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Abstract 

Human–robot walking with prosthetic legs and exoskeletons, especially over complex 
terrains, such as stairs, remains a significant challenge. Egocentric vision has the unique 
potential to detect the walking environment prior to physical interactions, which can 
improve transitions to and from stairs. This motivated us to develop the StairNet initia‑
tive to support the development of new deep learning models for visual perception 
of real‑world stair environments. In this study, we present a comprehensive overview 
of the StairNet initiative and key research to date. First, we summarize the development 
of our large‑scale data set with over 515,000 manually labeled images. We then provide 
a summary and detailed comparison of the performances achieved with different algo‑
rithms (i.e., 2D and 3D CNN, hybrid CNN and LSTM, and ViT networks), training methods 
(i.e., supervised learning with and without temporal data, and semi‑supervised learn‑
ing with unlabeled images), and deployment methods (i.e., mobile and embedded 
computing), using the StairNet data set. Finally, we discuss the challenges and future 
directions. To date, our StairNet models have consistently achieved high classification 
accuracy (i.e., up to 98.8%) with different designs, offering trade‑offs between model 
accuracy and size. When deployed on mobile devices with GPU and NPU accelerators, 
our deep learning models achieved inference speeds up to 2.8 ms. In comparison, 
when deployed on our custom‑designed CPU‑powered smart glasses, our models 
yielded slower inference speeds of 1.5 s, presenting a trade‑off between human‑cen‑
tered design and performance. Overall, the results of numerous experiments pre‑
sented herein provide consistent evidence that StairNet can be an effective platform 
to develop and study new deep learning models for visual perception of human–
robot walking environments, with an emphasis on stair recognition. This research 
aims to support the development of next‑generation vision‑based control systems 
for robotic prosthetic legs, exoskeletons, and other mobility assistive technologies.

Keywords: Computer vision, Deep learning, Wearable robotics, Prosthetics, 
Exoskeletons

Background
Robotic leg prostheses and exoskeletons can provide locomotor assistance to individu-
als affected by impairments due to aging and/or physical disabilities [1]. Most control 
systems for human–robot walking use a hierarchical strategy with high, mid [2], and 
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low [3] level controls. Robotic leg control requires continuous assessment of locomotor 
states for transitions between different operating modes. Previous high-level controllers 
relied on mechanical, inertial, and/or electromyographic (EMG) sensors for locomotion 
mode prediction, which are generally limited to the current state, analogous to walking 
blind. Inspired by the human vision system [4, 5], egocentric vision can uniquely detect 
the environment prior to physical interaction and thus aid in smooth and accurate tran-
sitions. However, classification of walking terrains such as stairs presents additional 
challenges because of the complex nature of real-world environments, which can vary 
significantly in style, material, and geometry. The classification of stairs is particularly 
important because of the increased risk of severe injury from falls if the environment is 
misclassified.

Previous vision systems have been developed to recognize stairs for robotic leg con-
trol using hand-designed feature extractors [6–10] or automated feature engineering 
via convolutional neural networks (CNNs) [11, 14–18]. However, these systems have 
inherent limitations in terms of performance and generalizability to new environments 
because of suboptimal hand engineering and/or training on relatively small image data 
sets. Recent studies have significantly expanded the number of labeled images [19] and 
presented the opportunity to use deep learning models to increase performance and 
generalizability.

Here, we present a comprehensive overview of the StairNet initiative, which was cre-
ated to support the development of new deep learning models for visual perception of 
stair environments for human–robot walking. The initiative emphasizes lightweight 
and efficient neural networks for onboard real-time deployment on mobile and embed-
ded devices. First, we provide an overview the development of our large-scale data set 
with over 515,000 manually labeled images [12]. We then summarize and compare key 
research to date in terms of model development (i.e., different algorithms and training 
methods [12, 20, 21]) and deployment (i.e., mobile and embedded computing [13, 22]). 
Finally, we discuss the current challenges and future directions. Building on this work, 
StairNet aims to support the development of next-generation environment-adaptive 
control systems for robotic leg prostheses, exoskeletons, and other assistive technologies 
for human locomotion.

StairNet dataset
Our StairNet data set contains over 515,000 RGB images, which were manually anno-
tated using class labels for environments encountered during level-ground and stair 
locomotion. To our knowledge, this data set one of the largest and most diverse data 
sets of egocentric images of stair environments published to date. We made the data set 
open source at https:// ieee- datap ort. org/ docum ents/ stair net- compu ter- vision- datas et- 
stair- recog nition to support the research community and to allow for direct compari-
sons between different deep learning models.

We developed the StairNet data set using images from ExoNet [19], captured using 
a chest-mounted wearable camera (iPhone XS Max) in indoor and outdoor environ-
ments. The images were saved at 5 frames/s with a resolution of 1280 × 720 with 
multiple users with varying heights and camera pitch angles. In our initial study, we 
found that the ExoNet labels contained many overlapping classes, resulting in limited 
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performance [12]. Therefore, we developed new class definitions to manually re-label 
the images and increase the precision of the cutoff points between the different walk-
ing environments (Table  1). We defined four new classes, including level-ground 
(LG), level-ground transition to incline stairs (LG–IS), incline stairs (IS), and inclined 
stairs transition to level-ground (IS–LG). We performed three manual labeling pass-
throughs to increase annotation accuracy and precision. We removed images that 
did not contain either level-ground terrain or incline stairs or had significant camera 
obstructions. Since our data set is designed for stair recognition, there is no loss of 
characteristics related to the intended application by removing these images, as any 
classifications made outside of these classes are considered out of scope and would 
require additional models for classification.

Our data set also includes information about the class distribution and defini-
tions. The data set mainly comprises images of level-ground terrain (86% of samples) 
and incline stairs (9%), with two minority classes, IS–LG and LG–IS, which contain 
approximately 2% and 3% of the samples, respectively. This imbalance is important 
to consider when selecting classification and resampling methods. For future model 
development, we suggest using a video-based train-validation-test split, as outlined in 
[20]. This method assigns all frames within a video episode (i.e., group of neighboring 
frames) to a single data set split to prevent data leakage and provide a better estima-
tion of real-world performance and generalizability [23]. Scripts for data splitting and 
data preprocessing can be found on our GitHub.

We developed and tested a number of deep learning models, and training and 
deployment methods [12, 13, 20–22] using the StairNet data set to directly evaluate 

Table 1 Class definitions and cutoff points that we developed and used to manually label the 
StairNet data set [13]

StairNet class ExoNet class Class example Class description

LG LG Steady State, LG‑Door/Wall An image that contains a level ground 
environment where incline stairs are not 
clearly visible

LG–IS LG–IS An image with incline stairs where the hor‑
izontal surface area of the bottom step or 
landing is clearly greater than the surface 
area of other steps visible in the image (i.e., 
the surface area or depth is approximately 
1.5 × the size of subsequent steps)

IS IS Steady State, IS‑Door/Wall An image with multiple incline stairs where 
the horizontal surface area of the top 
and bottom step or landing is not clearly 
greater than one another

IS–LG IS–LG An image with incline stairs where the 
horizontal surface area of the top step or 
landing is clearly greater than that of other 
steps or landings visible in the image (i.e., 
the surface area or depth is approximately 
1.5 × the size of subsequent steps). For an 
incline stair to be included in the IS–LG 
class, the horizontal face of the last step 
prior to level ground must be visible
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and compare their advantages and disadvantages on a common platform, as subse-
quently summarized and discussed.

Deep learning models
Baseline model

Our first StairNet model [12] was developed using single-frame supervised learning 
to provide a baseline reference, as shown in Fig. 1. We developed an efficient 2D CNN 
based on the architecture of MobileNetV2, which was designed for mobile and embed-
ded vision applications [24, 25]. MobileNetV2’s use of depth-wise separable convolutions 
with width and resolution multipliers creates a lightweight framework with a trade-off of 
slightly lower accuracy for significant reductions in computational requirements.

We developed this baseline model using TensorFlow 2.7 [26], starting with the default 
parameter values from [27]. We used a Google Cloud Tensor Processing Unit (TPU) to 
efficiently train and evaluate our system. Model variations were evaluated with trans-
fer learning using pretrained weights from ImageNet [28] with various levels of fro-
zen layers (141, 100, 50, 25, 5), randomly initialized weights, regularization via added 
dropout layers (L2 weight regularization), dropout rates (0.1–0.5) to address overfitting, 
and oversampling using random resampling and augmentations to address class weight 
imbalance. We found that transfer learning with five frozen layers and 2.2 million param-
eters, a dropout rate of 0.2 with no additional dropout layers, and a minimum value of 
400,000 images per class (after augmentation and resampling) produced the best accu-
racy while minimizing the probability of false negatives. Our baseline model underwent 
a final round of hyperparameter optimization for batch size and learning rate in a high 
epoch run. After multiple iterations, we finalized the hyperparameters using a reduced 
base learning rate of 0.00001, a batch size of 128, and a cosine weight decay learning 
policy. The final model was trained for 100 epochs with early stopping. The model had 
2.3 million parameters and 6.1 GFLOPs.

Fig. 1 Inference and development pipelines for our baseline StairNet model [12] trained using supervised 
learning and single images. We developed this model as a reference and benchmark for the other deep 
learning models presented herein
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The model was evaluated using the train, validation, and test sets of the “StairNet 
Dataset”. The model achieved 99.3% and 98.5% accuracies on the training and validation 
sets, respectively. When evaluated on the test set, the model achieved an overall classifi-
cation accuracy of 98.4%. In addition, the model achieved an F1 score of 98.4%, weighted 
precision value of 98.5%, and weighted recall value of 98.4%. The classification accu-
racy on the test set varied between environments, with categorical accuracies of 99.0% 
for LG, 91.7% for LG–IS, 96.9% for IS, and 90.5% for IS–LG. The two transition classes 
(i.e., LG–IS and IS–LG), comprising only 3.1% and 1.8% of the total number of images, 
respectively, achieved the lowest categorical accuracies. We used this baseline model as 
a reference and benchmark for the subsequent models that we developed and studied.

Mobile deployment

To evaluate the real-world performance of our baseline model, we custom-designed a 
mobile app using TensorFlow Lite (TFLite) [29], Swift 5, and Xcode 13.4.1 [30] for on-
device inference [13]. The app prepares images from the camera feed, scaling the input 
resolution using a square crop to match the input size of our models (i.e., 224 × 224). The 
model then runs on-device inference, outputting the tensor results in a float-array for-
mat containing the confidence values for the four walking environments for each image. 
The mobile interface displays the output information with the class predictions, along 
with the onboard inference speed (ms) for the last image.

We used a TFLite interpreter to run the model on the smartphone, which has several 
advantages over other deployment methods, such as cloud computing. It allows offline 
execution and inference without requiring an internet connection or communication 
with a machine learning server while reducing power requirements and privacy con-
cerns as no data is required to leave the device. TFLite also has a small binary size and 
supports highly efficient models for low inference times, with minimal impact on accu-
racy during compression.

For mobile deployment, our baseline model was converted from its original h5 for-
mat to a TFLite flat buffer format. This conversion allows for onboard processing and 
inference via the on-device interpreter and built-in TFLite infrastructure (see Fig.  2), 
which supports multiple backend processing options, such as central processing units 
(CPUs), graphics processing units (GPUs), and neural processing units (NPUs). We 

Fig. 2 Model conversion and deployment pipeline for our mobile iOS application [13], which we developed 
to deploy and test our “Baseline Model” for on‑device computing
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experimented with five different conversion methods with varying degrees of compres-
sion, which increase inference speed at the expense of accuracy. These compression 
formats include: (1) float32 compression, (2) post-training float16 quantization, (3) post-
training int8 weight quantization, (4) post-training quantization with int16, and (5) post-
training int8 full model quantization (i.e., model weights, biases, and activations). Each 
compression format was evaluated using the StairNet test set to determine its effect on 
accuracy.

When compressed for mobile deployment, our baseline model had accuracy reduc-
tions between 0.001% and 0.111% compared to the full-sized model. The compressed 
model formats of float32 and float16 quantization resulted in the highest accuracy post-
conversion (98.4%). In contrast, the int8 quantization format with both int8 and int16 
activations had the lowest post-conversion accuracies of 98.3% and 98.3%, respectively.

We also tested the inference speeds of our baseline model on four different mobile 
devices (i.e., iPhone 8 + , iPhone X, iPhone 11, and iPhone 13) with four different back-
end processing options, including a single-threaded CPU, a multithreaded CPU, GPU, 
and a combination of CPU, GPU, and NPU. An offline test was performed on each 
device and backend processing option using a pre-recorded video, eliminating variation 
in camera input on the testing. The pre-recorded video contained stair ascent in indoor 
and outdoor environments and was loaded on the mobile app to mimic the camera feed. 
The average inference time was calculated using times sampled at 5-s intervals during 
the video for each experiment.

The model achieved an inference speed of 2.75  ms on our mobile app using the 
CoreML delegate and float32 model. The Core ML and Metal delegates, which use 
parallel processing of CPU, GPU, and NPU, and direct GPU compute, performed best 
on newer devices, such as the iPhone 11 and iPhone 13. The inference times for these 
devices were 2.75  ms and 3.58  ms, respectively. In contrast, CPU processing resulted 
in slower inference times of 9.20 ms and 5.56 ms when using single and multithreaded 
CPUs. On older devices such as iPhone 8 + and iPhone X, multithreaded CPU achieved 
faster inference times when compared to single-threaded CPU and GPU processing. 
When using the CoreML delegate, the float32 compression format delivered the fastest 
inference speed across all devices. Similarly, the float32 format achieved the fastest infer-
ence speeds when running on a GPU with metal delegate. For mobile CPU performance, 
int8 quantization with int16 model activations resulted in the fastest inference time for 
single and multithreaded processing, with average speeds of up to 9.20 ms and 5.56 ms, 
respectively.

In summary, we custom-designed a mobile app to deploy and test our “Baseline 
Model” using various software and hardware configurations, achieving high classifica-
tion accuracy and low latency. However, this research was involved standard supervised 
learning and did not take into consideration the temporal nature of human–robot walk-
ing, which motivated the subsequent studies.

Temporal neural networks

To study the effect of sequential inputs on classification performance compared to 
our baseline model, which used independent frames, we developed a number of state-
of-the-art temporal neural networks [20] to exploit information from neighboring 
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frames in the StairNet data set (see Fig. 3). We experimented with different tempo-
ral models, including the new lightweight 3D CNN called MoViNet [31], and a num-
ber of hybrid encoder architectures, including VGG-19 [32], EfficientNet-B0 [33], 
MobileNetV2 [25], MobileViT [34], and ViT-B16 [35], each paired with a temporal 
long–short-term memory (LSTM) backbone [36], and a transformer encoder [37]. We 
performed focused testing on the 3D MoViNet model, MobileViT with LSTM, and 
MobileNetV2 with LSTM, which we selected based on their potential to accurately 
recognize images of stairs and capture temporal dynamics.

First, we experimented with MoViNet, a modified version of MobileNetV3 designed 
for videos. We used MoViNet’s neural architecture search (NAS) to optimize the 
model parameters, such as the number of layers, convolutional filter width, and num-
ber of feature map channels. We adapted the model using a zero-initialized cache fea-
ture applied to the boundaries of the video sequences to reduce the growth of model 
memory, applied 3D convolution to compute the feature maps, and used a stream 
buffer to reduce the memory use of the model at the expense of a small reduction in 
accuracy. However, we mitigated this loss in accuracy by using an ensemble of models 
with two identical MoViNet architectures at a half-frame rate. During inference, the 
input sequence was fitted to both networks and the mean values of the two models 
were obtained and passed through the softmax activation function.

We also experimented with MobileNetV2 combined with LSTM. Similar to our 
“Baseline Model”, the MobileNetV2 architecture was chosen for its efficient model 
design, optimized for mobile and embedded computing. MobileNetV2 was applied to 
each frame of the sequence, resulting in a stack of feature maps, which was then fed 
into an LSTM layer to capture temporal dynamics. The output of the LSTM layer was 
a sequence of labels for sequence-to-sequence classification or the last predicted label 
of the LSTM recurrence operation for sequence-to-one classification.

Fig. 3 Inference and development pipelines for our temporal StairNet models [20] trained using supervised 
learning and sequential images. Unlike our previous models that used single image inputs, these temporal 
neural networks used sequential inputs
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Finally, we experimented with MobileViT, a hybrid encoder model that combines 
local spatial information from convolutional layers and global information using 
MobileViT blocks. The model’s convolutional layers projects high-dimensional infor-
mation encoded using the transformer blocks and projected back to the low-dimen-
sional spaced to be fused with the original feature maps. Similar to MobileNetV2, 
the MobileViT model was applied to each frame of the sequence. This resulted in a 
sequence of feature maps, with each map corresponding to one frame. These feature 
maps were then passed through the transformer layer to capture temporal dynam-
ics of the feature maps of each sequence. In sequence-to-sequence classification, the 
output of the last transformer block passed through a linear classification head. In 
sequence-to-one classification, we flattened the transformer layer output before the 
classification head.

Prior to evaluation, we performed hyperparameter optimization using KerasTuner. 
The hyperparameter space for each group of models was selected based on the experi-
mental setup and architecture. Once the best hyperparameters were found, each model 
was trained for 20 epochs using an NVIDIA Tesla V100 32 GB GPU. The Adam opti-
mizer [38] was used with a learning rate of 0.0001, along with a cosine annealing learn-
ing rate scheduler.

We used NetScore [39] to compare the models, which balances the classification per-
formance with efficiency and is represented by the following equation:

where acc(N ) is the classification accuracy (%), param(N ) is the number of model 
parameters, which is indicative of the memory storage requirements, flops(N ) is the 
number of floating point operations, which is indicative of the computational require-
ments, and α,β , γ are coefficients that control the influence of each parameter on 
the NetScore. We assessed the sequence-to-one models by comparing single predic-
tions to their corresponding class label. In contrast, we evaluated the sequence-to-
sequence models in two ways. The first method, sequence-to-sequence evaluation, 
compared a sequence of predictions to a corresponding sequence of labels. The second 
method compared the anchor frame predictions to the corresponding labels, similar to 
sequence-to-one.

Of the temporal neural networks that we studied, the 3D MoViNet model achieved 
the highest classification performance on the StairNet test set, with 98.3% accuracy and 
an F1-score of 98.2%. The hybrid models with 2D-CNN encoder and temporal blocks 
(i.e., MobileNetV2 with LSTM and MobileViT with LSTM) struggled to capture inter-
frame dependencies with minimal sequences (i.e., five frames per sample) [40] and thus 
achieved lower classification performance compared to the 3D model. The 3D model 
had the highest NetScore of 167.4, outperforming the 2D encoder models with scores 
of 155.0 and 132.1 for MobileViT with LSTM and MobileNetV2 with LSTM, respec-
tively. Our “Baseline Model”, which achieved a NetScore of 186.8, outperformed all 
the temporal neural networks in terms of efficiency due to its relatively low number 
of parameters and numerical operations. Finally, we found an increase in performance 
using sequence-to-one methods on sequence-to-sequence models over the standard 

(1)�(N ) = 20log
acc(N )α

param(N )βflops(N )γ
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sequence-to-sequence method, with an accuracy of 97.3% and 70.7%, respectively, using 
the same sequence-to-sequence model.

In summary, we found that, of the temporal neural networks that we studied using 
sequential images, the 3D model outperformed the 2D models with temporal backbones 
in terms of both image classification accuracy and efficiency (i.e., which takes into con-
sideration the computational and memory storage requirements). We also showed that 
the 3D model achieved a higher image classification accuracy (98.3%) compared to our 
2D “Baseline Model” when retested on the video-based StairNet test set (97.2%). How-
ever, the 3D model had a lower NetScore (i.e., less efficient) due to having disproportion-
ally more parameters and operations, which has implications for real-time embedded 
computing.

Semi‑supervised learning

Compared to the aforementioned research, all of which relied on standard supervised 
learning, in this section, we studied the use of semi-supervised learning [21] to improve 
training efficiency by using unlabeled data. The large amounts of publicly available unla-
beled data [19] present a viable option to reduce the time and labour-intensive demands 
required to manually label large-scale data, which was done in the development of the  
“StairNet Dataset”. We aimed to show the potential to improve training efficiency by 
minimizing the number of labeled images while still maintaining comparable perfor-
mance to our baseline StairNet model.

We used the unlabeled images from the ExoNet data set that were not included in 
the StairNet data set. However, unlabeled data can present challenges, such as lack of 
information about class distributions and viability of the images. We performed a visual 
search of the images and found that the unlabeled data contained images irrelevant to 
stair recognition and had significant camera obstructions. We used the FixMatch semi-
supervised learning algorithm [41] due to its intuitive and feasible implementation 
compared to more complex algorithms, such as self-training with noise students [42], 
meta-pseudo-labels [43], AdaMatch [44], and contrastive learning for visual representa-
tion [45]. We considered FixMatch a good starting point, although we encourage future 
research exploring other algorithms.

Our semi-supervised pipeline consisted of three major steps (Fig.  4) (1) the labeled 
images were loaded and oversampled with augmentations, to reduce false positives in 
training; the unlabeled image logits were retrieved using a supervised pretrained model, 
from which the pseudo-labels were selected if they surpassed the cutoff parameter τ, (2) 
weak augmentations (i.e., horizontal flips) and strong augmentations (i.e., color intensity, 
saturation, small rotations, and horizontal flips) were applied to the unlabeled images, 
and (3) the MobileViT models were trained using a combination of a supervised loss 
(i.e., cross-entropy loss) and unsupervised loss (i.e., cross-entropy loss of the inferred 
weakly augmented images calculated against strongly augmented images). The weight 
of the unsupervised loss on training was adjusted using the parameter λ. The batch size 
ratio parameter μ is the difference between the labeled and unlabeled batch sizes. The 
semi-supervised parameters (τ, λ, and μ) were tuned, providing a high degree of model 
flexibility.
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We developed a vision transformer model with the base architecture of MobileViT 
[34], which uses automated feature engineering similar to standard CNNs [23]. Mobi-
leViT, which we also used in the “Temporal Neural Networks” section, is a trans-
former-based model that employs mechanisms of attention and depthwise dilated 
convolution. The model uses efficient convolution and transformer blocks, allowing 
for high efficiency and inference speed similar to the lightweight CNN used in our 
“Baseline Model” [12, 13]. We tested three different backbones for MobileViT (i.e., 
XXS, XS, and S), which varied in terms of the number of transformer layers, more 
sophisticated feature extraction, and number of parameters, allowing for an optimal 
trade-off between model size and performance. We developed our model using Ten-
sorFlow 2.0 and trained using a high-performance Google Cloud TPU.

Using the same StairNet data set split distribution as our baseline model [12, 13], we 
reduced the labeled training data from 461,328 to 200,000 images to study the impact 
of reduced annotations. To address the issue of unknown class distribution and image 
quality of the unlabeled data, we used our StairNet baseline model to retrieve the log-
its of the 4.5 million unlabeled images from ExoNet, which were thresholded using 
the FixMatch approach.

After processing the unlabeled data, 1.2 million images surpassed the 0.9 τ cutoff 
threshold. The resulting subset of images had a pseudo-label distribution that closely 
resembled the original StairNet data set [12, 13] (i.e., 5.5% for IS, 1% for IS–LG, 90.1% 
for LG, and 3.4% for LG–IS). The lightest MobileViT XXS model (900,000 parame-
ters) was the fastest to train and infer among the three variants but had low accuracy 
during training. The balanced MobileViT XS model (1.9 million parameters) provided 
the best trade-off between compactness and performance. The largest MobileViT S 
model (4.9 million parameters) had the slowest training and inference times, while 
having worse overall performance likely due to overfitting.

Fig. 4 Inference and development pipelines for our semi‑supervised learning StairNet model [21] trained 
using labeled and unlabeled images. Unlike the aforementioned models, this model used large amounts 
of unlabeled data to minimize the number of required labelled images while still maintaining classification 
accuracy, therein improving training efficiency
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During training, the data imbalance of the labeled and unlabeled data sets was handled 
by replacing standard cross-entropy with a focal loss class weight penalization of γ = 3 to 
penalize hard negatives. We also tested the exponential moving average (EMA), which 
smoothed the parameters and produced significantly better results than the final weight 
matrices without EMA. The resulting model showed good convergence and well-bal-
anced performance across classes, but the overall image validation accuracy with focal 
loss was inferior to that of the previous vanilla cross-entropy loss experiments.

To reduce the number of false positives, augmentations were applied to the labeled 
training set, including minor translations, rotations, contrast, and saturation. We tested 
the L2 parameter loss and decoupled weight decay during training [46]. However, our 
best models did not include any weight decay regularization. We experimented with 
both cosine annealing schedule, as suggested in FixMatch [41], and cosine decay with 
restarts [47]. The former was found to be more resilient and consistent and thus was 
used in our final model. Several experiments were conducted to determine the optimal 
ratio of unlabeled to labeled data (μ) and the unsupervised loss weight parameter (λ).

Our semi-supervised learning model achieved classification accuracies of 99.2% and 
98.9% on the StairNet training and validation sets, respectively. When evaluated on the 
test set, the model achieved an overall image classification accuracy of 98.8%, a weighted 
F1-score of 98.9%, a weighted precision value of 98.9%, and a weighted recall value of 
98.8%. Similar to our  “Baseline Model”, the two transition classes (LG–IS and IS–LG) 
achieved the lowest categorical accuracies (90.6% and 90.4%), which can be attributed 
to having the smallest class sizes. Overall, our semi-supervised learning model achieved 
a similar image classification performance as our “Baseline Model” [12, 13] but required 
35% fewer labeled images, therein improving the training efficiency.

Embedded deployment

Finally, we developed a pair of integrated smart glasses to move towards a more human-
centred design [22]. One of the limitations of our previous models was their use of 
images from a chest-mounted smartphone camera. These images do not necessarily 
coincide with the user’s visual field, and thus are more difficult to infer intent. How-
ever, previous head-mounted cameras [48–50] have mainly been limited to off-device 
inference using desktop computers and cloud computing. Prior to this study, an inte-
grated system for visual perception of human–robot walking environments had not yet 
been designed, prototyped, and evaluated. This gap could be explained by limitations in 
embedded computing, which have only recently been alleviated by advances in hardware 
and deep learning model compression methods.

Consequently, we developed a novel pair of AI-powered smart glasses that uniquely 
integrate both sensing and computation for visual perception of human–robot walk-
ing environments while achieving high accuracy and low latency. We integrated the 
mechatronic components all within a single system, which is lightweight and has a 
small form factor so as not to obstruct mobility or user comfort. Computationally, it 
has sufficient memory and processing power for real-time computing with live video 
streams. Inspired by commercial smart glasses, such as Google Glass [48] and Ray-
Ban Stores [49], our design includes a forward-facing camera aligned with the user’s 
field of view (i.e., egocentric), with a microcontroller for computational processing 
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on the side of the glasses. This design allows for a slightly larger processor to support 
onboard inference without obstructing the visual field.

We used the ArduCam HM0360 VGA SPI camera due to its relatively high reso-
lution, fast frame rate, and low power consumption (i.e., under 19.6  mW [51]). The 
camera’s frame rate of 60 fps should be fast enough to support robot control while 
providing sufficient resolution (680 × 480) to portray the environment, with an input 
size larger than most deep learning models. For embedded computation, we used the 
Raspberry Pi Pico W microcontroller due to its enhanced processing power, large 
memory, small form factor, and wireless communication. The Pico contains Dual 
ARM 133 MHz processors, 64 kB SRAM and 2 MB QSPI flash memory, and a small 
form factor of 21 mm × 51.3 mm, allowing for sufficient computation for model infer-
ence while easily integrating into eyeglass frames. The microcontroller can also wire-
lessly communicate and interface with external robotic devices and computers via a 
single-band 2.4 GHz Wi-Fi connection or through Bluetooth 5.2.

We developed a deep learning model using a similar approach as our “Base-
line Model”. However, fine-tuning was required to convert the model from a chest-
mounted domain to an eye-level domain. To do this, the baseline model was retrained 
using 7,250 images adapted from the Meta Ego4D data set [52] that we manually re-
labelled, which contained walking environments that matched the StairNet classes 
(i.e., LG, LG–IS, IS, and IS–LG), with an input size of 96 × 96. We used the light-
weight MobileNetV1 architecture to reduce the model size for embedded computing 
compared to larger architectures, such as MobileNetV2. We performed hyperpa-
rameter optimization for batch size and learning rate with optimal values of 32 and 
0.0001, respectively. The final model contained 219,300 parameters, was converted to 
a TensorFlow Lite model using int8 quantization and further reduced to a TensorFlow 
Micro model for deployment (Figs. 5 and 6). We measured the embedded inference 
time as the loop of loading the most recent image captured and running the model 
inference on the microcontroller.

The average embedded inference speed was 1.47 s from reading the image to out-
putting the predicted label. Prior to fine-tuning, the model achieved a similar perfor-
mance to our baseline StairNet model with 98.3% accuracy. With fine-tuning using 
the Ego4D images from head-mounted cameras, the model achieved 98.2% accuracy. 

Fig. 5 Model conversion and deployment pipeline for our smart glasses [22], which we developed to deploy 
and test our StairNet model for real‑time embedded computing
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To our knowledge, these AI-powered smart glasses are the first to integrate both 
sensing and deep learning computation for visual perception of human–robot walk-
ing environments.

Discussion
In summary, here we present a comprehensive overview of StairNet, which we created to 
support the development of new deep learning models for visual perception of human–
robot walking environments, with an emphasis on stairs. Our initiative places emphasis 
on lightweight and efficient neural networks for onboard real-time inference on mobile 
and embedded devices. First, we summarize the development of our StairNet data set 
with over 515,000 manually labeled images [12]. We then summarize and compare the 
performances of different algorithms (i.e., 2D and 3D CNN, hybrid CNN and LSTM, and 
ViT networks [12, 20, 21]), training methods (i.e., supervised learning with and without 
temporal data, and semi-supervised learning with unlabeled images [12, 20, 21]), and 
deployment methods (i.e., mobile and embedded computing [13, 22]) using the StairNet 
data set. Our models consistently achieved high classification accuracy (i.e., up to 98.8%) 
with different designs, offering trade-offs between model size and performance. When 
deployed on mobile devices with GPU and NPU accelerators, our deep learning models 
achieved inference speeds up to 2.8 ms [13]. When deployed on our custom-designed 
CPU-powered smart glasses, the inference speed was slower (i.e., 1.5  s) [22]. Overall, 
our results suggest that StairNet can serve as an effective platform to develop and study 
new deep learning models for visual perception of stair environments for human–robot 
walking, with intended future applications in environment-adaptive control of robotic 
prosthetic legs, exoskeletons, and other mobility assistive technologies.

Our StairNet models offer several benefits over other stair recognition systems [6–
11, 14–17, 27]. Many studies have been limited to statistical pattern recognition and 
machine learning algorithms that require manual feature engineering. In contrast, our 
models use multilayer deep neural networks for automatic feature extraction, which has 

Fig. 6 Inference and development pipelines for our smart glasses StairNet model trained using supervised 
learning and single images. Compared to our other models, the smart glasses performed stair recognition 
using a head‑mounted camera and an embedded system
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shown to be superior to hand-engineered features [23]. In addition, our models benefit 
from the high quantity and quality of the StairNet data set, with over 515,000 manually 
annotated images, allowing for more generalizable systems. Previous research has used 
smaller data sets (see Table 2). These differences can have important practical implica-
tions as machine learning typically requires large amounts of diverse data. The increased 
generalization potential of our models also eliminates the need for explicit requirements 
for the camera pose or angle, unlike past studies that relied on meticulous rule-based 
thresholds for the dimensions of the user and environments [10].

As part of the StairNet initiative, we have studied a variety of deep learning models 
and training methods (Table 3), each of which offer unique advantages and trade-offs. 
For example, the MoViNet 3D CNN using temporal data [20], as described in the “Tem-
poral Neural Networks” section, achieved the highest classification accuracy on our 
StairNet test set compared to our baseline 2D CNN model from the “Baseline Model” 
section, with a performance increase of 1.1%, demonstrating the benefit of temporal data 
for visual perception of human–robot walking environments. However, the model con-
tains a relatively large number of parameters (4.03 million) and numerical operations 
(2.5 GFLOPs), which could hinder deployment and real-time inference on mobile and 
embedded devices with limited computational resources. These models might be better 
suited for use cases with access to reliable cloud computing. For model efficiency, our 
MobileViT XS model trained using semi-supervised learning in the “Semi-Supervised 
Learning” section achieved the highest NetScore of 202.4 [21], demonstrating the ben-
efit of using lightweight vision transformers to reduce model parameter count compared 
to standard convolutional neural networks. In addition, our semi-supervised learning 
model improved training efficiency by reducing the number of required labelled images 

Table 2 Summary of vision‑based stair recognition systems for robotic leg prostheses and 
exoskeletons

The data set size (i.e., the number of images) and test accuracy are only for the environment classes relating to level-ground 
walking and stair ascent. The systems are organized in terms of the test accuracy (%)

Reference Camera Position Data set Size Classifier Computing Device Test Accuracy

[11] RGB Waist 7284 Convolutional neural 
network

NVIDIA Titan X 99.6%

[10] Depth Chest 170 Heuristic thresholding 
and edge detector

Intel Core i5 98.8%

[9] Depth Leg 8455 Support vector 
machine

Intel Core i7‑2640M 98.5%

StairNet RGB Chest 515,452 Convolutional neural 
network

Google Cloud TPU 98.4%

[17] Depth Leg 3000 Convolutional neural 
network

NVIDIA Quadro P400 96.8%

[8] Depth Leg 109,699 Cubic kernel support 
vector machine

Intel Core i7‑2640M 95.6%

[14] RGB Chest 34,254 Convolutional neural 
network

NVIDIA TITAN Xp 94.9%

[15] RGB Head 123,979 Bayesian deep neural 
network

NVIDIA Jetson TX2 93.2%

[16] RGB Leg 123,954 Bayesian deep neural 
network

NVIDIA Jetson TX2 92.4%

(27) RGB Chest 542,868 Convolutional neural 
network

Google Cloud TPU 70.8%
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by 35% while maintaining similar image classification accuracy as our baseline StairNet 
model. The high efficiency of the MobileViT XS model makes it well-suited for our com-
puter vision application.

We also studied mobile and embedded computing through our development of a new 
mobile app [13] and smart glasses [22]. The mobile app uses a TFLite interpreter and 
on-device GPU and NPU accelerators. Inference speeds on the mobile app were as fast 
as 2.75 ms. We also developed a novel pair of fully integrated smart glasses with onboard 
sensing and deep learning computation. These glasses align with the user’s head orienta-
tion and visual field-of-view, therein having greater potential to infer intent. However, 
limitations in the embedded system yielded slower inference speeds of 1.5 s, presenting 
a trade-off between human-centered design and performance. Future research will focus 
on improving the embedded inference speed. Note that our past applications running on 
iOS devices were developed as examples to demonstrate the feasibility of mobile deploy-
ment. Our StairNet models run using TFLite, which is compatible with a wide variety of 
computing systems (e.g., desktop, cloud, mobile, and embedded) and are not limited to 
deployment on just the devices tested herein.

Despite this progress, our research still has several limitations. To evaluate perfor-
mance, we used the StairNet test set. Although test sets are common practice in deep 
learning [23], the true real-world performance, generalizability, and application of our 
models was not analyzed in a deployed environment. In addition, during the develop-
ment of our temporal models, we identified a limitation of the training method used 
for our baseline and semi-supervised models as the train/validation/test splits were 
performed randomly between images. This caused data leakage between the differ-
ent data subsets, with unintentionally higher classification performances for our base-
line and semi-supervised models. Retesting revealed an updated baseline accuracy of 
97.2% when using data set splits with randomly sorted videos without neighboring 

Table 3 Summary of our StairNet stair recognition systems

The models were evaluated based on image classification accuracy and efficiency (i.e., NetScore, where higher is better). 
The systems are organized by model type. We tested supervised learning (SL) and semi-supervised learning (SSL) methods, 
and many-to-one (M1) and many-to-many (MM) temporal neural networks. The data set sizes for our baseline and temporal 
neural networks were 515,452 labeled images, and 300,000 labeled images and 1.8 million unlabeled images for our semi-
supervised learning networks
* Evaluated using the video-based train/validation/test split as described in the “Temporal Neural Networks” section

Type Data set size Training 
approach

Architecture Change in 
accuracy 
compared to 
baseline

NetScore Model 
Parameters 
(millions)

Baseline Neural 
Network

515,452 
labeled

SL—Single 
frame

MobileNetV2 0% 186.8 2.3

Temporal Neu‑
ral Networks*

515,452 
labeled

SL—M1 MoViNet  + 1.1% 167.4 4.0

SL—M1 Mobile‑
NetV2 + LSTM

 + 0.1% 132.1 6.1

SL—M1 MobileViT‑
XXS + LSTM

− 0.2% 155.0 3.4

SL—MM Mobile‑
NetV2 + LSTM

− 26.5% 120.1 6.0

Semi‑Super‑
vised Neural 
Network

300,000 
labeled, 
900,000 unla‑
beled

SSL—Fix Match MobileViT‑XS  + 0.4% 202.4 1.9

SSL—Fix Match MobileViT‑XXS − 0.7% 186.5 0.9

SSL—Fix Match MobileViT‑S − 1.2% 169.7 4.9
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frames in multiple data subsets. To address this, performance evaluations were made 
based on the change in accuracy compared to our baseline model of the respective 
test set. For future research using our StairNet data set, we recommend using the 
video-based training/validation/test splits.

It is worth mentioning that state-of-the-art machine learning models and methods 
are continuously being developed. For example, during the course of our development 
of the temporal models, research on transformers [53] and multilayer perceptrons 
[54] showed the ability to eliminate the need to process each frame for the encoder 
and temporal blocks separately by adapting the models to take 3D sequence inputs 
by modifying the patch-embedding block, which can significantly improve the effi-
ciency in processing and inference. For our semi-supervised learning research, other 
algorithms besides FixMatch [41] could have also been used to further reduce the 
number of required labeled images, such as invariant semantic information clustering 
[55] and cross-level discrimination for unsupervised feature learning [56]. Our vis-
ual perception systems, especially the smart glasses, could also be extended to other 
applications such as providing sensory feedback to persons with visual impairments 
by leveraging recent advances in large language models [57].

We also want to emphasize that we designed our environment recognition systems 
to create the opportunity to improve the speed and accuracy of locomotion mode 
recognition by minimizing the search space of potential solutions based on the per-
ceived walking environment. The intended future applications are environment-adap-
tive control of robotic prosthetic legs and exoskeletons, which were not studied here. 
However, the theoretical feasibility of this has been demonstrated by previous studies, 
such as Huang et al. [58], which found improvements in locomotion mode recogni-
tion by adding simulated environment data via Bayesian fusion. Our StairNet initia-
tive builds on this approach via creating large-scale vision systems powered by deep 
learning that can accurately generalize across complex real-world environments.

In conclusion, the results of numerous experiments presented herein provide con-
sistent evidence that StairNet can be an effective platform to develop and study new 
deep learning models for visual perception of human–robot walking environments, 
with an emphasis on stair recognition. This research aims to support the development 
of next-generation AI-powered control systems for robotic prosthetic legs, exoskel-
etons, and other mobility assistive technologies.

Abbreviations
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TPU  Tensor processing unit
TFLite  TensorFlow Lite
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GPU  Graphics processing unit
NPU  Neural processing unit
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NAS  Neural architecture search
SGD  Stochastic gradient descent
EMA  Exponential moving average
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M1  Many‑to‑one
SSL  Semi‑supervised learning
SL  Supervised learning
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