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Abstract 

Background: Ultrasound three-dimensional visualization, a cutting-edge technology 
in medical imaging, enhances diagnostic accuracy by providing a more comprehensive 
and readable portrayal of anatomical structures compared to traditional two-dimen-
sional ultrasound. Crucial to this visualization is the segmentation of multiple targets. 
However, challenges like noise interference, inaccurate boundaries, and difficulties 
in segmenting small structures exist in the multi-target segmentation of ultrasound 
images. This study, using neck ultrasound images, concentrates on researching multi-
target segmentation methods for the thyroid and surrounding tissues.

Method: We improved the Unet++ to propose PA-Unet++ to enhance the multi-
target segmentation accuracy of the thyroid and its surrounding tissues by addressing 
ultrasound noise interference. This involves integrating multi-scale feature information 
using a pyramid pooling module to facilitate segmentation of structures of various 
sizes. Additionally, an attention gate mechanism is applied to each decoding layer 
to progressively highlight target tissues and suppress the impact of background pixels.

Results: Video data obtained from 2D ultrasound thyroid serial scans served 
as the dataset for this paper.4600 images containing 23,000 annotated regions were 
divided into training and test sets at a ratio of 9:1, the results showed that: compared 
with the results of U-net++, the Dice of our model increased from 78.78% to 81.88% 
(+ 3.10%), the mIOU increased from 73.44% to 80.35% (+ 6.91%), and the PA index 
increased from 92.95% to 94.79% (+ 1.84%).

Conclusions: Accurate segmentation is fundamental for various clinical applications, 
including disease diagnosis, treatment planning, and monitoring. This study will have 
a positive impact on the improvement of 3D visualization capabilities and clinical 
decision-making and research in the context of ultrasound image.

Keywords: Thyroid ultrasound video, Multi-target segmentation, 3D visualization, 
U-net++
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Introduction
Ultrasound three-dimensional visualization holds significant importance in the field of 
medical imaging and is a highly promising cutting-edge technology. Traditional two-
dimensional ultrasound images have limitations in displaying anatomical structures, 
while ultrasound three-dimensional visualization can present the morphology of organs 
and tissues in a more three-dimensional manner. This aids doctors in comprehensively 
understanding and identifying abnormalities, enhancing the readability of images, and 
improving the accuracy of clinical diagnosis. It possesses rich clinical applications and 
value.

Ultrasound (US) is radiation-free, inexpensive, not risk, real-time imaging and is fre-
quently used to examine various diseases. However, two-dimensional ultrasound can 
be difficult to read, especially for novice doctors without clinical experience. Accurate 
interpretation of two-dimensional ultrasound often relies on the expertise of experi-
enced clinicians. Therefore, it is crucial to develop three-dimensional visualization of 
ultrasound images to enhance their readability and facilitate interpretation by clinicians. 
Ultrasound three-dimensional visualization, a cutting-edge technology in medical imag-
ing, enhances diagnostic accuracy by providing a more comprehensive and readable 
portrayal of anatomical structures compared to traditional two-dimensional ultrasound. 
In 2019, there were 567,233 cases of thyroid cancer worldwide, ranking it 9th in terms 
of incidence rate [1]. In China, a nationwide cross-sectional study conducted by the 
Chinese Society of Endocrinology and the Chinese Thyroid Association revealed that 
20.43% of patients had thyroid nodules [2]. Thyroid diseases significantly impact human 
health. Therefore, the three-dimensional visualization method of ultrasound image is 
studied from the thyroid ultrasound image. This text describes a 3D visualization of the 
thyroid and surrounding tissues using a free arm ultrasound scanning video.

The key to achieving excellent 3D visualization of thyroid ultrasound images lies in 
accurate multi-target segmentation. However, the US is affected by speckle noise and 
echo perturbations, which make the image fuzzy and inhomogeneous. As shown in 
Fig. 1, there are many blood vessels interspersed in the thyroid gland, whose character-
istics are often similar to those of nodules, and external vessels exhibit similar echogenic 
signals to the vesicles and the lesions in the US image [3]. In addition, the esophageal 
diverticula can invade the solid thyroid gland, with an echogenic appearance similar to 
nodules. And ultrasound imaging can be affected by the tumor microenvironment [4], as 
different microenvironments can result in varying tissue image representations. This can 
interfere with the recognition and segmentation of the target structure. The reasons for 
the appeal all lead to poor segmentation of multiple targets.

Previous research on multi-tissue segmentation of thyroid ultrasound images has 
shown that many studies struggle with accurately segmenting small targets and the 
background pixel blocks are wrongly segmented. To enhance the segmentation effective-
ness of multiple tissues surrounding the thyroid, this work proposed a framework called 
PA-Unet++. PA-Unet++ improves upon the U-net++ architecture by incorporating 
two key components: the pyramid pooling module (PPM) and attention gating (AG). 
The addition of PPM allows for an expanded receptive field within the network, ena-
bling the integration of multi-scale features and global context information. This integra-
tion enhances the network’s capability to accurately segment target structures at various 
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scales. Furthermore, the AG mechanism was adopted to strengthen the network’s atten-
tion to the region of interest and to highlight the target organizational structure 
while reducing the influence of the background. This attention mechanism ultimately 
enhanced the overall segmentation effect for all structures.

Using the aforementioned algorithm, accurate segmentation of multiple tissues, 
including the thyroid, nodules, and internal thyroid blood vessels, was achieved, and 
then utilized for 3D visualization. The 3D visualization results in a clearer distinction 
between thyroid nodules and invasive lesions of blood vessels and other tissues within 
the thyroid gland, leading to a more precise diagnosis of esophageal diverticulum. More-
over, the intuitive spatial location information can serve for treatment planning and sur-
gical navigation.

Related works
According to the currently retrieved research, many models, such as U-net, ACU2E-
net, BPAT-UNet, FCG-net, SK UNet++, etc. [5–10], were used in the form of encod-
ing and decoding for target segmentation of nodules or entities in ultrasound thyroid. 
As displayed in Table 1, Chen et al. [6] combined U-net with traditional algorithms 
to obtain the original data, and super-pixel processed data and Sobel edge processed 
images were merged as the training data as a complement to enhance the segmen-
tation of thyroid entities. Bi et  al. [7] applied the boundary point supervision mod-
ule and adaptive multi-scale feature fusion module to transformer U-Net to improve 
the boundary segmentation effect of nodules with small nodule segmentation. Shao 
et al. [8] proposed FCG-Net by replacing the encoder and decoder with GB module 
based on the full-scale jump connection of Unet3 + as a way to improve nodule seg-
mentation. Dai et  al. [9] proposed FCG-Net based on U-net++ by replacing every 
block with SK modules and eliminating some of the skip-connections to achieve 

Fig. 1 In thyroid ultrasound images, it is easy to get confused between vessels and nodules as they appear 
extremely similar
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segmentation of nodules; Balachandran et al. [10] replaced each block in U-net by a 
separate attention mechanism U-net with different depths and proposed ACU2E-Net 
to segment thyroid entities.

For the task of single-target segmentation, only one target needs to be optimized. 
However, in the case of multi-target segmentation, improving one sub-target may lead to 
a decrease in performance of another or several other sub-targets. Therefore, the model 
needs to coordinate among multiple objectives to achieve a common optimal solu-
tion. Additionally, compared to single-target segmentation, multi-target segmentation 
requires more accurate feature extraction and discrimination of each target. Therefore, 
in the task of multi-target segmentation, the model will usually strengthen the capture 
and distinction of each target feature. To improve the segmentation effect of different 
targets.

For multi-target segmentation of thyroid ultrasound images, Kumar et  al. [11] pro-
posed a framework for the simultaneous segmentation of thyroid, thyroid nodules, 
and thyroid follicles, but it is less effective in segmenting smaller internal nodules and 
vesicles. Webb et  al. [12] used the feature results from six DeepLabv3 + outputs as 
sequence inputs to the LSTM for loop training, combined with spatial pyramid pooling, 
to obtain the final segmentation results for thyroid solids, nodules, and vesicles. Sim-
ilarly, the problem of poor segmentation of smaller internal nodules and vesicles was 
not resolved. Luo et  al. [13] proposed cascade R-CNN, which combines object detec-
tion with semantic segmentation network to segment anterior cervical muscle, cricoid 
cartilage, trachea, thyroid, blood vessels, and esophagus simultaneously. Ma et al. [14] 
introduced ROI Align in the segmentation head part based on Mask R-CNN to generate 
and combine multi-scale feature information for segmenting the right and left lobes of 
the thyroid gland, isthmus, muscle, trachea, carotid artery, jugular vein, esophagus, and 
cricoid cartilage with the internal vascularity of the thyroid gland. Both of their models 
are less effective at segmenting smaller organizational structures, with the worst AP only 
reaching 27.8% (endothyroid vessels). Zheng et  al. [15] proposed deformable-pyramid 
split-attention residual U-Net (DSRU-Net) by introducing ResNeSt block, atrous spa-
tial pyramid pooling, and deformable convolution v3 based on U-Net. It was used to 

Table 1 The related research

Parts Authors Methods Deficiencies

Thyroid Chen (2023) Unet + sobel Need to do a lot of preorder calculations to get train-
ing inputs

Thyroid Balachandran (2023) ACU2E-Net Huge computation

Nodules Bi (2023) BPAT-UNet Huge computation

Nodules Shao (2023) FCG-Net Not much improved compared with the basic model

Nodules Dai (2023) SK-Unet++ Higher image quality requirements, large error dis-
tance for mis-segmentation

Multi-target Kumar (2020) MPCNN Not good for small nodules with internal vesicles

Multi-target Webb (2020) DeepLabv3 + LSTM Poor segmentation results for nodules

Multi-target Luo (2021) Cascade R-CNN No segmentation of nodules, internal vessels, poor 
segmentation results for small targets

Multi-target Ma (2022) SPRMaskR-CNN Detection identification and segmentation is done in 
two steps. Cannot identify some quite small organs

Multi-target Zheng (2023) DSRU-Net Poor segmentation of small nodules
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segment the thyroid solids and nodules. However, the segmentation of smaller nodes is 
not as effective as larger entities.

For 3D visualization of the thyroid gland, Thiering et al. [16] developed a method for a 
high-resolution 3D reconstruction of the thyroid from two-dimensional ultrasound data 
stacks based on its data fusion with CT images. Poudel et  al. [17] segmented thyroid 
images in 703 images and passed them to a 3D reconstruction algorithm to obtain a 3D 
model of the thyroid. Ciora et  al. [18] achieved a technique for the thyroid 3D model 
reconstruction from 2D images provided by an ultrasound system using image process-
ing and pattern recognition. Wein et al. [19] proposed a framework for deep learning-
based trajectory estimation of overlapping horizontal and sagittal image data to assist 
in 3D model optimization. However, the existing three-dimensional reconstruction is 
aimed at the thyroid, not the thyroid nodules and its surrounding tissue structure. It is 
only capable of representing the external contours of the thyroid entity and does not 
characterize the internal structure. Moreover, it cannot characterize the spatial informa-
tion between different tissues.

While some advanced segmentation algorithms for thyroid ultrasound images have 
performed well, there are still issues with inaccurate segmentation of small targets and 
incorrect segmentation of background pixel blocks. Additionally, existing three-dimen-
sional visualizations only focus on the thyroid entity, neglecting other tissues. It is impor-
tant to address these limitations in future research. Therefore, this paper proposes PA 
UNET++ to enhance the segmentation of multiple targets and uses the segmentation 
results of thyroid ultrasound multi-tissue to achieve three-dimensional visualization. 
This visualization clearly represents the various tissues and their spatial relationships.

Materials and methods
Data

The data used in this study were obtained from 200 desensitized thyroid ultrasound scan 
videos. Two-dimensional image data were obtained by intercepting from the videos, 
some of which contained thyroid nodules and some of which did not. The videos were 
obtained by an experienced sonographer who performed a top-to-bottom transverse 
scan of the left or right lobe of the thyroid gland. The videos were clear and included 
target tissues such as the thyroid, trachea, esophagus, and carotid arteries, as required 
for this study. The ultrasound machine is a GE model Versana Premier Pt, the probe is 
a GE12L-RS, and the sampling frequency is 8–10 MHz. All images were preprocessed 
to remove sensitive letters. Interference from interface markers was excluded and ROI 
regions were extracted. Finally, 4600 images with more than 23,000 annotated regions 
were obtained, which were divided into a training set and a test set in a ratio of 9:1.

The labeled images depict various anatomical structures such as the thyroid, trachea, 
esophagus, blood vessels, as well as thyroid nodules (including vessels in the thyroid 
gland), as illustrated in Fig. 2. The red circle denotes blood vessels (carotid artery), the 
blue circle represents the trachea, the green border depicts the thyroid, the yellow cir-
cle indicates nodules or vessels (NoV) in the thyroid, and the purple circle signifies the 
esophagus. The labeling process was supervised by experienced ultrasound doctors, 
and the final results were reviewed by a professional ultrasound doctor with extensive 
clinical expertise. Any incorrect labels were promptly corrected. Before segmentation, 
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denoising is usually required. Traditional denoising filters and deep learning denoising 
models, such as RED-MAM, LPRNN, CS Net, etc., are helpful for thyroid segmentation 
tasks [20–24]. The training data are also enhanced through random flipping, rotation, 
cropping, scaling, and other methods.

PA‑Unet++ model

The U-net++ model uses dense skip-connections to combine context information and 
multi-scale feature information. However, this approach can result in a loss of edge 
features and spatial information in the image. Thus, in order to expand the network’s 
receptive field again, gradually enhance the network’s attention to the target area, and 
strengthen the capture of edge features and spatial information, we proposed PA-
Unet++ which is shown in Fig. 3. Pyramid pooling module (PPM) and attention gating 
(AG) are introduced into the U-net++ model. In view of the requirements of multi-clas-
sification semantic segmentation in this task, and thyroid ultrasound images have spe-
cial image characteristics such as high noise, and low contrast, Lovasz-Softmax loss is 
used as the loss function of this model in the process of network optimization training.

Pyramid pooling module

In convolution neural networks, the size of the receptive field can roughly indicate the 
amount of context information used by the network. Zhou et al. [25] showed that the 
empirical receptive domain of convolution neural networks is much smaller than the 
theoretical receptive domain, especially in high-level feature extraction, which makes 
many of the models not fully integrated into important global scenarios. An effective 
global prior module is proposed to solve this issue. Global average pooling as a global 
context prior is a good baseline model, but for the complex scene image of ultrasound 
thyroid, this strategy is not enough to cover the necessary information. The pixels in 
these ultrasound images are labeled for many structures and tissues. If they are fused 
directly to form a single feature vector, the spatial relationship may be lost, resulting 

Fig. 2 The ground truth of different organizational structures
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in ambiguity. The global context information and the context information of sub-
regions help to distinguish various structural categories in this regard. A more pow-
erful algorithm can fully integrate information from different sub-regions with these 
receptive regions. To further reduce the loss of context information between different 
sub-regions, a multi-level global priori is proposed, which includes context informa-
tion of different scales and changes between different sub-regions.

In Fig. 4, the pyramid pooling module [26] fuses features at four different pyramid 
scales. The pyramid layer below divides the feature maps into different sub-regions 
and forms a collective representation of different positions. Calculated by Eq. (1), dif-
ferent levels of output in the pyramid pool module contain feature maps with different 
sizes. In order to maintain the weight of global features, if the horizontal size of the 

Fig. 3 The deepest feature layer generated in the coding phase of the model is sent to the PPM module to 
collect the local information and global context information carried by different sub-regions. In the decoding 
phase, the AG attention mechanism is used to improve the target region of interest (ROI) weight

Fig. 4 The deepest feature layer is pooled with different kernel sizes, then the pooling result is adjusted 
channels and up-sampled through convolution. Finally, all the feature layers obtained are connected with the 
original input features to form the final feature representation
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pyramid is N, one 1× 1 convolution layer is used after each pyramid level to reduce 
the dimension of context representation to 1/N of the original representation. Then, 
the low-dimensional feature map is directly up-sampled by bilinear interpolation to 
obtain features of the same size as the original feature map. Finally, the features at 
different levels are connected to the final global features of the pyramid pool. This 
structure abstracts different sub-regions by using pooled kernels of different sizes. 
Therefore, the multi-phase kernel should maintain a reasonable gap in presentation:

where the IH , IW denote the height and width of the input feature map, KH , KW denotes 
the height and width of the pooling kernel, and S denotes the step size of the pooling 
kernel, OH , OW denote the height and width of the output feature map.

Attention gate

In order to capture a receptive field large enough to obtain semantic context information, 
the feature map grid is gradually down-sampled in the standard CNN architecture. In this 
way, rough spatial grid-level features can simulate the position and relationship between 
organizations in the global scope. However, for small objects with large shape variability, 
it is still difficult to reduce false positives. To improve accuracy, the current segmentation 
framework [27–29] relies on additional previous object positioning models to simplify tasks 
into separate positioning and subsequent segmentation steps. This goal can be achieved by 
integrating attention gating (AG) in a standard CNN model. This avoids the need for exten-
sive model training and additional model parameter increments. Compared with the multi-
stage CNN positioning model, AG gradually suppresses the feature response of irrelevant 
background regions without cutting ROI between networks. As displayed in Fig.  5, the 
characteristic graph of the encoding part of the previous layer and the decoding part of the 
current layer are used as the input of AG. In AG, the two parts are added after being pro-
cessed by 1× 1 convolution layer and batch normalization (BN) in parallel, and the chan-
nel is adjusted by 1× 1 convolution layer and BN layer after being operated by Relu, then 
Sigmoid activation is implemented. The feature information of which linear and nonlinear 
transformation is completed. And calculated by Eq.  (2), the attention coefficient (weight) 
is generated through the resampling step, and it is multiplied with the current decoding 
feature map. The AG result is connected and fused with the feature map of the upsampling 
decoding part, the AG at the next level is used as the input to participate in the decoding 

(1)
{

OH = IH−KH

S + 1

OW =
IW−KW

S + 1
,

Fig. 5 The feature layers of the upper layer and the current layer are used as inputs to enter the attention 
mechanism gating, and the attention coefficient is calculated to weigh the current feature layer for decoding
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part of the whole network, so as to continuously improve the weight of the target ROI and 
suppress the non-ROI part.

where the Qatt is the attention coefficient, ϕ , ωi , ωi+1 are the convolution operation, and 
σ1 denotes the ReLU, and σ2 denotes the Sigmoid, b1 , b2,are the bias term corresponding 
to the convolution.

Lovasz‑Softmax loss

A good performance indicator for evaluating the segmentation mask, usually used in 
semantic segmentation models, is the Jaccard [30] index, also known as the intersection 
over union (IOU). Given the ground truth vector Y  and the predicted vector Y ∗ , the Jackard 
index of class c is defined as:

The ratio of the true mask and the calculated mask on their union is [0,1], and the con-
vention is 0/0 = 1. The corresponding loss function used in empirical risk minimization is:

For multi-label datasets, the Jaccard index is usually averaged across classes to produce a 
mean IoU (mIoU). For split output Y ∗ and ground truth Y  , define the error prediction pixel 
set of class c as:

For a fixed ground truth Y  , in Eq. (4) Jaccard loss can be modified to another function 
with incorrect prediction:

where the p is the number of pixels in the concerned image or small batch processing. 
The indicator vector in the discrete hypercube {0, 1}p is used to identify the subset of 
pixels. The Jaccard loss is only applicable to discrete space. That means, when the input 
is 0 or 1, it will cause the problem of non-derivative in continuous space. If the network 
prediction result is continuous, the discretization will lead to non-derivative and cannot 
be directly connected behind the network. Therefore, it is desired to assign the loss to 
any error vector E in the continuous optimization settings Ec ∈ R

p
+ and not just a dis-

crete vector that is incorrectly predicted in {0, 1}p . In general, the convex closure of a set 
function is np-hard. Moreover, the Jaccard set functions have been proven to satisfy the 
properties of submodular functions [31].

Definition of submodule function [32]: for a set function � : {0, 1}p → R for all A, 
B ∈ {0, 1}p:

(2)Qatt = σ2ϕ(σ1(ωixi + ωi+1xi+1 + b1))+ b2,

(3)Jc(Y ,Y ∗) =
|{Y=c}∩{Y ∗=c}|
|{Y=c}∪{Y ∗=c}| .

(4)�Jc (Y ,Y ∗) = 1− Jc(Y ,Y ∗).

(5)Ec(Y , Y ∗) = {Y = c, Y ∗ �= c} ∪ {Y �= c, Y ∗ = c}.

(6)�Jc : Ec ∈ {0, 1}p �→
|Ec|

|{Y=c}∪Ec|
,

(7)�(A)+�(B) ≥ �(A ∪ B)+�(A ∩ B).
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Thus, a Lovasz extension is performed on the Jaccard loss to extend the input discrete 
space {0, 1}p to the entire continuous Rp . Its output value is equal to the output value of 
the original function on {0, 1}p has convexity, and the optimization direction is consist-
ent. For a set function � : {0, 1}p → R and satisfying �(0) = 0 , the lovasz extension [33] 
is defined as:

and:

π is to arrange the components of E in descending order, i.e., xπ1 ≥ xπ2 · · · ≥ xπp.
Let � be the set function of coding submodule loss, such as the defined Jaccard loss. 

By submodulation, � is a compact convex closure of � . � is piecewise linear, and in any 
error prediction set Ec , the interpolation value of � in Rp\{0, 1}p , have the same value as 
� in {0, 1}p . Intuitively, if E is the vector of all pixel errors, then �(E) is the sum of these 
errors weighted according to the interpolation discrete loss. Due to its convexity and 
continuity, � is a natural alternative to minimization � using first-order continuous opti-
mization. For example, in the current deep learning framework, calculate � that basic 
operations involved in (sorting, dot product, …) are differentiable and implemented on 
the GPU. The vector g(E) , whose component is defined in Eq. (9), directly corresponds 
to � the derivative with respect to E.
c ∈ C is the object class c in the total class number C , fi(c) is a vector of the network 

output. Assume that the non-normalized score Fi(c) of the network has been mapped to 
through the Softmax unit and the probability is:

hence, the Lovasz extension is combined with Softmax loss, and the object class proba-
bility fi(c) ∈ [0, 1] of Eq. (3–10) a is used to construct the pixel error vector E(c) of c ∈ C:

Using the pixel error vector E(c) to construct alternative �Jc . For object class c , the Jac-
card index is:

Considering the common class average mIOU measurement in semantic segmenta-
tion, the average of specific classes is replaced; Then, Lovasz-Softmax loss [34] is defined 
as:

This loss function is an optimization of IOU loss. In the continuous optimization 
scheme, each component of the error vector is allocated and optimized. It performs 

(8)� : E ∈ R
p �→

∑p

i=1
Eigi(E),

(9)gi(E) = �({π1, · · · ,π i})−�({π1, · · · ,π i−1}),

(10)fi(c) =
eFi(c)

∑

c
′
∈C

e
Fi

(

c
′
) ∀i ∈ [1, p], ∀c ∈ C ,

(11)Ei(c) =

{

1− fi(c) if c = Y ∗
i

fi(c) otherwise
.

(12)loss(f (c)) = �Jc (E(c)).

(13)loss(f ) = 1
|C|

∑

c∈C �Jc (E(c)).
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better than cross-entropy loss in multi-classification semantic segmentation. It is suit-
able for the requirements of multi-structure segmentation in thyroid ultrasound images 
with high noise, low contrast, and very similar characterization of different tissue struc-
tures in this task.

Results
Evaluation index

Since the semantic segmentation in this task is essentially another type of pixel-level 
classification. To assess the performance of the segmentation model, we employed a 
confusion matrix.

The dice coefficient is a set similarity measurement function, which is usually used 
to calculate the similarity between two sets. It can be used to calculate the similarity 
between the prediction result and the true label in the semantic segmentation task to 
evaluate the segmentation effect. The dice coefficient is defined by the confusion matrix 
as:

where TP : positive samples predicted by the model to be in the positive category, TN : 
negative sample predicted by the model to be in the negative category, FP : negative sam-
ple predicted by the model to be in the positive category,FN : positive samples predicted 
by the model to be in the negative category.

Intersection over union (IOU) is the ratio of the intersection and union of the pre-
dicted result of a certain category and the true label. The IOU is defined as:

For multi-category semantic segmentation, the average intersection over union ratio 
mean IOU (mIOU) is generally used as the evaluation indicator, that is, the IOU of each 
category is summed and then averaged.

Pixel accuracy (PA), the percentage of correct predicted pixels in the total number of 
pixels. The PA is defined as:

category pixel accuracy (CPA), the percentage of pixels whose real tags also belong to 
category c among all pixels whose prediction result is category c . The CPA is defined as:

Thereby, the above evaluation indicators are used in this task to evaluate the segmen-
tation effectiveness of the model.

The results of multi‑organization segmentation

The improved U-net++ network model was constructed using the PyTorch framework, 
with a learning rate of 0.0001. The learning rate decayed to 0.9 of its original value at 
the 100th and 150th epochs, as per external demand. The Adam optimizer was used 

(14)Dice = 2TP
2TP+FP+FN

,

(15)IOU = TP
TP+FP+FN

.

(16)PA = TP+TN
TP+FP+TN+FN

,

(17)CPA =
TP

TP+ FP
.
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throughout the training process with a potential energy of 0.9, and the batch size was set 
to 16. Prior to input into the model, all images were resized to 256 × 256. The training 
was conducted on a server with a GPU of NVIDIA GeForce RTX 3090 × 0.5 and 24G 
memory. As shown in Fig. 6, it is the loss curve of the training of the model, you can see 
that the model converges faster and tends to be stable.

Based on the algorithms mentioned in the previous method, the following experimen-
tal verifications are present:

The improved U-net++ network model includes a dense skip connection that enables 
the combination of upper-layer features during decoding. Additionally, the use of deep 
supervision (DS) allows for decoding from different feature layers or a combination of 
all feature layers. By determining the optimal network depth for the training data, we 
were able to conduct comparative experiments for the four decoding methods. Specifi-
cally, L2–L4 represent decoding at three depths of U-net++. Additionally, the original 
image undergoes denoising through Non-local mean (NLM) filtering. A comparison of 
the training before and after denoising is conducted based on DS. The resulting segmen-
tation is also evaluated. The model was trained for 300 epochs, and the Dice coefficient, 
mIOU, and PA effects were evaluated.

As shown in Table  2, deep supervision (DS) outperforms the other decoding meth-
ods in all three evaluation indexes of segmentation results. Specifically, the DS with 
NLM get a better result than DS, the Dice is 0.7933, the mIOU is 0.7451 and the PA 
is 0.9315. It is evident that denoising can improve segmentation performance to some 
extent. Compared with others, the DS significantly improves the Dice, mIOU, and PA 
indexes. In traditional feature extraction, feature maps are continuously sampled and 
compressed, leading to the inevitable loss of relevant information. This makes it diffi-
cult for the network to retain and pay attention to the boundary shape information of 
the organizational structure during the continuous in-depth feature extraction, result-
ing in a significant loss for the semantic segmentation task. Therefore, the utilization 
of the deep supervision (DS) algorithm enables the combination of multi-scale context 
feature information which is particularly important for multi-organization segmentation 

Fig. 6 The loss curves of the training phase



Page 13 of 21Mi et al. BioMedical Engineering OnLine           (2024) 23:31  

tasks as shallow features can retain spatial location information of various organizational 
structures.

In Fig. 7, it can be observed that, as the network deepens and dense skip-connections 
increase, along with enhanced feature extraction, contextual information combination, 
and global information representation capabilities, the segmentation results from L2 to 
DS exhibit a gradual improvement. Although the ideal effect has not been achieved, five 
target structures are basically located and segmented. L2 is located shallowly in the net-
work, which results in a larger extracted feature map and a greater amount of spatial 
positional information retained. However, it lacks sufficient learning and extraction of 
texture information unique to the target structure. Therefore, its segmentation results 
can only broadly represent the spatial positional relationships between the target struc-
tures, without being able to segment and represent the specific boundaries of each struc-
ture. As the network depth increases, so does its ability to extract features, while the 
contextual information associated with skip-connections becomes more comprehensive. 
As a result, the segmentation results of L3–L4 exhibit a significant improvement, with 
more accurate positioning of the target structure and clearer boundaries, albeit with 
poor boundary integrity. Ultimately, the DS method yields significantly improved seg-
mentation results, with precise positioning of spatial positional relationships between 
various organizational structures, as well as enhanced boundary integrity and shape 
accuracy for each structure.

Table 2 Comparison experiment of decoding methods

The Dice (dice coefficient) is a set similarity measurement function, which is usually used to calculate the similarity between 
two sets. You can see in Eq. 14

The IOU (intersection over union) is the ratio of the intersection and union of the predicted result of a certain category and 
the true label. You can see in Eq. 15

For multi‑category semantic segmentation, the average intersection over union ratio mean IOU (mIOU) is generally used as 
the evaluation indicator, that is, the IOU of each category is summed and then averaged

The PA (pixel accuracy) is the percentage of correct predicted pixels in the total number of pixels. You can see in Eq. 16

The CPA (category pixel accuracy) is the percentage of pixels whose real tags also belong to category. You can see in Eq. 17

Decode Dice mIOU PA

L2 0.6841 0.5439 0.8704

L3 0.7585 0.6697 0.9147

L4 0.7878 0.7344 0.9295

DS 0.7905 0.7373 0.9306

DS (NLM) 0.7933 0.7451 0.9315

Fig. 7 Segmentation results with different decoding methods
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To fuse context information containing changes between different scales and sub-
regions, the PPM module employs feature fusion at four different pyramid scales. The 
pyramid layer divides the feature map into various sub-regions and forms a set repre-
sentation of different positions, abstracting different sub-regions using pooled kernels of 
varying sizes. Finally, features at different levels are connected to yield the final pyramid 
of pooled global features. To determine the appropriate pooled kernel size, we designed 
an experimental control group, conducting experiments with pool cores set to (1, 2, 3, 
4), (1, 2, 3, 6), and (1, 2, 4, 8). We trained the model for 300 epochs under these three 
parameter settings and evaluated the Dice coefficient, mIOU, and PA effects:

Table 3 demonstrates that the pooling kernels set as (1, 2, 3, 6) yield relatively more 
favorable outcomes, with a Dice score of 0.8087 and an mIOU of 0.7887. Moreover, the 
pooling kernels set as (1, 2, 4, 8) produce the highest PA index of 0.9446. When deal-
ing with the deepest feature map with a small size, pooling kernel size combinations 
with excessively small intervals may fail to capture the complete context information of 
each area. Conversely, pooling kernel size combinations with large intervals may lead to 
sparse features and overlook crucial context information. Although the PA of (1, 2, 4, 8) 
yielded superior results compared to (1, 2, 3, 6), the Dice and mIOU are more effective in 
representing the similarity between segmentation results and the ground truth. In Fig. 8, 
there are some unsatisfactory results in the three pooling combination segmentation 
methods. The combination of (1, 2, 3, 4) does not accurately segment thyroid nodules 

Table 3 Setting of pool kernel size of feature pyramid

The Dice (dice coefficient) is a set similarity measurement function, which is usually used to calculate the similarity between 
two sets. You can see in Eq. 14

The IOU (intersection over union) is the ratio of the intersection and union of the predicted result of a certain category and 
the true label. You can see in Eq. 15

For multi‑category semantic segmentation, the average intersection over union ratio mean IOU (mIOU) is generally used as 
the evaluation indicator, that is, the IOU of each category is summed and then averaged

The PA (pixel accuracy) is the percentage of correct predicted pixels in the total number of pixels. You can see in Eq. 16

The CPA (category pixel accuracy) is the percentage of pixels whose real tags also belong to category. You can see in Eq. 17

Num kernel size Dice mIOU PA

1 1, 2, 3, 4 0.8053 0.7767 0.9439

2 1, 2, 3, 6 0.8087 0.7887 0.9434

3 1, 2, 4, 8 0.8021 0.7770 0.9446

Fig. 8 Segmentation results with different combinations of pyramid pooling kernel sizes
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in certain images; however, under the combination of (1, 2, 3, 6), the segmentation of 
certain tracheal parts is incomplete. Finally, with the combination of (1, 2, 4, 8), there is 
an inaccurate segmentation of the nodes, an incomplete segmentation of the esophagus, 
and a misclassification of the carotid artery. After all, precise segmentation of nodules is 
more important in this task. So compared to others, the segmentation results under the 
combination of (1, 2, 3, 6) are better.

Therefore, by combining three segmentation evaluation indicators with actual seg-
mentation results and combining quantitative and qualitative analysis, the pooling ker-
nel of the pyramid feature module is set to (1, 2, 3, 6) in this task.

After the experiment of setting the pooling kernel size of the PPM module and select-
ing the decoding method, the ablation experiment combined with each module is carried 
out. Taking the basic U-net++ network as the baseline, the PPM module and Attention 
gating module are introduced, respectively, and their joint experiments are compared. 
300 epochs are trained on the model, and Dice coefficient, mIOU, and PA are evaluated.

As shown in Table  4, based on U-net++, put PPM, and AG into the framework, 
respectively. The three evaluation indexes have increased which is compared with 
U-net++ as the baseline. Furthermore, the U-net++ combined with PPM and AG 
presents a more excellent effect, in which the best Dice get 0.8188, the mIOU notch 
up 0.8035 and the PA achieve 0.9479. Based on the results of U-net++, the Dice rise 
3.10%, the mIOU swell 6.91%, and the PA index gain 1.84%. All evaluation indicators 
were statistically analyzed and p-value and p < 0.05 were calculated. Displayed in Fig. 9, 

Table 4 The impact of different algorithms on the network model

The Dice (dice coefficient) is a set similarity measurement function, which is usually used to calculate the similarity between 
two sets. You can see in Eq. 14

The IOU (intersection over union) is the ratio of the intersection and union of the predicted result of a certain category and 
the true label. You can see in Eq. 15

For multi‑category semantic segmentation, the average intersection over union ratio mean IOU (mIOU) is generally used as 
the evaluation indicator, that is, the IOU of each category is summed and then averaged

The PA (pixel accuracy) is the percentage of correct predicted pixels in the total number of pixels. You can see in Eq. 16

The CPA (category pixel accuracy) is the percentage of pixels whose real tags also belong to category. You can see in Eq. 17

Num Tricks Dice mIOU PA

1 U-net++ 0.7878 0.7344 0.9295

2 U-net++/PPM 0.8087 0.7887 0.9434

3 U-net++/AG 0.8082 0.7847 0.9458

4 U-net++/PPM/AG 0.8188 0.8035 0.9479

Fig. 9 Segmentation results with different algorithm combinations
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as a whole, the segmentation results from U-net++ are used as a baseline, and differ-
ent algorithmic improvements are introduced, namely the pyramidal feature pool and 
the attention gating mechanism described here. Whether used alone or in combina-
tion, has achieved certain improvements in segmentation performance, but the degree 
of improvement varies. The segmentation effect of U-net+/PPM/AG is significantly 
improved compared to the first three models. The segmentation of thyroid entities, 
nodular lesions (including thyroid internal blood vessels), and esophagus is better, and 
particularly, the first three models did not achieve good segmentation results for the tra-
chea part. In this model, significant improvements were achieved, with clear boundaries 
and relatively complete shapes for the tracheal part. PPM can fully expand the network 
receptive field, integrate the context information of different regions, and improve the 
network’s ability to obtain global information. AG can combine characteristic layers and 
perform weighting calculations. In this way, the network can pay more attention to the 
segmented target structure and suppress the background which is the irrelevant areas. 
Thereupon, the deep supervision algorithm is combined to capture the spatial location 
information of the organizational structure and maximize the global information. These 
are of great significance for semantic segmentation.

After the improved U-net++ network model is finally determined, the joint use of dif-
ferent algorithms and the corresponding super parameter settings are completed, com-
plete the training of the model and evaluate the model with the test set. The CPA of each 
segmentation part is calculated and evaluated, and the results are shown in Table 4:

As shown in Table  5, in general, the CPA index of each organization structure per-
forms well, with all of them receiving a score that surpasses 0.8500. This segmentation is 
sufficient for 3D reconstruction.

And not only comparing the segmentation results with U-net++, this paper also 
compares them with state-of-the-art models that are currently commonly used in the 
segmentation field. The segmentation results obtained were compared under the same 
experimental setup, and the trainable parameters of different models are shown in 
Table  6. All evaluation indicators were statistically analyzed and p-value were calcu-
lated (p < 0.05). The PA-U-net++ proposed in this paper performs optimally in Dice 
and mIOU, and PSPnet gets the best PA index. And Dice and mIOU can better evalu-
ate segmentation effects in semantic segmentation tasks. So, PA-U-net++ has a better 
performance in this task. Although the number of trainable parameters in the model 
proposed in this paper is much larger than that of the basic U-Net++, it still has fewer 
parameters compared to other advanced segmentation models. The improved effect of 

Table 5 Segmentation accuracy of different parts

Num Name CPA

1 Background 0.9535

2 Thyroid 0.9488

3 Trachea 0.9056

4 NoV 0.8625

5 Esophagus 0.9219

6 Carotid artery 0.9424
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the segmentation also proves the feasibility of increasing the parameters. The segmenta-
tion results of U-net++, SegNet, DeepLabV3+, PSPnet and this paper’s method PA-U-
net++ are shown in Fig. 10.

The results of 3D visualization

As shown in Fig. 11, ultrasound images of the thyroid gland acquired by the ultrasound 
probe are fed into PA-Unet++ for multi-tissue segmentation and the results are used 
for 3D visualization. As shown in Fig. 12, it clearly shows the spatial relationship of each 
organizational structure and its own spatial representation. It can accurately distinguish 
the nodule lesions inside the thyroid gland from the interpenetrating blood vessels. Both 
single nodular lesions and multinodular lesions can be well demonstrated. In addition, if 
the patient has other tissue invasion lesions such as esophageal diverticulum, it can also 
be clearly distinguished from thyroid nodules by three-dimensional visualization results. 
In this way, it can reduce the misdiagnosis of nodules. Moreover, the intuitive spatial 
location information can serve for treatment planning and surgical navigation.

Conclusion
The 3D visualization for thyroid ultrasound images is unsatisfactory, the root cause 
being poor multi-target segmentation. This paper proposed a novel method for 
automatic Multi-tissue segmentation of ultrasound thyroid scanning video using an 
improved U-net++ model. The nodules and vessels within the thyroid gland were 

Table 6 The evaluation of segmentation results for different models

The Dice (dice coefficient) is a set similarity measurement function, which is usually used to calculate the similarity between 
two sets. You can see in Eq. 14

The IOU (intersection over union) is the ratio of the intersection and union of the predicted result of a certain category and 
the true label. You can see in Eq. 15

For multi‑category semantic segmentation, the average intersection over union ratio mean IOU (mIOU) is generally used as 
the evaluation indicator, that is, the IOU of each category is summed and then averaged

The PA (pixel accuracy) is the percentage of correct predicted pixels in the total number of pixels. You can see in Eq. 16

The CPA (category pixel accuracy) is the percentage of pixels whose real tags also belong to category. You can see in Eq. 17

Num Models Dice mIOU PA Parameters(M)

1 U-net++ 0.7878 0.7344 0.9295 9.16

2 SegNet 0.7233 0.7026 0.9151 29.45

3 DeepLabV3+ 0.7743 0.7175 0.9236 26.72

4 PSPnet 0.8030 0.7864 0.9495 32.23

5 PA-U-net++ 0.8188 0.8035 0.9479 25.24

Fig. 10 Effectiveness of different models for segmentation of multiple tissues of the thyroid glands
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considered as a class for segmentation. Then, the 3D reconstruction results were used 
to present spatial information to differentiate the nodules from the internal blood 
vessels in terms of positional relationships and spatial representations. In addition, 
other tissues around the thyroid gland are also segmented and reconstructed to show 

Fig. 11 Processes for 3D visualization of multi-organizational structures

Fig. 12 The three-dimensional visualization of four cases of thyroid nodules
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the relationship between the tissues more intuitively. This can also help in the diagno-
sis of invasive lesions in the peri-thyroid tissue (e.g., esophageal diverticula) and avoid 
confusion with nodular lesions.

In this study, PA-Unet++ improves upon the U-net++ architecture by incorporating 
the pyramid pooling module (PPM) and attention gating (AG). Our evaluation results 
demonstrate that this method can accurately segment the thyroid gland, thyroid nodule 
(including thyroid internal blood vessels) and surrounding tissue structure, and recon-
struct them in three dimensions. The 3D visualization results in a clearer distinction 
between thyroid nodules and invasive lesions of blood vessels and other tissues within 
the thyroid gland, leading to a more precise diagnosis of neck disorders. Moreover, the 
intuitive spatial location information can serve for treatment planning and surgical 
navigation.

Discussion
The PA-U-net++ proposed in this paper is able to perform multi-target segmenta-
tion of thyroid nodules and their surrounding tissue structures on ultrasound thyroid 
images, which improves the effectiveness of thyroid multi-target segmentation to a cer-
tain extent. The medical image data come from the clinic, but the difficulty in obtaining 
standard available thyroid ultrasound video data leads to less available data for multi-
target segmentation, which limits the optimization of model training. Secondly, the 
algorithmic model was not really applied to the clinic and no clinical validation was per-
formed to test its real effect. Therefore, it is subsequently hoped that more available data 
can be acquired and the algorithmic model can be applied to clinical practice to verify its 
performance.
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