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Background
Adolescent idiopathic scoliosis (AIS) is a common three-dimensional deformation of the 
spine, which has been reported to be prevalent in 1–3% [1–3] of the population aged 
10–16 years. To date, the etiology of AIS remains unclear. However, there are several 
hypotheses regarding the genetic, biomechanical, neurological, and muscular factors. 
From the view of biomechanics, previous studies have found that AIS could alter pos-
tural orientation and induce abnormal gait patterns [4–9]. As a result, the investigation 
of the walking pattern between healthy subjects and AIS patients may help better under-
stand AIS’s etiology.

Since the AIS is a kind of spinal deformity, the trunk motion could be affected directly. 
It was found that AIS patients had a smaller spinal range of motion (ROM) [4]. Recent 
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studies have even exhibited the variation of trunk motion according to the sever-
ity and type of scoliosis [10–13]. In specific, trunk motion parameters were correlated 
with Cobb angle at 0.82. In Nishid’s study, the AIS patients with a single thoracic curve 
showed asymmetrical trunk movement in the transverse plane, and patients with a sin-
gle lumbar curve showed asymmetrical trunk movement in the coronal plane. However, 
in Pesenti’s study, the AIS patients with a single thoracic or lumbar curve presented no 
difference in the transverse plane. Apart from the trunk motion, the postural adjustment 
of AIS patients during level walking also involved the pelvis, upper extremities, and 
lower extremities. Wu et al. [14] found that the kinematics of the trunk, pelvis, and lower 
extremities differed between concave and convex sides at different gait events in severe 
thoracic AIS. Also, the AIS patients demonstrated reduced ROM in the upper body and 
lower extremities [9, 15]. However, the previously observed differences were inconsist-
ent, and most studies were limited to single curve AIS or mixed up all curve types and 
Cobb angles. Moreover, the trunk was regarded as a rigid body and the relative motion 
between spinal vertebrae was omitted.

This study aimed to investigate the symmetry and kinematics of the multi-spine and 
lower extremities among healthy subjects, single curve AIS patients, and double curves 
AIS patients during a stance phase of gait. Our first hypothesis was that AIS patients 
might demonstrate more kinematic asymmetry than healthy subjects. The second 
hypothesis was that the kinematic characteristics of multi-spine and lower extremities in 
three planes might vary with the type of AIS.

Methods
Subjects

From January 2022 to September 2022, 36 mild AIS patients and 18 control teenagers 
were recruited for this study. The criteria for the inclusion were as follows: (1) diagnosed 
as AIS through radiological examination, (2) Cobb’s angle ranges from 10 to 25 degrees, 
and (3) aged 8–16 years. The scoliosis patient was further divided into PUMCI (single 
curve) and PUMCII (double curves) according to the PUMCI classification [16] (Fig. 1), 
and those patients that did not belong to the two groups were excluded from the study. 
Specially, the PUMCII patients with identical primary and secondary Cobb angles were 
also excluded. Moreover, any subject who has metabolic or oncological or chronic res-
piratory system diseases, central nervous system disorders, injuries, and fractures within 
the previous 6 months was also excluded. The control group included teenagers aged 
8–16 years without systemic diseases and with an angle of ATR less than 5°. The general 
information of these participants is shown in Table 1. The study was approved by the 
Ethics Committee of Shenzhen Second People’s Hospital and conducted according to 
the Declaration of Helsinki. All participants and their parents signed an informed con-
sent form before the experiment.

Procedure

Before the experiment, 56 reflective markers were placed on the landmarks according 
to the definition of Fig. 2. In the spinal region, the markers were placed on the jugular 
notch where the clavicles meet the sternum (clavicle, CLAV), the xiphoid process of 
the sternum (sternum, STRN), the spinous process of the first, third, fifth, seventh, 
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ninth, eleventh and twelfth thoracic vertebrae (T1, T3, T5, T7, T9, T11, T12), of the 
first, second, third, fourth, fifth lumbar vertebrae (L1, L2, L3, L4, L5). In the pelvic 
region, the markers were placed on the left and right anterior superior iliac (LASI, 
RASI), left and right posterior superior iliac (LPSI, RPSI), and left and right iliac crest 

Fig. 1 Frontal and lateral radiographic images of one PUMCI patient (A, B), frontal and lateral radiographic 
images of one PUMCII patient (C, D)

Table 1 Demographics of participants

Group Age (Year) Height (cm) Weight (kg) Cobb Angle (°)

Control 11.27 ± 2.03 150.16 ± 13.97 40.44 ± 11.57 –

PUMCI 12.66 ± 2.63 155.16 ± 15.74 42.55 ± 11.28 15.66 ± 2.54

PUMCII 13.61 ± 1.37 159.94 ± 6.84 42.50 ± 7.84 16.11 ± 2.21

Fig. 2 The schematic of the marker set definition in this study
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(LIC, RIC). In the thigh region, two markers were placed on the medial and lateral 
condyle of the femur (KNE_I, KNE_O), and non-collinear four makers were placed 
on the surface of the thigh (THI_U, THI_D, THI_F, THI_B). In the shank region, two 
markers were placed in the medial and lateral malleolus, and non-collinear four mak-
ers were placed on the surface of the shank (TIB_U, TIB_D, TIB_F, TIB_B). In the 
foot region, the markers were placed on the first and third metatarsal head (Toe, M5), 
calcaneus (HEE), and superior surface of the cuneiform bone (TRS).

After marker placement, participants assumed an anatomical pose for 1 min to get a 
standing reference trail, then they were asked to walk through a 10 m walkway at their 
self-selected speed for several minutes to adapt to this experiment. Subsequently, par-
ticipants walked naturally for data collection. During level walking, a ten-camera three-
dimensional (3D) motion capture system (MotionAnalysis Corp., USA) and two force 
platforms (AMTI Inc., Watertown, MA, USA) embedded in the walkway were used to 
collect three-dimensional markers’ trajectories and ground reaction force (GRF) with a 
sampling frequency of 100 Hz and 1000 Hz, respectively.

Musculoskeletal model and simulation

A generic MoCap_FullBody model in the AnyBody modeling system (version 6.0.6, Aal-
borg, Denmark) was selected, and the upper extremities were removed for this study. 
Therefore, the musculoskeletal model contained the spine, pelvis, and lower extremi-
ties. The spinal model consisted of five lumbar vertebrae and one lumped thoracic seg-
ment. The pelvis was one lumped segment. The lower extremities were composed of the 
thigh, shank, and foot. These segments were linked by joints with 35 degrees of freedom 
(DOFs). In specific, two spherical hip joints (with 3 DOFs) that linked pelvis and thigh, 
two spherical knee joints (with 3 DOFs) that linked thigh and shank, two revolute ankle 
joints (with 1 DOF) that linked the shank and foot, six spherical interverbal joints (with 
3 DOFs) that linked the spinal segments, and one spherical sacroiliac joint (with 3DOFs) 
that linked the spine and pelvis. The positions of these joints were pre-defined in the 
MoCap_FullBody model, which were based on the work by Pearcy and Bogduk [17]. A 
detailed overview and validation of the model were given in the literature [18–20].

For each participant, the standing reference trial was utilized to identify the parame-
ters of segment lengths and the (virtual) marker positions of the musculoskeletal model. 
Then, inverse kinematics was applied to minimize the errors between captured mark-
ers and virtual markers, driving the musculoskeletal model to simulate the participant 
walking.

In general, a minimum of three markers was essential to determine the segmental 
motion. For pelvis and lower extremities, the markers attached to these segments were 
enough to drive the motion of these segments. However, there were insufficient mark-
ers to determine the vertebral bodies. Consequently, the spine model followed a spine 
rhythm that distributed the trunk motion over the vertebral bodies in AnyBody mod-
eling system. In this study, the spine rhythm was removed and each vertebral body was 
independently driven by captured markers referred to the previous studies [21]. In spe-
cific, the thorax was driven by CLAV, STRN, T1, T3, T5, T7, T9, T11 and T12. The first 
lumbar vertebra was driven by T12, L1, and L2, while other spinal vertebrae were driven 
using a similar method.
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Data analysis

After walking simulation, the joint angles of lower extremities and multi-spine were 
the output of the musculoskeletal model. The convex angular ROM of the multi-spine 
and lower extremities were computed for the stance phase of gait, defined from convex 
heel strike to convex toe-off. The concave ROM was calculated similarly. The term "con-
vex" refers to the side of the major scoliosis curve in both PUMCI and PUMC II, while 
"concave" refers to the opposite side. The degree of symmetry between the convex and 
concave ROM was assessed using the symmetry angle (SA) [22], with a score of 0% indi-
cating perfect symmetry and 100% indicating perfect asymmetry.

The results of the Shapiro–Wilk tests indicated that the majority of demographics, 
convex ROM and SA did not follow a normal distribution. As a result, Kruskal–Wallis’s 
test was applied to compare the demographics, SA, and convex ROM across the three 
groups. All statistical analyses were conducted using a custom MATLAB program (The 
Math Works, Natick, MA, USA). The level of statistical significance was set at p < 0.05.

Result
Table  1 shows that there is no significant difference in age, height, weight, and cobb 
angle among the three groups. Figures 3 and 4 demonstrate the symmetry and convex 
kinematics of the lower extremities and multi-spine in the three planes during a stance 
phase of gait.

In the sagittal plane, no significant differences in symmetry and convex ROM of lower 
extremities were observed among the three groups. However, a significant reduction 
in SA of L1L2 between control and PUMCII (p < 0.05), of L4L5 between control and 
PUMCI (p < 0.05), between control and PUMCII (p < 0.01), of L5S1 between control and 
PUMCII (p < 0.05), of Thorax_Pelvis between control and PUMCII (p < 0.05). In addition, 
the convex ROM of L4L5, L5S1, and Thorax_Pelvis increased significantly in PUMC II 
patients.

In the frontal plane, the knee SA decreased significantly and convex L5S1 ROM on the 
convex side increased significantly.

In the transverse plane, a reduced SA of the hip was found between the control and 
PUMCII (p < 0.01).

Discussion
The main objective of this study was to compare the kinematic symmetry and convex 
kinematics of multi-spine and lower extremities between healthy adolescents and two 
types of mild AIS patients. Contrary to our first hypothesis, the AIS patients exhib-
ited a smaller SA of ROM, suggesting more symmetry in spinal and lower extremities 
motion during level walking. In addition, no significant differences in convex ROM were 
found between the control and PUMCI, and a significant increase in convex ROM was 
observed between the control and PUMCII, which supports the second hypothesis.

In the sagittal plane, no significant difference in the SA and convex ROM was found 
in the lower extremities during level walking among the three groups, indicating mild 
AIS did not affect the sagittal movement of the lower extremities. The finding of no 
symmetry difference among groups was in agreement with previous studies [5, 9, 23]. 
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Fig. 3 SA scores for the joint angle of lower extremities and multi‑spine. ** indicates p < 0.001; * indicates 
p < 0.05 (F/E: flexion/bending; Ad/Ab: adduction/abduction; IR/ER: internal rotation/external rotation; D/P: 
dorsiflexion/plantarflexion; LB: lateral bending; Rot: rotation; Thorax_Pelvis: thorax with respect to pelvis; 
Thorax_Pelvis: thorax with respect to Pelvis; T12L1: thorax with respect to first lumbar vertebra; L1L2: first 
lumbar vertebra with respect to second lumbar vertebra; L2L3: second lumbar vertebra with respect to 
third lumbar vertebra; L3L4: third lumbar vertebra with respect to forth lumbar vertebra; L4L5: forth lumbar 
vertebra with respect to fifth lumbar vertebra; L5S1: fifth lumbar vertebra with respect to sacrum)

Fig. 4 ROM of the joint angle of lower extremities and multi‑spine in the convex side. *p < 0.05
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Therefore, the AIS patients seemed to utilize the same sagittal symmetric walking 
strategy as the control group in previous studies and our studies. As for the spine, the 
SA of Thorax_Pelvis showed a significant reduction in PUMC II. Further, our multi-
spine model clarified that the reduction was found in L1L2, L4L5, and L5S1 in detail. 
Although no significant reduction of SA was observed in Thorax_Pelvis between 
PUMCI and control, the PUMC I demonstrated a significant SA reduction of L4L5, 
which provided new insight into the symmetry between groups. The convex ROM of 
Thorax–Pelvis was found to increase in PUMCII. In specific, the increase occurred at 
the L4L5 and L5S1. However. No significant difference was found between PUMC I 
and control. These findings were in contrast with previous studies that no difference 
between control and AIS patients was observed in sagittal trunk motion [5, 9], which 
might be due to the simple trunk model and mix-up classification of AIS. Similarly, 
this study mixed up the different apex locations of PUMC I. However, the location of 
the apex for single curve AIS did not affect the sagittal trunk motion [12]. Therefore, 
it could be inferred that the two types of AIS patients adopted different walking strat-
egies in the sagittal plane, and the strategy of double curves AIS patients seems to be 
more careful because of the smaller SA.

In the frontal plane, the PUMCI demonstrated a significant reduction of SA in 
the knee joint compared to the control, which is inconsistent with previous findings 
[5, 9]. Mahaudens et  al. [5] found that the frontal difference of the lower extremi-
ties occurred at the hip joint due to the prolonged electrical activity duration of the 
related muscles. In contrast, no difference was found in Yang’s study [9]. The reduced 
SA of the knee joints in the single curve patients may be considered abnormal mus-
cle activities of the semitendinosus and lateral heads of Gastrocnemius [24] and 
a compensation for the alteration of the center of body mass (COM). In the spinal 
region, no significant difference in SA was found among the three groups, which was 
in agreement with Yang’s research [9]. Moreover, the convex ROM of Thorax_Pelvis 
also did not show the difference among the three groups, in contrast to findings that 
scoliosis patients had significantly reduced Thorax_Pelvis in the frontal plane [5, 23]. 
The patients in this study were mild, and the effect of AIS on the trunk oblique might 
not be enough to be detected. However, the multi-spine model of this study revealed 
that L4L5 and L5S1 of PUMCII tended to have a larger convex ROM and the signifi-
cant difference was observed in L5S1, which was similar to sagittal findings that dou-
ble curves patients showed larger ROM of the lower spine. Therefore, a multi-spine 
model was essential when assessing the kinematic characteristics in mild AIS patients 
and could provide new insights on the AIS patients’ kinematics.

In the transverse plane, only a significant reduction of hip SA was found between 
PUMC II and the control, which agreed with the previous study [5]. However, previ-
ous research showed that scoliosis patients had significantly reduced trunk ROM and 
asymmetric trunk rotation in the transversal plane compared to normal subjects [5, 9, 
23]. Lots of previous studies had presented the “torsional offset” in AIS patients and 
found the torsional motion could be affected by the position of the major curve [5, 11, 
25]. This study showed the tendency to be more symmetry in the transverse plane. 
However, no significant difference was detected since the major curve’s position was 
not considered in this study.
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There are several limitations to this study. First, only two types of PUMC were included 
and the subgroup of PUMC I and PUMCII may affect the result of the kinematic find-
ings. Second, we did not analyze muscle activities and kinetic data such as joint force 
applied at different spine levels. This is important to understand the AIS mechanism of 
postural control. Third, the upper extremities were not included in this study since the 
upper extremities play an essential role in body balance and walking strategy. Fourth, the 
motion between thoracic vertebrae was omitted in the musculoskeletal model, which 
might provide new insights into the spinal motion of AIS patients.

Conclusions
The AIS patients adopted a more symmetry gait strategy to compensate for the larger 
ROM of the multi-spine and lower extremities. The primary compensation occurred 
in the sagittal plane and lower spine in specific. Compared with PUMC II, the kine-
matics of PUMCI was closer to the control, suggesting the single curve AIS was more 
stable than the double curves AIS. The finding of this study may contribute to the 
understanding of the kinematic characteristics of lower extremities and spinal motion 
during the progression of AIS and also had the potential to help the development of 
rehabilitation and treatment plans.
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