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Background
Alzheimer’s disease (AD) is a major neurocognitive impairment, which is the most com-
mon cause of dementia in people over the age of 65 [1]. It is usually manifested in the 
changes in memory, abstract thinking, judgment, behavior, and emotion, and finally 
interferes with the physical control of the body [2]. However, the diagnosis of AD often 
requires physicians to use various clinical methods including medical history, mental 
status tests, physical and neurological exams, diagnostic tests, and brain imaging [3]. 
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Purpose: Recent technological advancements in data acquisition tools allowed 
neuroscientists to acquire different modality data to diagnosis Alzheimer’s disease (AD). 
However, how to fuse these enormous amount different modality data to improve 
recognizing rate and find significance brain regions is still challenging.

Methods: The algorithm used multimodal medical images [structural magnetic reso-
nance imaging (sMRI) and positron emission tomography (PET)] as experimental data. 
Deep feature representations of sMRI and PET images are extracted by 3D convolution 
neural network (3DCNN). An improved Transformer is then used to progressively learn 
global correlation information among features. Finally, the information from differ-
ent modalities is fused for identification. A model-based visualization method is used 
to explain the decisions of the model and identify brain regions related to AD.

Results: The model attained a noteworthy classification accuracy of 98.1% for Alzhei-
mer’s disease (AD) using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
set. Upon examining the visualization results, distinct brain regions associated with AD 
diagnosis were observed across different image modalities. Notably, the left parahip-
pocampal region emerged consistently as a prominent and significant brain area.

Conclusions: A large number of comparative experiments have been carried 
out for the model, and the experimental results verify the reliability of the model. In 
addition, the model adopts a visualization analysis method based on the characteristics 
of the model, which improves the interpretability of the model. Some disease-related 
brain regions were found in the visualization results, which provides reliable informa-
tion for AD clinical research.
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Therefore, a computer-aided AD diagnosis is in urgent need of objective and efficient 
methods.

Medical imaging technology is a powerful tool to identify the progression of brain 
diseases. More specifically, magnetic resonance imaging (MRI) and positron emission 
tomography (PET) can assist in diagnosing the disease and monitoring its progress [4]. 
Structural MRI (sMRI) can well-quantify brain tissue atrophy in patients with AD [5]. 
KLöppel et  al. [6] generated the gray matter density map of the brain using the sMRI 
images of subjects and realized the identification of AD using the support vector 
machine (SVM). The PET can monitor the changes in glucose metabolism in the human 
body [7]. Wen et al. [8] extracted PET image features and identified AD from healthy 
controls by logistic regression. For the features of a single modality, the observed feature 
information usually only is provided from a certain perspective. The feature information 
of multiple modalities can realize a more comprehensive study of human brain. There-
fore, developing AD diagnosis models based on multimodal medical images has become 
a new trend. A few recent studies show that multimodal brain imaging data results have 
better performance than single-modal data [9–11].

Some AD-related networks have been discovered and new insights have been provided 
for the pathological mechanisms of AD with seed-based methods such as hippocampus 
volume, regional cortical thickness, and temporal lobe. For example, Ardekani et al. pro-
posed a method of segmenting the hippocampal region to identify AD [12]. Williamson 
et al. introduced a connectivity analysis to identify sex-specific AD biomarkers based on 
hippocampal–cortical functional connectivity [13]. However, mounting evidence indi-
cates that neurodegenerative processes, even if they are highly localized, are associated 
with disease-specific alterations across the whole brain [14, 15]. Thus, the abnormal pat-
terns of AD across the whole-brain scale have yet to be investigated.

Recently, the deep learning approach has attracted a lot of attention to exploring new 
imaging biomarkers for AD diagnosis and prediction, which requires no prior knowl-
edge to extract biologically meaningful information from subtle changes. Zhang et  al. 
[16] proposed a deep learning framework based on gray matter slices from sMRI. This 
framework combines slices with attention mechanisms and achieves AD classification 
through residual networks. However, this slice-based approach leads to the loss of spa-
tial information in 3D brain images, thereby affecting the classification performance. 
Therefore, Feng et al. [17] proposed to use a 3DCNN to extract features from MRI and 
PET images. They cascade these features and then use a stacked bidirectional recurrent 
neural network (SBi-RNN) to obtain further semantic information for identification. 
However, SBi-RNN has the problem of gradient explosion or gradient disappearance. 
To address this challenge, Feng et al. [18] proposed to use a 3DCNN to extract features 
from MRI and PET images. They use fully stacked bidirectional long short-term mem-
ory (FSBi-LSTM) to extract all the spatial information from the feature maps and further 
improve the performance. However, there are direct or indirect connections between 
different feature maps, and these global correlations are ignored by the above research.

The transformer model was first proposed by Vaswani et  al. [19]. It has a powerful 
capability of global information integration. The self-attention mechanism in it can 
quickly obtain the global correlation between input features without stacking many lay-
ers like CNN, and these computations are all parallel [19]. Thus, it can effectively capture 
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the non-local relationships among all input feature maps. This mechanism also makes 
the model more interpretable. Vision Transformer (ViT) is a pioneering work of trans-
former in the field of computer vision, it and its variants have shown excellent perfor-
mance in various image-related tasks [20–22]. However, the original ViT only deals with 
2-D images, and the input is the sequence of linear embeddings of image patches [20]. In 
our scenario, the input is 3-D medical images, and directly patching would destructing 
the connection among brain areas. Hence, we employ 3DCNN to extract features that 
serve as input to the Transformer for AD diagnosis. However, the features extracted by 
3DCNN in the initial stage of model training are not representative, and learning their 
global information is meaningless. Therefore, we optimize the transformer by gradually 
introducing a self-attention mechanism to help model training focus more on feature 
extraction in the initial stage.

In summary, we proposed a network model based on 3DCNN and Transformer for AD 
diagnosis. In specific, an improved Transformer is used to learn the correlation informa-
tion among features, which are extracted from medical images by 3DCNN. The informa-
tion from different modalities is fused and identified through the fully connected layer. 
We conducted extensive experiments on the publicly available ADNI dataset, and the 
model demonstrated excellent performance. In addition, we performed interpretability 
analysis of the model’s decisions using visualization methods based on its characteristics 
and identified several brain regions associated with AD.

Results
Performance of the proposed method

We obtained the identification performance with the ACC of 98.10% (precision 99.09%, 
SPE 96.75%, SEN 96.75%, F1 97.81%, AUC 98.35%) in AD diagnosis (see Table 1).

First, we employed permutation tests to assess the statistical significance of the tenfold 
cross-validation results. For each tenfold cross-validation, the identification labels of the 
training data were randomly permuted 1000 times. The null hypothesis is that identifier 
cannot learn to predict labels based on the given training set. Experiments show that for 
each training, usually the training set converges or even overfits, while the validation set 
does not converge. With accuracy as the statistic, the result (see Fig. 1) of permutation 
distribution of the estimate revealed that this identifier learned the relationship between 
the data and the labels with a risk of being wrong with a probability of lower than 0.01.

Then, we conducted a series of comparative experiments as follows. To demonstrate 
the superiority of multi-modal fusion, we implemented two single-mode variants of our 

Table 1 Network performance in different settings (mean ± standard deviation, %)

ACC  accuracy, PRE precision, SPE specificity, SEN recall/sensitivity, F1S F1 score

Methods ACC PRE SPE SEN F1S AUC 

Proposed method 98.10 ± 2.46 99.09 ± 2.87 96.75 ± 5.28 95.82 ± 5.03 97.81 ± 2.87 98.35 ± 2.14

Only sMRI 91.91 ± 5.96 91.05 ± 10.49 92.72 ± 8.67 90.91 ± 9.41 90.31 ± 6.16 91.33 ± 5.99

Only PET 87.14 ± 7.12 85.4 ± 10.31 88.62 ± 8.59 85.05 ± 15.61 83.99 ± 9.80 87.43 ± 6.61

Typical Transformer 94.32 ± 4.01 93.57 ± 7.76 93.33 ± 6.34 92.25 ± 7.36 93.40 ± 4.25 95.05 ± 3.11

Without Transformer 92.86 ± 7.12 90.60 ± 10.31 92.20 ± 8.59 92.03 ± 15.61 90.78 ± 9.80 93.11 ± 6.62

Without 3DCNN 90.01 ± 3.52 83.44 ± 8.77 89.46 ± 5.05 93.02 ± 7.59 87.45 ± 4.22 90.06 ± 3.48
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method (only sMRI and only PET). Thus, the model was unchanged except for the mul-
timodal fusion part. We trained the model with single-mode data (sMRI or PET) and 
take the results of a tenfold cross-validation. The results are also shown in Table 2, from 
which we can find that the multimodal fusion method significantly improved the per-
formance. Compared with the sMRI only variant, the accuracy was improved by 6.19%, 
while the improvement over the PET only variant is 10.96%.

In addition, compared with the classical Transformer, our improved solution also 
shows better performance (3.78% higher in accuracy). When the model only included 
the 3DCNN by excluding the Transformer part, the accuracy of identification is 5.24% 
lower. We also tried to remove the 3DCNN part from the model. We followed the 
approach in ViT [20]: split the 3D image into patches and added positional encoding 
before inputting them into the Transformer. The results show that the identification 
accuracy of the model without 3DCNN is 90.01%, which verified the importance of fea-
ture extraction using 3DCNN. The ROC curves of different methods are shown in Fig. 2.

Visualization results

We obtained the features with the highest weight for sMRI and PET respectively through 
the above method. The highest weighted features for sMRI and PET were 145th and 
133rd features, respectively. We input these features into the decoding network to obtain 
the key brain regions that make significant contributions to these features. Here, the 
higher the value of pixels is, the more important it is in the identification process. Thus, 
the value of pixels in the top 1% and cluster size > 100 remained (see Fig. 3). The most 
important brain regions were identified.

Results show that selected regions refer to the right inferior frontal gyrus, the right 
cerebellum posterior lobe, the left middle temporal gyrus, the right fusiform, and the 

Fig. 1 Permutation distribution of the estimate

Table 2 Cluster distribution statistics of sMRI 142nd feature deconvolution map in brain regions (5 
clusters)

Region MNI coordinates Peak intensity Voxels

x y z

Right fusiform 34 − 4 − 43 2.89 72

Right cerebellum posterior lobe 39 − 78 − 35 2.25 71

Left middle temporal gyrus − 51 − − 22 2.31 71

Left parahippocampal − 22 − 8 − 22 2.14 69

Right inferior frontal gyrus 32 36 − 10 2.24 154
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left parahippocampal in sMRI [see Table  2 and Fig.  3 (top)]. As for PET, the selected 
regions include the left medial frontal gyrus, the left superior frontal, and the left para-
hippocampal [see Table 3 and Fig. 3 (bottom)].

Fig. 2 ROC curves of different methods

Fig. 3 Clustering results (cluster size > 100) of remaining pixels (top 1%) in MRI (top) and PET (bottom) 
images
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Discussion
Recent technological advancements in data acquisition tools allowed neuroscientists 
to acquire data in a different modality. These data are huge in amount and complex 
in nature. It is an enormous challenge for data scientists to identify intrinsic charac-
teristics of neurological big data and infer meaningful conclusions from these data. 
Mining such an enormous amount of data for pattern recognition requires sophisti-
cated data-intensive machine learning techniques. Classical data mining techniques 
could be ineffective when problems get increasingly complicated. We propose a 
relatively lightweight model, which can efficiently extract meaningful features from 
medical images. It combines the characteristics of brain images, which can effi-
ciently solve the correlation information between features, and fuse the information 
from different modal medical images. Our method increased accuracy, and the use 
of meaningful information.

Comparison with previous methods

We compared our proposed method with previous AD diagnosis methods based 
on multimodal data, which used sMRI and PET images from the ADNI dataset as 
experimental data. To ensure a fair comparison, we reproduced their models using 
the parameters provided in their literature and conducted comparative experiments 
on the same dataset. As shown in Table  4, our proposed method outperforms the 
methods proposed by Feng et  al. [17, 18], who used SBi-RNN and FSBi-LSTM to 
learn the correlation information between features, and Li et  al. [23], who used a 
VGG-like network to mine multimodal image information. Our approach, which uti-
lizes an improved Transformer to progressively learn global information of features, 
achieves superior performance in terms of accuracy.

Table 3 Cluster distribution statistics of PET 133rd feature deconvolution map in brain regions (3 
clusters)

Region MNI coordinates Peak intensity Voxels

x y z

Left parahippocampal − 17 − 4 − 28 1.65 30

Left medial frontal gyrus − 1 − 3 59 1.39 84

Left superior frontal − 20 − 1 62 1.37 46

Table 4 Comparison with previous research on AD diagnosis (mean ± standard deviation, %)

ACC  accuracy, PRE precision, SPE specificity, SEN recall/sensitivity, F1S F1 score

Methods ACC Precision SPE SEN F1S AUC 

3DCNN + SBi-RNN [17] 93.33 ± 5.59 93.67 ± 7.22 94.91 ± 5.90 91.81 ± 8.01 92.52 ± 6.16 93.43 ± 5.56

3DCNN + FSBi-LSTM [18] 94.76 ± 5.70 95.78 ± 7.21 96.78 ± 5.53 93.76 ± 9.35 94.38 ± 6.12 94.85 ± 5.38

3D PMNet [23] 96.19 ± 4.92 98.89 ± 3.51 98.89 ± 2.78 93.19 ± 7.99 95.84 ± 5.40 96.47 ± 4.67

Proposed method 98.10 ± 2.46 99.09 ± 2.87 96.75 ± 5.28 95.82 ± 5.03 97.81 ± 2.87 98.35 ± 2.14
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Visualization analysis

The brain consists of many brain regions responsible for different tasks. However, not 
all brain regions are related to AD. The most obvious pathological feature of AD is the 
loss of neurons, which is mainly manifested in the development of brain atrophy from 
AD signal area (such as the hippocampus and the temporal lobe) to the whole cor-
tex [24]. Therefore, we try to find these brain regions by utilizing a different method 
from the traditional method of shielding brain ROIs, which may ignore some poten-
tial brain regions related to AD.

We made full use of the characteristics of the model to realize visualization and 
found the brain regions related to AD, which may help to better understand the 
potential pathogenesis of AD. Based on the visualization method in [20], we can 
obtain the weight of each feature through the attention matrix. According to the 
study of Zeiler et al., they realized the visualization of the model by deconvoluting the 
feature map output by convolution [25], and we can also do that on the final features.

Many studies suggest the temporal lobe transforms sensation into derived meaning 
to properly maintain visual memory, language understanding, and emotional asso-
ciation [26]. Brain atrophy in AD patients is symmetric and primarily affects medial 
temporal lobe structures [27]. Fusiform is part of the temporal lobe of the brain, this 
region is critical for face and body recognition. Convicted et al. [28] found that in AD, 
the volume of the temporal lobe is reduced, and the atrophy of the fusiform gyrus is 
the most obvious. Vidoni et al. [29] found that people with cognitive impairment had 
increased fusiform cortex engagement in visual coding tasks. Chang et al. [30] stud-
ied the relationships between regional amyloid burden and GM volume in AD and 
found pathological co-variance between the fusiform gyrus and para-hippocampus, 
and inferior temporal gyrus. Our structural findings are consistent with these previ-
ous studies and suggest that the etiology and mechanism of AD may be closely related 
to temporal lobe abnormalities.

The cerebellum plays an important role in motor function, controlling muscle ten-
sion and balance. It is a generally neglected area in the study of AD. However, there is 
increasing evidence that it is also involved in cognitive processing, emotion, and emo-
tion regulation. The findings of Thomann et al. [31] confirmed that cognitive ability in 
AD patients was significantly associated with the volume of the posterior cerebellar 
lobe. Thus, we speculate that the aberrant cerebellar regions may be partially involved 
in the sluggishness and cognitive decline of AD.

The frontal lobe and hippocampus may be related to cognition and memory. 
According to the recent studies reported, the frontal lobe is responsible for logic, 
regulating behavior, complex planning, and learning. Alzheimer’s disease gradually 
damages the frontal lobe as the disease progresses. Laakso et al. [32] found that the 
volume of the hippocampus and left frontal lobe in the AD group was significantly 
smaller than that in CN subjects, and the decrease in left hippocampal volume was 
related to the decrease in MMSE score and the impairment of language memory. 
Our results for PET showed that the superior frontal gyrus, middle frontal gyrus, and 
parahippocampal may be subject to damage. Our results are consistent with previous 
studies. Especially, abnormal regions in the left hippocampus appeared in both sMRI 
and PET, which may suggest that the abnormality in this region is particularly related 
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to AD. Our results might lead to an improved understanding of the underlying patho-
genesis of the disease and provide valuable information for further research on AD.

Conclusion
In this study, we proposed a framework based on 3DCNN and an improved Transformer 
for the diagnosis of Alzheimer’s disease based on multimodal medical images. These 
promising results indicated that AD-related brain disorders can be precisely examined 
with multimodal medical images and deep learning techniques. We also strengthened 
the clinical interpretation of our proposed method through the visualization method, 
which may provide additional information to facilitate the diagnosis of AD.

Methods
Feature learning‑based 3DCNN

The CNN has a powerful capability of local feature extraction. However, most CNN 
framework is designed for processing 2D images. For 3D brain images, they are usually 
processed into 2D slices, which will lose spatial information. To efficiently extract the 
abundant spatial information of 3D brain images, we adopt the 3D convolution kernel 
in this work. We alternatively stack the convolutional layers and pooling layers to get the 
multi-level features of multimodality brain images, as shown in Fig. 1.

In specific, the input image is convolved with a list of kernel filters in a convolutional 
layer. Then, a batch normalization layer is added between the activation function and 
convolution layer to improve the efficiency of training and avoid overfitting. We choose 
rectified linear unit (ReLU) as the activation function. Formally, we define the 3D convo-
lution operation as follows:

where x, y, and z represent the voxel positions of a 3D image. Wl
kj is the weight of the jth 

3D kernel which connects the kth feature map of layer l1 with the jth feature map of 
layer l, Fl−1

k  is the kth feature map of the (l1)th layer, and blj is the bias term of the jth fea-
ture map of the lth layer. ReLU is employed as the activation function after the convolu-
tion of each layer. Finally, the output Fl

j  is obtained by summation of the response maps 
of different convolution kernels, which denotes the jth 3D feature map of the lth layer. To 
obtain more efficient and compact features, a max Max-pooling is used to down-sample 
the feature map after the convolution layer. Through the above operations, we can finally 
get a series of feature maps with rich 3D spatial information.

Progressive learning of global feature information based on improved Transformer

Traditionally, the full connection (FC) layer is used to integrate the information of fea-
ture maps for the final identification. However, it just simply connects all neurons and 
cannot effectively take advantage of the spatial information from all feature maps.

Therefore, we choose to replace the FC layer with the encoder layer of the Transformer 
as in ViT [20]. However, unlike ViT, the input of the transformer module is not the image 
patches, but the feature maps extracted by 3DCNN. According to [33], the convolution 

(1)

Flj(x, y, z) = ReLU(blj +
∑

k

∑

δx

∑

δy

∑

δy

F l−1
k (x + δx, y+ δy, z + δz) ∗Wl

kj(δx, δy, δz)),
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operation itself has the ability to encode the position information. Therefore, we remove 
the position embedding mechanism replaced it with convolutional operations to per-
form positional encoding. Then, an encoder module of the Transformer is used to learn 
global correlation information between inputs.

The encoder block of the Transformer contains a multi-head self-attention (MSA) 
layer, and a feed-forward network (FFN) [19]. The normalization layer is applied before 
every block and residual connections are used after every block, as shown in Fig. 2.

Muti‑head self‑attention

The Self-attention (SA) mechanism is an important component of the transformer 
encoder block, which reduces the dependence on external information and is better at 
capturing the internal correlation of features [19]. This mechanism mainly solves the 
problem of long-distance dependence by calculating the interaction among embeddings. 
It allows each position in the sequence to attend to all other positions, enabling the 
model to consider the interdependencies between different elements. In simple terms, 
the self-attention mechanism calculates attention weights by computing the dot prod-
uct between the query vector and the key vectors. Then, by scaling these weights and 
applying them to the value vectors, global correlation information between features is 
obtained. Finally, residual connections and feed-forward networks are used to enhance 
this information.

Unlike the classical SA module, we use convolutional operations instead of conven-
tional linear mappings. Convolutional operations can preserve spatial information in the 
features and have fewer parameters than linear mappings, which can improve the com-
putational efficiency of the model. Furthermore, 1 × 1×1 convolutions can also be used 
for positional encoding to help the Transformer differentiate the importance of different 
positions in the sequence during attention computation, as shown in Fig. 3.

Here, we use a convolutional kernel of size 1 × 1 × 1 to transform high-level features 
into Query(Q), Key(K), and Value(V) matrices in Fig. 3. Then, the Q, K, and V matrices 
are used to compute the attention weights, just like in the Transformer model. The cal-
culation formula for a single-head self-attention is shown as follows:

Here, X represents the input features with a total of N samples, d represents the 
dimension of the features, and Conv represents a 3D convolution operation that maps 
the high-level features to Q, K, and V matrices using a 1 × 1 × 1 convolution kernel. In 
the calculation of attention weights, first, the inner product of the query and the key 
(QKT) are computed. Then, it is scaled by dividing it by the square root of the dimen-
sion of the query and key (√d). Finally, the SoftMax operation is applied to obtain the 
attention weights. The attention weights are then used to weight the values, and their 
weighted sum yields the final output. A single-head SA layer has limited capability to 
focus on a specific entity (or several entities). Thus, several self-attention heads are used 
in MSA layers to allow the learning of different kinds of interdependencies. The calcula-
tion formula for multi-head self-attention (MSA) module is shown as follows:

(2)
Attention(Q,K ,V ) = SoftMax

(

QKT

√
d

)

V,

where Q = Conv1(X),K = Conv2(X), V = Conv3(X).
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After MSA, there is a residual connection to preserve the original information of the 
input features. Here, we represent the features after residual connection as

where O is the output feature, X the input feature, and α a learnable scalar. Initially, we 
set the value of α to 0, so that the self-attention mechanism is masked at the beginning 
of model training, allowing the 3DCNN to focus on local feature extraction. As train-
ing progresses, the value of α increases, and the model starts to learn global correlation 
information between features. The maximum value of α is 1.

Feed‑forward networks

After each layer passes through attention, there will be an FFN, which is used for spa-
tial transformation. The FFN contains two linear transformation layers with the ReLU 
activation function. The FNN performs dimension expansion/reduction and nonlinear 
transformation on each token to enhance the representation ability of the tokens, thus 
increasing the performance ability of the model:

where  is the weight of the first layer, which projects X into a higher dimen-
sion D.  is the weight of the second layer, and b1 and b2 are the biases.

The output of the transformer layer is transformed linearly through the MLP layer, and 
finally identified by the SoftMax function.

Network model framework

In this experiment, we use 3DCNN to extract features of sMRI and PET. To extract the 
differential information of sMRI and PET, we built and trained a 3DCNN network for 
sMRI and PET respectively, while they share the same network structure. We obtained 
200 features with dimensions of 2 × 2 × 2 after applying 3DCNN. Each feature repre-
sents one part of the brain. Then, the encoder block of the Transformer is used to extract 
interactive information among various features instead of the traditional FC layer. Here, 
sMRI and PET feature also shared the same transformer module. Finally, the learned 
information was concatenated and further passed to MLP for disease diagnosis. The 
overall framework of the network model is shown in Fig. 4. The 3DCNN and the Trans-
former framework were simultaneously trained in the end-to-end framework.

Model visualization

Given the complexity and high risk of medical decision-making, model interpretation is 
particularly important for medical imaging applications. Incorrect diagnosis or failure to 
detect diseases could be detrimental to patients, and therefore, it is necessary to explain 
the reasons behind the decisions made by deep learning models.

It has been verified that through the relevance of a feature to identification, the identi-
fiable power of the feature can be quantitatively measured by the attention matrix. Then, 

(3)
MultiHead(X) = Concat(head1, head2, ..., headh

)

where headi = Attention(Convi1(X), Conv
i
2(X), Conv

i
3(X))

(4)X ′ = αO + X ,

(5)FFX(X) = max(0,XW1+b1)W2+b2,
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the important brain region can be obtained by decoding the feature through a deconvo-
lution network [25]. The process of visualization is shown in Fig. 5.

Get the feature with the highest weight

The Attention Rollout is used to compute the attention map from output tokens to input 
features. In specific, since the residual connections in the self-attention and FFN layers 

Fig. 4 The architecture of deep 3D CNNs denoted with the sizes of each layer’s input, convolution, max 
pooling, and output layers and the numbers and sizes of generated feature maps. C is a convolutional layer, 
the P is max pooling layer, @ is the number of filters such as 15@ 3 × 3 × 3 is 15 filters whose size are 3 × 3 × 3 
and P 2 × 2 × 2 is pooling layers, with a size of 2 × 2 × 2. The number below each layer represents the shape 
of the feature

Fig. 5 The struct of transformer encoder
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of the Transformer modules (as shown in Fig. 2) play an important role in connecting 
the corresponding positions across different layers, we add extra weights to represent 
the residual connections for computing the attention rollout map as follows:

In the formula, A represents the attention matrix considering the residual connec-
tions, W represents the original attention matrix, and I represent the identity matrix. 
Considering that the residual connection parameter α after the MSA layer approaches 
1 (0.996) in the later stages of training, the weight of the residual is set to 0.5. Finally, to 
calculate the attention from the feature input layer to the output layer, we recursively 
multiply the attention matrices of previous layers in all subsequent layers. The formula 
for calculating the attention rollout for the ith layer is shown below.

Ã(li) represents the attention calculation of the ith layer during the attention rollout 
process, which is multiplied with the layer attention matrix A through matrix multipli-
cation. Each row of the matrix represents the attention weight between a feature and 
other features. Then, the average of all attention matrices is taken along the row and 
column dimensions, resulting in a 200-dimensional vector. This vector indicates the con-
tribution weights of the 200 different features of the same modality to the classification 
results. The feature with the highest weight is then selected for subsequent visualization 
research.

Feature decoding

To find out the relevant brain regions for AD diagnosis, two deconvolution networks 
(for sMRI and PET) are trained whose structures were mirror images of the 3DCNN 
parts. Deconvolution networks can restore the features extracted by 3DCNN to the 
original image. Thus, we transform the features with the highest weight into pixels using 
the trained deconvolution networks for analysis.

Data and preprocessing

In this experiment, we used the open-access sMRI and PET datasets from Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database1. ADNI is multicenter research to 
search for clinical, imaging, genetic, and biochemical biomarkers for the discovery of 
AD. We used the 18F-FDG-PET and sMRI data downloaded from ADNI with each pair 
of FDG-PET and sMRI for the same subject captured at the same time. All sMRI scans 
(T1-weighted MP-RAGE sequence at 1.5 T) used in our work were acquired from 1.5 T 
scanners and typically consisted of 256 × 256 × 176 voxels with a size of approximately 
1 mm × 1 mm × 1.2 mm. The PET images have many different specifications, but they 
were finally processed into a unified format.

(6)A = 0.5W + 0.5I .

(7)Ã(li) =
{

A(li)Ã(li−1) if i > j
A(li) if i = j

1 https:// adni. loni. usc. edu.

https://adni.loni.usc.edu
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Our dataset consists of 210 subjects, consisting of 88 AD subjects and 122 cogni-
tively normal (CN) subjects. The male to female ratio is 106/104. The age of the subjects 
ranges from 56 to 92, and there is no difference in age and gender between AD and CN 
subjects (p = 0.0513). Some previous studies did not consider the balance of gender and 
age, so the features extracted from the data may not be related to disease, which may be 
related to gender or age, so we strictly controlled for their balance. The characteristics of 
the subjects are summarized in Table 5.

For the sMRI data, we conducted Anterior Commissure (AC) – Posterior Commissure 
(PC) reorientation via MIPAV software.2 Tissue intensities inhomogeneity is then cor-
rected using the N3 algorithm [34]. Skull stripping, cerebellum removal, and three main 
tissues [gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)] segmen-
tation were conducted via the Cat12 tool of SPM123. Existing research shows that GM 
demonstrated higher relatedness to AD [35, 36]. Therefore, we chose the GM masks in 
this work. Finally, we used the hierarchical attribute matching mechanism for the elastic 
registration (HAMMER) algorithm [37] to spatially register the GM masks to the tem-
plate of the Montreal Neurological Institute (MNI) 152 [38].

For the PET, first, we realigned them to the mean image. Then, we registered it to the 
corresponding sMRI image. Finally, in common with sMRI images, they were registered 
to the MNI152 brain atlas.

Finally, all the sMRI and PET data were smoothed to a common resolution of 8-mm 
full-width at half-minimum. And they were all down-sampled to 64 × 64 × 64.

Experiment settings
The ranges of pixel values of each sMRI or PET are different, hence, we normalized the 
preprocessed sMRI and PET images to the same range for a subject. We used min–max 
normalization to scale all pixel values into 0–1 as follows:

where z is the normalized pixel values for sMRI or PET.
As shown in Fig. 1, the 3DCNN part consisted of 5 stacked convolutional and max-

pooling layers. A separate convolution layer was used as the last layer. A batch normali-
zation layer and an ReLU activation function were added after each convolution layer. 
We set all convolutional layer strides to 2 and padding was set to be the same as layer 

(8)z = x −min(x)

max(x)−min(x)
,

Table 5 Characteristics of the subjects in the ADNI dataset (mean ± standard deviation)

AD CN

Gender (M/F) 46/42 60/62

Age (years) 75.43 ± 8.20 77.42 ± 6.48

MMSE 22.32 ± 2.67 28.93 ± 1.32

Global CDR 0.86 ± 0.31 0.10 ± 0.20

2 https:// mipav. cit. nih. gov.
3  www. fil. ion. ucl. ac. uk/ spm/.

https://mipav.cit.nih.gov
http://www.fil.ion.ucl.ac.uk/spm/
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input. The structure of 3DCNN for sMRI and PET The structure of 3DCNN used to 
extract MRI and pet features is the same, but they do not share parameters. In the Trans-
former part, we chose the encoder block of the framework, but the number of heads 
is set at 4. To avoid overfitting, we just stacked two layers of the transformer encoder 
block. Then two linear transformations were performed in the MLP part, and a dropout 
with probability of 0.1 was performed after each linear transformation. We chose Adam 
optimizer (with default parameters) to optimize the model parameters and categorical 
cross-entropy as the loss function, which is suitable for identification tasks. We set the 
batch size to 11, the number of epochs to 60, and the learning rate to  10−4. The learning 
rate was decaying every 20 epochs, and the decay factor was set to 0.1. We set the ran-
dom number seed for experiment debugging.

A tenfold cross-validation algorithm was adopted to evaluate the identification perfor-
mance. In specific, all samples were randomly divided into 10 portions to evenly distrib-
uted AD and CN data in every portion. Then, samples from two portions were used as 
the testing data (21 subjects) and the validation data (21 subjects) respectively, while the 
rest were utilized as the training data (168 subjects). The cross-validation algorithm was 
applied and the final identification accuracy was obtained by averaging the results of 10 
tests.

In the cross-validation scheme, the model parameters and features were not neces-
sarily the same across all loops. Several parameters were used to evaluate the identifica-
tion performance, including accuracy (ACC), precision (PRE), specificity (SPE), recall/
sensitivity (SEN), F1 score (F1S), and area under receive operation curve (AUC). PRE 
indicated how many of the positive values predicted by the model are positive. F1 is the 
harmonic average of accuracy and recall/sensitivity, which was a comprehensive evalua-
tion index. AUC can intuitively evaluate the quality of the identifier (Figs. 6, 7, 8).

For deconvolution networks in visualization, we set the batch size to 20, the num-
ber of epochs to 3000, and the learning rate to  10−4. The learning rate was decay 
every 500 epochs with the decay factor of 0.5. Adam optimizer was used to speed up 

Fig. 6 Convolution-based self-attention mechanism
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training. We utilized the nearest neighbor interpolation algorithm as the up-sampling 
algorithm and the mean square error (MSE) loss as the loss function, which could 
better measure the reconstruction error.

Fig. 7 The framework of network model

Fig. 8 Visualization framework
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Abbreviations
AD  Alzheimer’s disease
sMRI  Structural magnetic resonance imaging
PET  Positron emission tomography
3DCNN  Three-dimensional convolutional neural network
ADNI  Alzheimer’s disease neuroimaging initiative
SBi-RNN  Stacked bidirectional recurrent neural network
FSBi-LSTM  Stacked bidirectional long short-term memory
ViT  Vision Transformer
ReLU  Rectified linear unit
FC  Full connection
MSA  Multi-head self-attention
FFN  Feed-forward network
CN  Cognitively normal
AC  Anterior commissure
PC  Posterior commissure
GM  Gray matter
WM  White matter
CSF  Cerebrospinal fluid
MNI  Montreal neurological institute
ACC   Accuracy
PRE  Precision
SPE  Specificity
SEN  Sensitivity
F1S  F1 score
AUC   Area under receive operation curve
MSE  Mean square error
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