. RF performed best with an AU-ROC of 
0.8 for the general chemistry dataset. Also, the RF and XG-boost gained the best 
performance of prediction capability with an AU-ROC of 0.86 fed by the OC marker 
dataset [35]. One study by Ziyambe et al. attempted to leverage the DL approach to 
predict and diagnose OC through histopathological imaging data. To this end, they 
used the advanced convolutional neural network (CNN) to stratify the malignant 
cells from healthy ones. Based on the results, the CNN, with an accuracy of 94% 
(95.12% and 93.02% for classifying cancerous and healthy cells, respectively), gained 
favorable performance in this respect [40]. Maria et  al. constructed ML models to 
classify OC tumors using a biomarker dataset. Six celebrated algorithms, including 
linear discriminant analysis (LDA), LR, DT, Naïve Bayes(NB), KNN, and SVM, were 
leveraged to this aim. All ML algorithms obtained pleasant performance with more 
than 98% accuracy [41]. Also, in several studies, ML approaches have been lever-
aged to predict OC survival to give physicians better insight into the situation of OC 
patients [42, 43]. Our study contribution is introducing preventive solutions through 
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screening the high-risk groups of women concerning OC assisted with ML. There-
fore, this strategy is more effective than previous screening methods in earlier stages 
by stratifying the benign and malignant OC cases. This method significantly impacts 
preventing OC and its adverse outcomes and death caused by leveraging risk factors.

Limitations and future implications
This study lacks in some aspects, including using the retrospective approach based on 
the data of six clinical centers that may affect the predictive capability of the ML algo-
rithms. Some influential determinants concerning OC risk prediction may not be con-
sidered, influencing the predictive ability of the models in the current study. Some lost 
data associated with OC cases were embedded using the imputation method, influenc-
ing the generalizability. For future studies, we recommend using more numbers of data 
for stratification, preferably using the national registry in this respect. Leveraging the 
mining process in this way has a significant impact on the comprehensiveness of the ML 
prediction model to stratify OC. However, by leveraging the national registry, the inter-
operability of the ML model would be increased in the conditions that do not have the 
registry, using more factors affecting the stratification. We also suggest using actual data 
instead of the imputation process as much as possible to assure more generalizability 
of the models. In the current study, we utilized the selected ML algorithms for OC risk 
stratification. Using various simple and ensemble ML algorithms is also recommended 
for prediction purposes. Also, we recommend testing the prediction ability of the ML 
models by the external data belonging to more clinical settings for a better perception of 
the models’ interoperability as possible.

Conclusion
In the current study, we aimed to construct a novel screening strategy for OC using 
risk factors and the contribution of ML approaches. We utilized the binary logistic 
regression as MLR and ML algorithms to select the best predictors affecting OC pre-
diction and develop the prediction model. Based on the results of the current study, 
the XG-Boost with PPV = 0.94 ± 0.015, NPV = 0.93 ± 0.005, sensitivity = 0.93 ± 0.019, 
specificity = 0.95 ± 0.002, accuracy = 0.94 ± 0.008, and F-Score = 0.94 ± 0.01, and AU-
ROC = 0.93 (0.95 CI [0.91–0.95]) was recognized as the optimal ML algorithm for 
predicting the OC risk. Based on the current study, the ML approach obtained effec-
tive prediction capability for OC. The generalizability testing of our models based on 
external data cases indicated external AU-ROC of AU-ROC = 0.85 (0.95 CI [0.82–0.89]) 
and AU-ROC = 0.89 (0.95 CI [0.86–0.93]) for XG-Boost is in two other clinical set-
tings. Other studies focused on screening the malignant and benign types of OC by ML 
approaches based on clinical data.

Due to the progressive nature of the OC disease, screening suspicious women concern-
ing OC in this way may affect the prognosis of the patients and diminish the efficiency 
of the various treatment plans. This study introduced a novel screening way for screen-
ing OC patients based on risk factors. According to the achievement of this study, the 
knowledge extracted from the XG-Boost model can be leveraged for developing intel-
ligent systems to screen suspicious women concerning OC based on risk factors. In this 
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way, the high-risk group of women can be identified based on the essential factors influ-
encing the OC. Hence, the efficiency of various preventive strategies for high-risk OC 
groups would be generated and enhanced. The screening strategy, in this way, can pro-
pel the treatment of suspicious people regarding OC to less interventional approaches 
by identifying the high-risk OC women in a timely manner based on appraising various 
risk factors. It not only improves the treatment solution for high-risk people and intro-
duces the best treatment and preventive strategy by care providers, but also diminishes 
the cost of clinical care by introducing more efficient treatment at the community level. 
Also, identifying the high-risk OC groups at the community level can assist the clinical 
research on enhancing the solutions for preventing OC.

Methods
Study design

This data-driven study, as a retrospective approach, was conducted in five phases. First, 
after gaining insight into the topic, we determined our study population and attempted 
to collect appropriate data describing it to achieve our aim. In this respect, we used one 
integrated electronic database. Second, we prepared our database to advance data qual-
ity using various preprocessing methods, such as excluding records or features with 
missing data more than a specific limit, replacing lost values for records with low-rate 
missing values, and eliminating the irrelevant features describing samples. In the next 
phase, we leveraged chosen ML algorithms to build prediction models for OC through 
data fed. The K-fold cross-validation strategy was used to measure and assess the algo-
rithms’ performance efficiency. This way, through various performance indicators, we 
obtained the best-performing ML-trained algorithms to achieve the aim of the current 
study. Finally, we leveraged data cases from external clinical settings to investigate the 
comprehensiveness of our prediction model for screening OC.

Study population

In this study, the population was 1516 suspicious OC women referred to six clini-
cal centers in Sari city of Mazandaran Province associated with gynecological cancers 
to screen themselves from 2015 to 2019. The physician received conclusive positive or 
negative OC results through various services such as CA-125 blood test, transvaginal 
ultrasonography, CT-Scan, biopsy, or a mixture. Among 1516 cases, their information 
was concentrated in one electronic database; 713 and 803 were associated with positive 
and negative OC cases, respectively.

Features and outcome variables

The outcome variable was the OC diagnosis, consisting of two positive and negative 
diagnostic results. There were 26 input features in the database as OC risk predictors, 
including age, body mass index (BMI), blood group, race, menopausal age, postmeno-
pausal hormone therapy, endometriosis, history of nonpregnancy, family history of 
ovarian, breast, or colorectal cancer, family cancer syndrome, fertility treatment use, 
having breast cancer, history of pregnancy and breastfeeding before age 26, history of 
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the ovarian polycystic syndrome (PCOS), history of chest X-ray, smoking, alcohol con-
sumption, particular food consumption, such as fried foods, whole milk, and trans fats, 
history of exposure to mutagenic or chemical substances, high red meat consumption, 
vegetable consumption, fruit consumption, high consumption of coffee, aspirin use, his-
tory of hysterectomy, and oral contraceptive pill use.

Preprocessing database

Based on our OC diagnostic dataset, the three-step process was performed in the cur-
rent study to prepare our database for further analysis. First, we investigated the sam-
ple regarding redundancy induced by data integration. In this situation, the redundant 
cases were excluded from the study. Second, we reviewed the dataset in terms of existing 
lost data associated with features of samples. We dealt with this situation in two ways: 
first, samples with more than 5% of missing values were excluded from the study, and 
second, for the conditions with less than 5%, we used the imputation process through 
the K-nearest neighborhood (KNN) algorithm with a specific amount of K. In this way, 
we replaced the missing values using the values that existed in most similar cases with 
K = 1, 3, 5, and more. Third, we leveraged the feature selection to obtain the more rel-
evant features for the training process to construct predictive models. Choosing more 
critical features before the ML process could assist us in putting aside noisy features, 
decreasing calculation time, promoting learning performance, and facilitating the per-
ception of data and learning models [44, 45]. To get the most important factors asso-
ciated with OC prediction, we used the multi-variable logistic regression (MLR) and 
investigated the correlation of predictors in this regard. The P < 0.05 was considered a 
significant statistical level.

Model development and hyperparameters tuning

After preparing the database, we developed prediction models using ML algorithms. In 
this respect, the XG-Boost, Random Forest (RF), J-48, support vector machine (SVM), 
KNN, and artificial neural network (ANN) were leveraged as the most chosen and cel-
ebrated algorithms leveraged in previous studies with high-performing in the Weka V 
3.9 environment to achieve the prediction aims. We used the best-tuned hyperparam-
eters for each algorithm through the grid search method to get the high-performing 
ML-trained algorithm. This way, the several hyperparameter combinations are leveraged 
when reaching the minimum error during the ML process. We used the K (K = 10) fold 
cross-validation technique to gauge and evaluate the algorithms’ performance. In this 
method, the initial database is split into K = 10 folds, in which one section is used to 
test aims and others for training the algorithms, recurring K = 10 epochs. The average 
error rate of each algorithm in K = 10 repetition is considered the algorithm’s error rate. 
Also, to observe the proportion of selected sample numbers having positive and negative 
diagnosis class labels, we used the stratified type of K = tenfold cross-validation to assure 
more comprehensiveness of ML algorithms’ performance.
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Performance evaluation of selected ML algorithms

We used various performance criteria to achieve the best performance efficiency via 
measuring, comparing, and assessing the ML-trained algorithms to predict the risk 
of OC. Hence, we leveraged positive predictive value (PPV), negative predictive value 
(NPV), sensitivity, specificity, accuracy, and F-Score to measure the performance of 
ML-trained algorithms as their favorable predictive capability gained in other bio-
medical research [46–49]. The (true positive) TP and (true negative) TN indicate 
positive and negative OC diagnoses cases correctly categorized by the models. (False 
negative) FN and (false positive) FP are equal to these cases incorrectly classified. To 
assess and contrast the capability of ML algorithms concerning OC prediction effec-
tiveness, we utilized the area under the receiver operator characteristic curve (AU-
ROC) of learned algorithms.

Evaluating the generalizability nature of the developed prediction model

We used data cases from external clinical settings to assess the interoperability of the 
current prediction model. In this respect, we used the data from two clinical cent-
ers in Tehran City and evaluated our best-performing prediction model’s capability to 
classify these external data cases. We used 83 and 98 OC cases from these two clini-
cal centers and measured the TP, FP, FN, and TN in this respect. Also, the AU-ROC 
of the model in two states of internal and external states was utilized. Internal state 
points to the AU-ROC of the model, which resulted in the current study using six 
internal clinical settings. On the contrary, the external mode denotes the AU-ROC 
of our best-performing prediction model when using the data of two external clinical 
centers. We compared the AU-ROC of our model in these two states to perceive the 
comprehensiveness and usability of our prediction model for OC in other settings.

PPV =
TP

TP + FP
,

NPV =
TN

TN + FN
,

Specificity =
TN

TN + FP
,

Sensitivity =
TP

TP + FN
,

Accuracy =
TP + TN

TP + FN + FP + TN
,

F − Score =
TP

TP +
1
2
(FN + FP)
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