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Abstract 

Background: The escalating impact of diabetes and its complications, includ-
ing diabetic foot ulcers (DFUs), presents global challenges in quality of life, econom-
ics, and resources, affecting around half a billion people. DFU healing is hindered 
by hyperglycemia-related issues and diverse diabetes-related physiological changes, 
necessitating ongoing personalized care. Artificial intelligence and clinical research 
strive to address these challenges by facilitating early detection and efficient treat-
ments despite resource constraints. This study establishes a standardized framework 
for DFU data collection, introducing a dedicated case report form, a comprehensive 
dataset named Zivot with patient population clinical feature breakdowns and a base-
line for DFU detection using this dataset and a UNet architecture.

Results: Following this protocol, we created the Zivot dataset consisting of 269 
patients with active DFUs, and about 3700 RGB images and corresponding thermal 
and depth maps for the DFUs. The effectiveness of collecting a consistent and clean 
dataset was demonstrated using a bounding box prediction deep learning network 
that was constructed with EfficientNet as the feature extractor and UNet architecture. 
The network was trained on the Zivot dataset, and the evaluation metrics showed 
promising values of 0.79 and 0.86 for F1-score and mAP segmentation metrics.

Conclusions: This work and the Zivot database offer a foundation for further explora-
tion of holistic and multimodal approaches to DFU research.
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Introduction
Approximately 540 million people have diabetes worldwide, and 90% have type 2 dia-
betes, primarily caused by socioeconomic, demographic, environmental, and genetic 
factors [1, 2]. Diabetes is a significant economic burden as its health expenditures are 
expected to reach trillions of dollars by 2030 and are anticipated to continue to rise 
[3]. Peripheral neuropathy is a common clinical symptom estimated to affect nearly 
50% of diabetic patients, and of those patients, 25% are at greater risk of developing 
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diabetic foot ulcers (DFUs) [4]. DFUs are full-thickness lesions below the ankle that 
breach the skin’s dermis [5] and are a major complication of diabetes. DFUs are the 
leading cause of hospitalization and lower limb amputations (LLAs) [6]. DFUs can 
form due to various risk factors, such as trauma from high pressures in conjunction 
with neuropathy or peripheral arterial disease, foot deformities, calluses, and other 
comorbidities [7, 8]. DFUs are extremely resistant to healing, and DFUs treatment 
costs for both public and private payers have been established to be 9–13 billion dol-
lars in the United States [9]. Due to the rising hospitalization of patients, mostly with 
LLAs, many facilities have adopted a multidisciplinary care team, which has shown to 
be of great benefit in treating major complications related to diabetes [10]. Hicks et al. 
[11] discovered that this would cost approximately $24,226 from presentation to heal-
ing, measuring approximately $2,412 per wound episode. The lack of available care 
space, human resources, time, and money to treat this ongoing rise in diabetes and 
DFUs demonstrates the need for exploring advanced approaches to manage and treat 
patients with DFUs.

Besides examining physical foot features, the three main DFU assessment methods are 
analysis of foot neuropathy, vascular circulation, and ankle-plantar pressures [12]. Once 
a patient has been screened and presents an ulcer, the current consensus surrounding 
DFU primary treatment involves debriding the wound, using offloading techniques, 
and providing local wound care [13]. Early detection and multidisciplinary care plan-
ning are key approaches to minimizing diabetes foot complications and hospitalization 
time. A wholesome evaluation of biomarkers and patient information would allow for 
more organized and personalized treatment plans. There are several biomarkers for 
DFU assessment and treatment, including the debridement approach [9, 14, 15], off-
loading methods [8], wound dressing, temperature, depth, odour, moisture, pain level, 
and healing phases [16, 17]. Although there have been general advancements in diabe-
tes treatment, technologies to promote successful healing and recognizing biomarkers 
to identify non-healing patients and wound prognosis are still deficient [7]. To bridge 
the knowledge gap, aside from using molecular techniques to examine DFU biomark-
ers, researchers have begun to utilize artificial intelligence (AI) and advanced imaging 
tools to assess wounds’ severity and improve DFU management [7, 18]. As the incidence 
of infection in diabetics with ulcers is most concerning, the ability to skillfully detect 
infected or ischaemic DFUs can reduce the risk of hospitalization and, subsequently 
LLAs. AI approaches such as deep learning (DL) can be trained on large amounts of data 
(image or text) to provide personalized treatment recommendations [19]. Researchers 
have used DL and machine learning (ML) methods in DFU image classification, with 
better results and cost-effectiveness than traditional diagnostic methods [7, 20].

Research and development of such methods for DFU diagnosis and treatment have 
been limited for two reasons [21–25]: 1. absence of large holistic DFU datasets, and 2. 
incomparability of available datasets due to a wide variety of data collection methods. 
For example, whilst regular red–green–blue (RGB) images [26] are important in clas-
sifying DFUs, other factors such as temperature, moisture, odour, pain, wound onset, 
age, sex, and gender are essential in evaluating the wound condition [27, 28]. To this end, 
we created a comprehensive and large DFU dataset using our proposed data collection 
protocol. We called this DFU dataset, the Zivot dataset, to honour the hard work and 
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assistance of Zivot Limb Preservation Centre clinicians, nurses and staff in gathering 
this database. Our main contributions are

• We created a novel, comprehensive and large DFU multimodal dataset using our 
proposed data collection protocol.

• Our data collection protocol was meticulously developed with expert clinical and 
research insights to be adopted as a gold standard for future DFU data collection.

• We showed the benefits of this dataset in a conventional DFU-related DL method.

Protocol background

DL and ML techniques categorize DFUs automatically by employing extraction sys-
tems responsive to selective morphological features, shapes, sizes, and colours [20]. To 
accurately classify DFUs, DL uses deep neural networks, most commonly convolutional 
neural networks (CNN), that can efficiently extract informative features for image clas-
sification tasks [29]. To optimize the efficiency of DL and ML technologies, collecting 
demographic data such as age, sex, illness and DFU history, prior alcohol and smoking 
usage, wound characteristics, as well as comorbidities through case report forms (CRF), 
can aid in diagnosing underlying infection and lead to AI algorithms that successfully 
predict hard-to-heal DFUs [30, 31]. Other computerized solutions for DFU diagnosis, 
such as depth cameras, RGB sensors, and thermometry, are advanced imaging tools and 
have proven effective in medical settings [26, 32, 33]. Depth cameras accurately establish 
wound depth and area with less risk of observer error, wasted time and materials, and 
transmission of pathogens to the lesion than rudimentary methods, such as using rulers 
or metal probes [34]. RGB and thermal cameras can distinguish wound characteristics 
and measure superficial skin temperature, which can capture early signs of inflammation 
and infection, reducing the risk of DFUs in patients [35–37].

To function appropriately, ML algorithms and DL networks require large collections 
of unique data, such as thermal and RGB images, to identify and classify wounds [36]. 
However, there is a lack of good-quality datasets [20, 22] and certain DL models have 
difficulty classifying the severity of pain or detailed aspects of wound complications. 
From our standpoint, the extreme detriments diabetes has on individuals, families, and 
the healthcare system deem the augmentation of valuable DFU data and the implemen-
tation of DL developments as necessary in accurately diagnosing DFUs and other dia-
betic complications. Thus, the scope of this protocol is to provide a comprehensive DFU 
dataset that includes relevant clinical information, RGB, depth, and thermal data to be 
used as a framework in clinical and DL research and development.

Related work

The limited existing DFU datasets are either small in size or lack the inclusion of com-
prehensive attributes essential for DFU. The noteworthy datasets and their attributes are 
summarized in Table 1.

In recent years, DL has proved to be an efficient method for predicting and managing 
DFUs. However, DL algorithms must be fed sufficient and accurate data to maximize 
performance. Some of the more notable DFU datasets in the research community, such 
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as DFUC2020 [26], and DFU_QUTNet [32] have shown promising results in detecting 
DFUs using only RGB images. However, with the growing research on incorporating 
thermal and patient health information in observing wound prognosis and healing, uti-
lizing various data collection methods in creating DL datasets can produce improved 
results [38]. Furthermore, Hernandez-Contreras et  al.’s research has expanded the 
knowledge on the use of AI in analyzing thermal images and DFU risk; however, expand-
ing data to incorporate RGB, thermal, depth, and CRF information can produce a more 
comprehensive and efficient dataset. Thus, a challenge that remains in the literature is 
the lack of current datasets that utilize a wide variety of data modalities. It has been 
noted that fusing thermal and RGB images has improved the accuracy of DL methods 
for DFU segmentation compared to only using one or the other [39]. In addition, includ-
ing patient details such as age, sex, wound onset, ulceration history, as well as wound 
characteristics such as location, exudate, depth, odour, and pain has been proven critical 
in assessing wound status [27]. Therefore, combining RGB, depth, thermal, and CRF in a 
dataset is crucial in the development of a precise and robust DFU prediction. Our pro-
posed dataset integrates these four aspects and can be used as an advanced resource in 
DL development as it overcomes the drawbacks of past methods.

Unlike smaller datasets, which might lack the extent and depth needed for a holistic 
understanding, the Zivot dataset’s inclusion of RGB, thermal, depth, and clinical vital 
information forms a robust foundation for multimodal data analysis. This comprehen-
sive data allow researchers to explore the intricate interplay between visual, thermal, and 
clinical factors, shedding light on both apparent and underlying correlations that con-
tribute to DFU progression and healing. The dataset’s size further distinguishes it, ena-
bling statistically significant findings and the potential to uncover insights that smaller 
datasets might overlook.

Results
Dataset analyses

There were 270 participants in the study and Table  2 indicates the summary of the 
demographics and Table 3 indicates the frequency of participant responses to consent-
related DFU CRF questions. In this dataset, 78% of participants were male, and 83% had 
Type 2 diabetes. Participants diagnosed with sensory peripheral neuropathy, cardiovas-
cular conditions, and cancers accounted for 89%, 42% and 11%, respectively. Predomi-
nantly, 88% of participants had one active DFU at the time of visit. Smoking habits and 

Table 1 DFU datasets

This table summarizes key attributes of significant DFU datasets. Yap et al. [26] introduced DFUC2020, providing 4000 RGB. 
Hernandez-Contreras et al. [33] presented Plantar Thermogram with 334 thermal images. Alzubaidi et al. [32] proposed 754 
RGB images for enhanced DFU classification

Databases Size Features

RGB Depth Thermal CRF

Zivot dataset (ours) 3,700 ✔ ✔ ✔ ✔
DFUC2020 [26] 4,000 ✔ × × ×
Plantar Thermogram [33] 334 × × ✔ ×
Alzubaidi et al. [32] 754 ✔ × × ×
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alcohol consumption patterns were recorded, with 85% having a lower or no smoking 
frequency and 77% having lower or no alcohol consumption. On average, each partici-
pant remained in the study for three follow-up appointments.

Data statistics presented in the tables are from responses available and recorded. Not 
every CRF attribute for the participants was filled out due to absence of data, participant 
uncertainty in response, or human error at the time of form filling. One participant was 
withdrawn, and data discarded when it was discovered the participant’s diagnosis of dia-
betes was mistakenly reported.

As for the images, we collected 3686 RGB, 3680 depth and 3871 thermal images 
from the 269 participants over the 1  year (July 2022–June 2023), which included 
COVID-19-related slowdowns. The images were captured over 111 clinic days follow-
ing our above-described image capture protocol. The different number of images for 
each modality is due to the presence of corrupted files, which were discovered during 
the post-processing of the dataset. The three image capture angles (left, middle and 

Table 2 Participant characteristics

Averages and medians for key participant characteristics in the Zivot dataset

Attributes Average Median

Age 62.1 ± 11.9 62.0

Weight (kg) 96.7 ± 28.2 92.5

Height (cm) 176.7 ± 9.3 177.0

Number of active DFUs per participant 1.2 ± 0.4 1.0

Table 3 Participant characteristics and responses

Participant responses to consent-related CRF questions, including frequencies in both numbers and percentages

Attributes Response Frequency (%)

Sex Male 200 (78%)

Female 56 (22%)

Diabetes Type 1 41 (17%)

Type 2 202 (83%)

Diagnosed with any cardiovascular conditions Yes 106 (42%)

No 148 (58%)

Diagnosed with any cancers Yes 29 (11%)

No 227 (89%)

Diagnosed with sensory peripheral neuropathy Yes 219 (89%)

No 28 (11%)

Number of DFUs per participant 1 225 (88%)

2 25 (10%)

3 4 (2%)

Consumption level Smoking—a cigarette Alcohol—a glass
Frequency (%) Frequency (%)

Less or none 218 (85%) 198 (77%)

1 in 1–4 weeks 1 (~ 0%) 43 (17%)

Daily 7 (3%) 9 (4%)

More than 1 per day 30 (12%) 7 (3%)
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right) provided a natural augmentation, such as brightness, background alteration and 
perspective, as shown in Fig.  1. In addition, our approach to capture images before 
and after debridement stages provided both views of DFUs as they can be different in 
pre- and post-debridement, as shown in Fig. 1, top row. Images from depth and ther-
mal cameras captured the same central area despite having different fields of view. As 
the cameras were placed in the box next to each other, DFUs appeared in the middle 
of images and approximately at the same position for both depth and thermal images. 
Thermal and depth cameras created regular RGB images and their respective thermal 
and depth maps. However, in some cases, maps were either missing areas without data 
(black) or corrupted due to artefacts such as frame drops or devices’ sensor malfunc-
tions. Depth and thermal sensors demonstrated different sensitivity to lights, angles and 
distance, which made it difficult to capture the entire maps for every image capture con-
sistently. Some areas of images appear black as the data are missing, as shown in Fig. 1 
middle row. In the thermal images shown in the final row of Fig. 1, the spectrum of blue 
to green represents colder objects, which are predominantly located in the background. 
These images vividly depict the temperature variations in the DFU area before and after 
debridement, changes that are attributable to the improved blood circulation in the 
region.

The Zivot dataset performance in deep learning

The results of the evaluations are summarized in Table 4 and Fig. 3. We demonstrated 
using the Zivot dataset with bounding box annotations and EfficientNet-UNet model, F1 
score of 0.79 and mean average precision (mAP) of 0.86 are achieved for DFU detection 
in images.

In addition, the area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve demonstrated that this setup achieves high true-positive and low false-
positive rates with an average AUC of 0.98 for the threefold, as shown in Fig. 2. The 

Fig. 1 Illustration of image aspect of the Zivot dataset. The images were taken in two sessions, before and 
after debridement, with each session consisting of three different angles relative to the ulcer surface. The 
top row of the sample dataset shows the RGB images, whilst the next two rows illustrate the corresponding 
depth and thermal maps. In the maps, the colour red represents closer distances from the camera or higher 
temperatures in the depth and thermal maps, respectively. The colour blue indicates further distances from 
the camera or lower temperatures. Any pixel with no available value is shown in black, indicating missing 
data
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bounding box detection of a clear wound is depicted in Fig. 3A. The box surrounds 
the detected DFU, the percentage value above the box indicates the confidence level 
of the network’s prediction, and the number below the box indicates the bounding 
box’s in pixels. The trained network detected DFUs in a wide variety of settings. For 
example, Fig. 3B illustrates the network’s capability in detecting a DFU even before 
debridement when a thin layer of skin is covering the ulcer. Figure 3C and D shows 
the ability of the network to detect DFUs in conditions such as an abnormally bright 
background with a bloody post-debridement ulcer or multiple ulcers in one image, 
respectively. Figure 3E illustrates the insensitivity of the network to the participant’s 
skin tone where DFUs on dark skin feet were correctly detected. Figure 3F demon-
strates the specificity of the network where a non-DFU wound on the ankle of the 
participant was rightfully not detected as a DFU. Finally, Fig.  3G and H illustrates 
negative results, where the second wound on the left foot is missed in G, and red nail 
polish is mistakenly marked as DFUs in H.

Table 4 EfficientNet-UNet 3 fold cross-validation results

The network trained on Zivot dataset performed good in bounding box detection metrics

Evaluation metrics F1 Score mAP Recall IoU Score

0.79 0.86 0.74 0.66

Fig. 2 ROC curve analysis. ROC curve showcases the performance of the setup, indicating its ability to 
achieve high true-positive rates whilst maintaining low false-positive rates. The average AUC across the 
threefold is 0.98, with a standard deviation of 0.0082
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Discussion
Our approach to DFU data collection was carefully designed to align with the demands 
of real clinical settings and the requisite efficiency. The CRF inquiries and image cap-
ture procedures were finely tuned to optimize acquiring essential, dependable data. For 
process consistency, common answers and options like "None" were included to pre-
empt inadvertent errors and question skips. The questions were purposefully organized 
to mirror treatment steps, eliminating redundancy in clinician–patient interactions. In 
addition, because limited research has been done to evaluate the importance of differ-
ent features in DFU healing phase classifications, we included most pertinent questions 
to extract as many key data elements as possible. As the DL-related research in DFU 

Fig. 3 Versatile detection capabilities of the trained network. The red boxes represent the actual locations 
of wounds, whilst the green boxes show the predicted locations by the model. The following scenarios 
demonstrate the capabilities of the bounding box detection model. A Bounding box detection of a visible 
wound with surrounding box, confidence level, and bounding box area in pixels. B Early detection of a DFU, 
even with partial skin coverage, before debridement. C Successful DFU detection in challenging conditions 
like a bright background with a post-debridement ulcer. D detection of multiple ulcers in a single image. E 
Accurate detection of diverse skin tones, including dark skin. F Network specificity by correctly excluding a 
wound on the ankle from DFU detection. G and H illustrate failed cases where the second wound on the left 
foot is missed in G, and red nail polish is mistakenly marked as DFUs in H
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evolves, the CRF questions can be fine-tuned to be more specific. For example, a pre-
liminary analysis of metadata within Tables 2 and 3 highlights potentially distinct fea-
tures, such as patient weight and diagnosed cardiovascular conditions, which could hold 
significance in a DL network for predicting DFU healing phases, as opposed to the near-
ubiquitous presence of sensory peripheral neuropathy for about 90% of the participants.

Beyond the optimized CRF, our work also introduces a noteworthy inclusion in the 
Zivot dataset: pre- and post-debridement images. This offers dual advantages. First, 
given the challenges patients face in self-performing debridement due to DFU loca-
tion and mobility limitations, a DL detection network trained on the Zivot dataset can 
identify un-debrided DFUs, serving early detection and potential home-based supple-
mentary treatment purposes. Second, as debridement is a vital DFU maintenance and 
treatment aspect, our trained network detected DFUs, including pre-debridement peri-
ulcer regions and post-debridement ulcer areas. This functionality empowers clinicians 
to quantitatively assess and analyze debridement techniques and zones, enhancing their 
effectiveness. Figure 1 demonstrates the evaluation of debridement effects. Specifically, 
debridement is anticipated to improve blood circulation to the area of the DFU, thereby 
increasing the local temperature. This temperature change can be quantitatively assessed 
through thermal imaging. Prior to debridement, the wound is likely to exhibit a lower 
temperature due to the presence of necrotic tissue, which typically has poor blood sup-
ply. After debridement, a temperature rise is expected as a result of the acute inflam-
matory response, which is characterized by localized bleeding and inflammation. This 
response occurs following the removal of necrotic tissue, a phenomenon corroborated 
by the thermal images.

Although the presence or absence of sensory peripheral neuropathy was not a part 
of our recruitment criteria, we noted a higher incidence of diagnosed peripheral neu-
ropathy compared to what is reported in the published literature. This underscores the 
notion that the diagnosis of this condition can encompass a broad spectrum of inter-
pretations. Peripheral neuropathy can manifest either fully or partially in specific areas 
of the limb, and the diagnosis may vary depending on the scale and clinical judgement 
of healthcare providers. Consequently, we chose not to incorporate this condition as a 
definitive determining factor for our inclusion or exclusion criteria.

The DL application demonstrates a promising performance with a high F1 score of 
0.79 and a mean mAP of 0.86 for detecting DFUs. Whilst it necessitates further anal-
ysis and comparison, these metrics surpass the previously established results in the 
DFU2020 dataset competition [26], which reported an F1 score of 0.74 and a mAP of 
0.69. It is worth noting that the two datasets employed distinct protocols and camera 
systems for image capture, making it challenging to directly compare the performance 
of the Zivot dataset and the previously established metrics. The absence of a standard-
ized protocol for data collection has constrained efforts to compare research findings 
and foster collaborative efforts in this field. By adopting the Zivot dataset protocol, we 
can expand and unify research and development efforts in DFUs. Figure 3, in particular, 
demonstrates a summary of our proposed detection model capabilities. The model pre-
dicts the location of wounds using green boxes, whilst the groundtruths are represented 
by red boxes. Even with partial skin coverage, an early detection of a DFU is made before 
debridement. Successful DFU detection is achieved even in challenging conditions like 
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a bright background with a post-debridement ulcer. Multiple ulcers in a single image 
are detected. The detection of diverse skin tones, including dark skin, is accurate. The 
network is specific enough to exclude a wound on the ankle from DFU detection. Failed 
cases are illustrated in G and H where the second wound on the left foot is missed in G, 
and red nail polish is mistakenly marked as DFUs in H. To enhance the model’s perfor-
mance on failed cases, we suggest incorporating more healthy foot examples that exhibit 
similar wound features, such as red nail polishing. This additional augmentation and 
inclusion can help improve the model’s accuracy and reliability.

Limitations and challenges
The study encountered a key hurdle in the form of missing clinical and image data. Opt-
ing for paper-based CRFs aligned with the clinic’s data system posed added complexi-
ties, including difficulty deciphering markings, incomplete CRF entries due to question 
skipping, record management challenges, and extensive paper handling. Transitioning to 
a digital CRF on tablets could alleviate these issues. Furthermore, some depth and ther-
mal maps featured zones with uncollectible sensor data due to frame drops, suboptimal 
lighting, and sensor distance disparities. To mitigate data gaps in the maps, extra atten-
tion was given to ensuring data presence around the DFU site for both modalities during 
image capture. It is believed that depth and thermal cameras with more similar configu-
rations and requirements could potentially be more suitable for this purpose.

Although the dataset offers valuable depth and thermal information, it has certain lim-
itations when capturing fine-grained tissue characteristics depicted in these maps. Both 
cameras are specifically engineered for capturing macroscopic images, providing a broad 
field of view. The camera setup was intentionally designed to facilitate image capture at 
home for patients with restricted mobility and limited handholding capability. However, 
for studies necessitating microscopic tissue analysis and precise, well-lit, zoomed-in 
images, this dataset may offer restricted utility. As depth and thermal imaging technolo-
gies advance, the camera setup can be adapted to cater to a broader spectrum of applica-
tions and research studies.

Conclusions and future work
This study introduces a comprehensive framework for collecting DFU data and facili-
tating advanced research in DFU analytics and DL. The protocol incorporates RGB, 
depth, and thermal images, along with crucial DFU attributes in the CRF. Employing 
this protocol, we successfully curated the extensive Zivot DFU dataset over a year, com-
prising about 3700 images from 269 participants and presented a summary of clinical 
and demographical features for this patient population. In addition, through training the 
selected EfficientNetb3-UNet DL network on this dataset, high-performance metrics 
were achieved, with an F1-score of 0.79 and mAP of 0.86. These outcomes establish a 
baseline for DFU detection using this dataset and underscore the protocol’s and dataset’s 
significance in advancing DL-based DFU research and development. Given the Zivot 
dataset’s holistic nature, it offers ample potential for future multimodal DL advance-
ments to harness its information richness fully.

This dataset opens new avenues to understand the healing and develop personalized 
treatment strategies for the patients. We showed the performance on RGB DFU images; 
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in future, we will perform the same with depth and thermal cameras and their combi-
nations to understand if multimodal images help in localizing the wounds more accu-
rately. We will evaluate other DL segmentation and object detection models, including 
EfficientDet [40], YOLO [41], and Segment Anything [42], to perform a comprehensive 
analysis. We are also developing generative DL approaches using stable diffusion net-
works [43, 44] to create new wound images that can be used for data augmentation and 
reveal new artefacts that may be clinically relevant. We will develop a web application 
to identify real and generated DFU images (from different camera modalities) and seek 
clinical opinions on their accuracy. This dataset can also be used as a pre-trained model 
to fine-tune on other DFU datasets, such as DFU2020 and test on new or existing DFU 
datasets. However, translating models trained on the Zivot dataset to other datasets may 
induce dataset bias due to differing protocols, instruments and labelling [45]. New data 
bias mitigating strategies will need to be developed to maximize the utility of existing 
datasets.

Methods
As this was a multicentre effort, The Conjoint Health Research Ethics Board of the Uni-
versity of Calgary (#21-1052) and the Research Ethics Board of the University Health 
Network (#21-5352) granted ethical approval for researchers conducting clinical 
research. All DFU patients were recruited from Zivot Limb Preservation Centre located 
in Peter Lougheed Hospital, Calgary, Alberta, Canada; permission to gather data was 
approved by Alberta Health Services (AHS) hospital authorities. Informed consent was 
taken from all the patients. To ensure confidentiality, no identifiable information about 
patients was kept in the research database, and any identifiable features, such as a clinic 
chart number, were replaced with a randomly generated code. Recognizable information 
such as age, sex, and weight remained with the research database but in separate stor-
age from wound images, all password-protected on the hospitals’ servers and encrypted 
drives. Furthermore, the master list linking the randomized codes and any recognizable 
information was kept at AHS in a separate and secure location accessible only to the pri-
mary physician investigator.

Protocol case report form

A detailed paper CRF was used for collecting preliminary patient data. The CRF was 
developed concisely and carefully in consultations with expert DFU clinicians, medical 
and DL researchers to maximize the usability and efficacy of the dataset. The medical 
history of participants was collected, if possible, at consent/baseline appointments as 
well as on follow-ups. A blank copy of the CRF used in the study is included in Appendix.

The CRF contains four sections: 1. Patient information, 2. Wound information, 3. 
Prescribed treatment plan, and 4. Healing phase estimation. The first page of the CRF 
contains basic information that is collected once at the first consent appointment. This 
information includes demographic aspects, such as age, sex, height, weight, number 
of DFUs, and type of diabetes (1 or 2). Smoking, alcohol consumption habits, comor-
bidities, including diagnosed cardiovascular conditions, cancer, and sensory peripheral 
neuropathy, as well as foot arch and toe characteristics such as bunions, claw/hammer, 
Charcot arthropathy, pes planus (flat arch), and pes cavus (abnormally high arch) are 
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also noted on the first CRF page. The second page of the CRF contains information 
specific to the wound (i.e., location, temperature at wound centre and peri-ulcer, ulcer 
frequency whether new or recurrent, late-onset, level of pain, pain type, wound tunnel-
ling, exudate amount/appearance, wound odour, peri-ulcer condition and the prescribed 
dressing by the DFU clinician. Page three includes any deformities or abnormalities on 
the affected foot, such as hair loss, dry skin, fissure cracks, callus, thickened toenails, and 
fungal nails. Patients’ offloading methods, if any, include therapeutic footwear, scotch 
cast boot, removable cast, half-shoes-healing sandals, total-contact cast, and crutches–
walker–wheelchairs, are also recorded. The last section of the CRF contains a segment 
specifically for the DFU expert clinician to diagnose the current healing phase for each 
wound to the best of their abilities and to provide a confidence level percentage for their 
classification only for research purposes.

To maintain consistency in the dataset, for many categories, suggested picks for the 
patient and clinicians are provided in the CRF. For the clinician questions, subcatego-
ries of tunnelling include none, minor, medium, and severe. Exudate amount can be 
denoted by no exudate or dry, scant/small or moist, and heavy or wet/saturated. Exudate 
appearances are divided into four subcategories—serous or clear yellow fluid without 
blood, pus or debris, haemoserous, bloody/bright red, or thick, cloudy, mustard yellow 
or tan. Odour includes two categories—1. No or faint odour, and 2. Unpleasant/offen-
sive/putrid. The peri-ulcer condition involves the subgroups: none, erythema/redness, 
oedema/swelling, hyperkeratosis, pale, or macerated. And last, dressing used on the 
wound has the options of none, gauze, promogran, urgo, inadine, idosorb, collagenase, 
and others. For the patient questions, the subcategory of the pain level on the foot with 
the wound was classified using numbers 0–5, depicting no pain, slight, moderate, notice-
able, painful, and unbearable, respectively. Patients were asked to describe their pain 
type and options in the following proposed wordings: frequent waking at night or need-
ing to dangle limb for relief, calf pain, pinching/throbbing, phantom, or other.

Most importantly, the CRF contains a section specifically for clinicians to diagnose the 
current phase of healing for each wound. The three healing phases that wounds can be 
classified into are 1. Inflammatory, 2. Proliferative, and 3. Remodelling/strengthening, 
and each phase can be further split into three subsections. The subdivision of each phase 
is denoted with a minus (−), no symbol, or a plus (+) sign to accurately determine if 
the wound is in the latter, middle, or final stages of the phase. Last, a percentage confi-
dence level of the clinician’s wound classification is required to provide an accurate level 
of assessment and to act as a guideline to monitor patients’ progress. Standard healing 
phase visual guides were provided with CRF to assist clinicians’ evaluations.

Camera setup

Thermal and depth cameras were set up in a box for synchronized, consistent and 
approximately similar field-of-view capture of wound images, as shown in Fig. 4. Both 
cameras were placed close to each other so that the thermal and depth camera lens dis-
tances were measured at 3.3 cm. Cameras could not be placed on top of each other due 
to the heatsink requirements of the depth camera. For the thermal images, we used the 
FLIR ONE Gen 3 smartphone thermal infrared (IR) camera, and images were captured 
using the camera’s native Android mobile phone application with continuous calibration 



Page 13 of 20Basiri et al. BioMedical Engineering OnLine           (2024) 23:12  

turned off in 1080 × 1440 dimensions. Each thermal image capture began with one cam-
era calibration to the room lighting. For the RGB images and depth maps, we used the 
Intel RealSense D435i camera and RealSense viewer software. The stereo depth images 
were captured at 6 FPS, 16-bit and 1280 × 720 dimensions using the left and right imag-
ers, as shown in Fig.  4. The RGB images were taken at 30 FPS, 8-bit and 1280 × 720 
dimensions. Thermal and depth maps were projected onto the RGB images from ther-
mal and depth cameras. The camera box containing the thermal camera, an Android 
smartphone, and the depth camera was attached to the back of a computer laptop, where 
the wound image capture was done with one click simultaneously from the laptop. 
Wound images were taken within a 1–2 feet distance between the surface of the wound 
and the front of the box where the camera lenses were located.

Data collection

To select eligible participants for this dataset, we used the following inclusion and exclu-
sion criteria. Inclusion patients must be individuals 18 years or older, have a valid diag-
nosis and confirmed diabetes record, and have a full-thickness DFU on the dorsal or 
plantar regions of the foot. For the exclusion criteria, patients unmotivated to participate 
in the study or unwilling to sign the consent form were excluded from the recruitment. 
Patients scheduled for amputation or undergoing additional interventions, such as sur-
gery that would alter the natural DFU healing course, were also exempted. In addition, 
patients whose wounds were not experiencing any of the three healing phases were dis-
qualified. Other exclusion criteria were patients having DFUs with gangrene or eschar, 
ongoing infection and drainage and thus cannot be debrided or exhibit extreme tunnel-
ling or depth in a way that the primary clinician cannot visually inspect the depth of the 
wound and determine healing phases.

At the initial visit, all participants were screened by the podiatric surgeon based on 
the inclusion–exclusion criteria (see above) and the patient’s willingness to participate 
in this study, followed by consent form enrolment for the eligible participants. After the 
consent, participants were interviewed using the in-house developed CRF for past medi-
cal history, demographic details, and general foot and wound information.

At the recruitment appointment and pre-debridement, three pictures of the patient’s 
wound from left, middle, and right angles relative to the wound surface were taken. 

Fig. 4 Camera setup and positioning. Left: the depth and thermal cameras were securely and adjacently 
positioned within a dedicated compartment. The RGB lenses were aligned and placed 3.3 cm from each 
other. The stereo and IR-generated depth, and thermal maps are superimposed on the RGB images for each 
camera. Right: the fixed apparatus was affixed to the rear of a laptop, enabling simultaneous image capture 
initiation from the laptop



Page 14 of 20Basiri et al. BioMedical Engineering OnLine           (2024) 23:12 

After the physician wound debridement, three additional post-debridement images in 
the same order were taken for a total of six images pre- and post-debridement. The tem-
perature of the wound and the peri-ulcer skin were recorded using a Fora IR42 medical 
grade non-contact infrared thermometer digital thermometer with an accuracy of 0.2 
Celsius. For foot temperature measurements, the thermometer mode was set to general 
body parts instead of the default forehead mode. If no debridement was required for a 
patient, only the three pre-debridement photos were taken. The physician then classified 
wound features and the healing phase of the DFU and provided a confidence percent-
age of the classification as outlined on the CRF. Images and forms were marked with 
timestamps to avoid misplacements. The image capture and CRF fillings were repeated 
for each patient at the follow-up appointments until the wound was classified as healed 
by the clinician or the participant withdrew from the study. All images were taken to 
exclude faces and identifiable information; however, the researchers took special consid-
erations to blur any recognizable objects or aspects if included in the images.

Deep learning evaluation on the Zivot dataset

The efficacy and value of this dataset were demonstrated in the wound detection aspect 
of DL. For these methods, only DFU RGB images of the dataset were used to establish a 
baseline with previously available performance metrics.

For object detection, we used UNet architecture with Efficientb3 feature extractor, 
Fig. 5, as it has been previously shown to be one of the highest performing combinations 
for the DFU detection [46]. For the detection dataset, 3686 (1280 × 720) RGB images 
were annotated with bounding boxes around each DFU by experts in the field. Net-
work training was carried out using 480 × 480 random crops of the images, a decaying 
learning rate from 1e-03, a batch size of 70 and a cumulative loss function consisting of 
Dice, Jaccard, and Binary Focal losses. RGB colour channel distributions were normal-
ized to the ImageNet dataset. Pixel level augmentations such as random contrast, blur-
ring, brightness and transformation augmentations such as random flip and scale shift 
were implemented on the training dataset. To evaluate the benefit and application of the 
Zivot dataset in the DL domain, we performed a threefold cross-validation. The previ-
ously developed EfficientNet-Unet was trained three times on the entire dataset using 
a 0.67:0.33 split for training and testing datasets for each fold. F1 score, mAP, recall and 

Fig. 5 DL DFU detection architecture. A combination of EfficientNetb3 and UNet was used and trained with 
the Zivot dataset. This model has been shown to be a high-performing detection model for DFUs [46]
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intersection-over-union (IoU) metrics were used to evaluate the predicted bounding 
boxes around DFUs.

Appendix
Case report form
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