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Abstract 

Background: Tele-rehabilitation, also known as tele-rehab, uses communication tech-
nologies to provide rehabilitation services from a distance. The COVID-19 pandemic 
has highlighted the importance of tele-rehab, where the in-person visits declined 
and the demand for remote healthcare rises. Tele-rehab offers enhanced accessibility, 
convenience, cost-effectiveness, flexibility, care quality, continuity, and communication. 
However, the current systems are often not able to perform a comprehensive move-
ment analysis. To address this, we propose and validate a novel approach using depth 
technology and skeleton tracking algorithms.

Methods: Our data involved 14 participants (8 females, 6 males) performing shoulder 
abduction exercises. We collected depth videos from an LiDAR camera and motion 
data from a Motion Capture (Mocap) system as our ground truth. The data were 
collected at distances of 2 m, 2.5 m, and 3.5 m from the LiDAR sensor for both arms. 
Our innovative approach integrates LiDAR with the Cubemos and Mediapipe skel-
eton tracking frameworks, enabling the assessment of 3D joint angles. We validated 
the system by comparing the estimated joint angles versus Mocap outputs. Personal-
ized calibration was applied using various regression models to enhance the accuracy 
of the joint angle calculations.

Results: The Cubemos skeleton tracking system outperformed Mediapipe in joint 
angle estimation with higher accuracy and fewer errors. The proposed system showed 
a strong correlation with Mocap results, although some deviations were present due 
to noise. Precision decreased as the distance from the camera increased. Calibration 
significantly improved performance. Linear regression models consistently outper-
formed nonlinear models, especially at shorter distances.

Conclusion: This study showcases the potential of a marker-less system, to profi-
ciently track body joints and upper-limb angles. Signals from the proposed system 
and the Mocap system exhibited robust correlation, with Mean Absolute Errors (MAEs) 
consistently below 10◦ . LiDAR’s depth feature enabled accurate computation of in-
depth angles beyond the reach of traditional RGB cameras. Altogether, this emphasizes 
the depth-based system’s potential for precise joint tracking and angle calculation 
in tele-rehab applications.
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Introduction
Background

Tele-rehabilitation (tele-rehab), the use of telecommunication technologies to deliver 
rehabilitation services remotely, has emerged as a promising solution to address the 
challenges posed by traditional rehabilitation services [1]. Despite still being in its 
infancy, the use of tele-rehab systems is rapidly increasing [2]. The important role 
of tele-rehab has been highlighted during the COVID-19 pandemic, when in-person 
visits have been restricted and demands for accessible and remote healthcare ser-
vices have been raised [3]. The results of a survey conducted in Ontario in May 2020 
showed that despite suggestions for a gradual return to in-person care, there was a 
significant desire to continue using virtual services even after in-person visits were 
resumed. This suggests that virtual care will have a significant impact on the health-
care system [4].

There are several potential benefits of tele-rehab over traditional, in-person rehabilita-
tion programs: 

1. Accessibility: Tele-rehab provides a secure alternative for individuals to receive reha-
bilitation services from the comfort of their homes. It has the potential to increase 
the accessibility of care services for underserved populations [1, 5]. Tele-rehab can 
make rehabilitation services more accessible to individuals living in rural, underde-
veloped, or remote areas or those with mobility issues who may have difficulty trave-
ling to a clinic.

2. Convenience: Tele-rehab allows individuals to receive treatment, reducing the need 
for time-off work or arranging transportation.

3. Cost-effectiveness: Tele-rehab can be more cost-effective than traditional rehabilita-
tion, as it eliminates the need for travel and may require fewer resources to deliver 
the same level of care [6]. In addition, studies have shown that tele-rehab does not 
impose any extra costs compared to traditional care. For example, Nelson et  al. 
[7] conducted a trial-based economic evaluation of tele-rehab versus traditional 
care after total hip replacement. This study showed that the average cost differ-
ence between tele-rehab and traditional care was not statistically significant; how-
ever, a slight difference existed, with tele-rehab being the cheaper alternative. They 
claimed that the average cost per person decreases by $28.90 when using tele-rehab 
compared to conventional therapy. Nevertheless, Hwang et  al. [8] concluded that 
tele-rehab had a significantly lower cost per patient ($− 1590, CI: − 2822, − 359) 
than traditional care. Tele-rehab can also reduce the spread of infectious diseases by 
limiting the number of in-person visits to a healthcare facility. It provides a way for 
infected or at-risk patients to receive therapy while in isolation [9]. This reduction in 
infectious disease transmission also prevents some potential costs of the healthcare 
system.

4. Flexibility: Tele-rehab can be more flexible than traditional rehabilitation, as appoint-
ments can be scheduled at the convenience of the patient and the therapist [10].
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5. Quality of care: Some studies have suggested that tele-rehab can be as effective as 
traditional rehabilitation in terms of patient care outcomes [10–13]. Furthermore, 
tele-rehab is capable of providing routine monitoring of patient activity [13], which 
adds a useful source of information for health professionals to gain a better under-
standing of the patient’s condition and progress.

6. Continuity of care: Tele-rehab can help improve continuity of care by allowing indi-
viduals to continue receiving treatment even if they are unable to physically attend 
appointments due to illness or other circumstances [14].

7. Enhanced communication: Tele-rehab can facilitate communication between 
patients, caregivers, and multiple therapists, allowing for a more holistic and coordi-
nated approach to care [15].

Tele-rehab services include a variety of offerings, such as assessment, monitoring, pre-
vention, intervention, supervision, education, consultation, and coaching [16].

Identified gaps

While there have been advancements in tele-rehab technology, there are still challenges 
in the practical delivery of these services to patients. Many current tele-rehab platforms 
rely on videoconferencing or web-based communication, which require clinician super-
vision [1]. However, these platforms do not have the capability to analyze the patient’s 
movement patterns to provide guidance on exercise programs [17].

A recent systematic review of existing Motion Capture (Mocap) systems published 
between 2015 and 2020 reported that approximately half of these systems used a Kinect 
sensor (48%), while the rest used Inertial Measurement Units (IMUs), Microsoft Holo-
Lens and other types of optical systems, as shown in [18].

Although Kinect is a useful contactless motion sensing device, its outputs may be sub-
ject to occlusion or poor performance under various light conditions [19]. In addition, 
the accuracy of the algorithms is limited to the resolution and the distance of the camera 
from the subject. Wearable technology, in the form of IMUs, is the second most popu-
lar approach. Previous studies in this field reported some limitations, such as the use of 
a large number of sensors (e.g., eight IMUs), which can affect the usability and cost of 
the system. Another challenge of using IMUs is that their precision degrades over time 
due to biases, drifts, and random noise, and therefore, they require frequent calibration 
to maintain their accuracy [20, 21]. Furthermore, studies have shown that most older 
adults are not compliant with using this technology and do not want to wear the devices 
[22].

Focus and intent

Due to the existing constraints of current tele-rehabilitation technologies such as Kinect 
sensors and IMUs, there is a need for a novel platform that harnesses modern tech-
nologies. In this paper, we present a comparative analysis of 3D joint angle estimation 
in tele-rehabilitation, specifically focusing on the integration of a Light Detection and 
Ranging (LiDAR) camera [23] and two skeleton tracking Software Development Kits 
(SDKs), Mediapipe, and Cubemos. Similar to our peers in this field who have already 
validated their systems against a gold standard [24–27], we evaluate the performance 
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of our proposed system against the Cortex Mocap system as the gold standard [28]. 
The Mocap system uses marker-based tracking techniques and provides high-accuracy 
measurements [29, 30]. Mocap is an expensive system that is typically used in restricted 
areas, such as laboratories [30, 31].

Our objective is to propose an automated tele-rehab platform by integrating LiDAR 
technology and advanced skeleton tracking SDKs, e.g., Mediapipe and Cubemos. We 
aim to validate the accuracy of our system in estimating three-dimensional joint angles 
by conducting a comprehensive comparison, using Mocap as the benchmark for ground 
truth. LiDAR sensors use laser-based depth perception to capture detailed 3D informa-
tion of the human body. Leveraging LiDAR’s depth perception capabilities, our goal is to 
offer a noninvasive, marker-less, privacy-preserving solution for joint angle assessment, 
overcoming limitations associated with traditional motion capture systems.

Results
Comparison results

Figure 1 shows samples of collected RGB, depth, and Mocap frames of the same time 
instance for S9 at a 2 m distance from the camera.

Before calculating the angles and conducting the comparisons, as shown in Figs. 2 and 
3, we needed to create a virtual joint for each shoulder in Mocap to ensure that both 
systems measured the same joint angles. These new virtual markers are in the same lon-
gitude as the physical Mocap markers but have the same depth and height as the chest 
marker.

Given that all subjects (S1–S14) were young and healthy, the changes in β and the 
angle that the arm makes with the body in the transverse plane ( γ ) for SA exercise are 
expected to be zero. The difference in the measurement of these two angles from the 

Fig. 1 Sample frame: a RGB with Mediapipe skeleton tracking, b depth, and c Mocap at 2 m distance

Fig. 2 An example Mocap frame: virtual joints, shoulder ( α ) and elbows ( β ) angles of S9 at full SAL, frontal 
view
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two systems is mostly associated with the noise. As a result, the statistical tests are only 
applied and reported for α of both arms, which sweep from 0◦ to 90◦ . The signals for 
angles α , β , and γ for all 13 participants standing at 3 different distances are plotted for 
the left arm in Figs. 4, 5, and 6, respectively. We use the L and R subscripts to refer to the 
α , β , and γ angles for the left and right arms, respectively.

Figure  4 demonstrates that the higher the distance of the subject from the camera 
is, the higher the error values are in the shoulder angle calculation. Furthermore, the 
standard deviation of the signals for different participants clearly increases as there is 
less homogeneity observed in Fig. 4b and c compared to a. Different participants also 
have the same pattern of signals. The only differences are in the slope of the signal, which 
indicates the difference in speed as well as in the magnitude of the abduction.

The participants’ elbows were extended during the exercise. Consequently, the ideal 
expected angle for β is 180◦ . In the proposed system, the location of the elbow joint is 
not fixed over consecutive frames, as the SDK predicts the joints’ locations indepen-
dently in each frame. This inconsistency resulted in a fluctuation in the elbow signal, as 
shown in Fig. 5a–c, where in some cases, the angle β reaches less than 160◦ (S6 in Fig. 5). 
For the Mocap system, the range of fluctuation is much lower, as shown in Fig. 5d–f. The 

Fig. 3 The (a) Mediapipe and (b) Cubemos frames showing α and β angles of S9 at a full SAL

Fig. 4 Signal αL from proposed system at a 2 m, b 2.5 m, and c 3.5 m distances, and from Mocap at d 2 m, e 
2.5 m, and f 3.5 m distances
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initial offset of approximately 20◦ in angle β in Mocap is due to the physical location of 
the elbow marker, which was on the back of the elbow and is at a lower elevation com-
pared to the shoulder markers (highlighted in Fig. 2).

As shown in Fig. 6a–c, the angle γ for the proposed system is very close to the expected 
value of 90◦ , as the participants did not move their arm in the transverse plane toward 
or away from the camera. These figures also highlight the impact of the distance from 
the camera, as the higher the distance of the subject from the camera, the higher the 
variations are in shoulder angle in the z dimension. For the Mocap, however, we can 

Fig. 5 Signal βL from proposed system at a 2 m, b 2.5 m, and c 3.5 m distances, and from Mocap at d 2 m, e 
2.5 m, and f 3.5 m distances

Fig. 6 Signal γL from proposed system at a 2 m, b 2.5 m, and c 3.5 m distances, and from Mocap at d 2 m, e 
2.5 m, and f 3.5 m distances
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see a higher deviation from 90◦ , especially at the beginning and the end of the exercise, 
when the arm is dropped by the side of the body and is more likely not to be a perfect 
90◦ . It should be noted that we moved the subjects to different distances from the depth 
camera while the camera remained in a constant location. Therefore, the distance of the 
subject from the front Mocap cameras was also changed. This might be the reason for 
more fluctuations at higher distances for Mocap in Fig. 6d–f.

The obtained accuracy and deviations are influenced by several factors. Key among 
these are the limitations in accuracy and resolution of LIDAR and SDKs. Our system 
finds it challenging to capture fine joint movements with the same precision as the 
Mocap system. In addition, environmental factors such as changes in ambient light, 
reflective surfaces, or interference introduce noise to our system, impacting data quality 
and angle estimations.

In addition, differences in body structures and movement styles among participants 
could affect angle estimations. Despite our efforts to synchronize the two signals for an 
accurate comparison, timing differences between them may result in misalignments, 
which could impact the precision of our estimations.

Furthermore, individual anatomical variations among participants, alongside their 
unique movement patterns, may influence observed deviations in angle estimations. In 
addition, timing disparities or latency in data capture and processing lead to misalign-
ments, affecting the synchronization of estimations,

The angles β and γ have similar uniform distributions. The histograms of αL during 
SAL and SAR exercises acquired by Mocap and Cubemos in all 3 distances and 13 sub-
jects are shown in Figs. 7 and 8, respectively.

Given the non-normal distribution of the angles, a Friedman’s nonparametric test 
[32] was conducted on the angle data collected from the 3 distances. The test resulted 
in a p value less than 0.0001, indicating that at least two out of 3 distances have a sta-
tistically significant difference. The post-hoc analysis further demonstrated that the 
2 m and 3.5 m distances from the camera resulted in a significant p value for all the 

Fig. 7 Histograms of αL from the proposed system at distances of a 2 m, b 2.5 m, and c 3.5 m, and from 
Mocap at distances of d 2 m, e 2.5 m, and f 3.5 m
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angles. A Wilcoxon signed ranked test found a significant difference (p value < 0.001) 
between the right and left shoulder angles ( αR and αL ) at all 3 distances. Other stud-
ies, such as [33], also found such a difference in the active range of shoulder flexion 
between the right and left shoulders. This difference might be because every partici-
pant had a dominant arm. In addition, Shapiro–Wilk and Kolmogorov–Smirnov tests 
were applied to check the normality of the errors between the Mocap and the pro-
posed system. Both tests reject the null hypothesis, indicating that the errors are not 
normally distributed. Therefore, to compare the two measurements, we showed the 
difference plots in Figs. 9 and 10 for the left and right arms, respectively.

Figures 9 and 10 suggest that the proposed system could estimate all angles with low 
average error compared to the Mocap, whereas this error increases for the extreme 
cases. Looking at either small or large angles (e.g., 20◦ and 70◦ in α ), the proposed 
system provides either much higher or lower angles compared to the Mocap, respec-
tively. This trend does not exist for β (Figs. 9d–f and 10d–f ) because, as mentioned, 
the signal-to-noise ratio (SNR) is low for the elbow angle fluctuations. In addition, 
the plots also showed the effect of distance from the depth camera. In other words, 
the standard deviation becomes more scattered and larger as the participant moves 
farther from the camera. The closest distance to the camera shows a denser plot com-
pared to farther distances. This observation is consistent with the results of the statis-
tical test applied.

The angle γ , shown in Figs. 9 and 10g–i, has a unique pattern. The Cubemos SDK is 
noticeably consistent in reporting γ . As a result, all the calculated angles have a value 
close to 90◦ . Therefore, for different measurements of the Mocap, the proposed sys-
tem reports the same value of approximately 90◦ . The precision of the SDK is higher 
for the angle in depth. The reason for such a high precision is the laser technology 
used in the LiDAR ranging procedure. Figures 9 and 10 also showed that the differ-
ence plots of the right arm yielded a similar result aligned with the left arm angles. 
The previously mentioned trends and patterns related to the distance and magnitude 

Fig. 8 Histograms of αR from the proposed system at distances of a 2 m, b 2.5 m, and c 3.5 m, and from 
Mocap at distances of d 2 m, e 2.5 m, and f 3.5 m
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of the angle are also visible in the right arm angles. There was no significant difference 
in the pattern of the angles calculated for the two arms.

The Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coefficient of 
determination  (R2), and Spearman correlation coefficient for all 5 repetitions across 
all 13 participants are reported in Tables 1 and 2 [34].

The results indicate that there is a decreasing trend in the accuracy of SDK as the 
participant moves further from the LiDAR camera. The maximum error for the shoul-
der angle ( α ) is always less than 10◦ which is required by clinicians. Moreover, it sug-
gests that the angle signal acquired from the SDK is highly similar to Mocap based 
on the correlation coefficients and R2 . For the R2 and correlation coefficient, we only 
reported the values of the shoulder angle α , since β and γ signals are not changing 
during the performance of the exercises and their fluctuations were only associated 
with the noise. Finally, the results showed that the right and left limbs had a similar 
outcome, as expected since these were healthy participants.

Mediapipe is an accepted conventional framework for human movement recogni-
tion and tracking and was studied as the second SDK in our experiment. We followed 
the same procedures for comparing Mediapipe with Mocap as we did for Cubemos. 
The MAE, RMSE, R2 , and correlation coefficients for Mediapipe are reported in 
Tables 3 and 4.

Fig. 9 Difference plots for αL at a 2 m, b 2.5 m, and c 3.5 m; for βL at d 2 m, e 2.5 m, and f 3.5 m; and for γL at g 
2 m, h 2.5 m, and i 3.5 m. The upper and lower dashed lines represent the standard deviation, and the middle 
dashed line shows the mean difference between the two systems
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Fig. 10 Difference plots for αR at a 2 m, b 2.5 m, and c 3.5 m; for βR at d 2 m, e 2.5 m, and f 3.5 m; and for γR 
at g 2 m, h 2.5 m, and i 3.5 m. The upper and lower dashed lines represent the standard deviation, and the 
middle dashed line shows the mean difference between the two systems

Table 1 MAE and RMSE results for the proposed system using Cubemos SDK

Angle MAE ( ◦) RMSE ( ◦)

2 m 2.5 m 3.5 m 2 m 2.5 m 3.5 m

αL 8.89 ± 1.09 10.08 ± 3.61 10.28 ± 4.40 10.30 ± 1.43 11.86 ± 4.21 12.33 ± 5.66

βL 2.07 ± 0.78 2.20 ± 0.75 2.32 ± 0.61 2.53 ± 0.89 2.66 ± 0.86 2.85 ± 0.71

γL 2.04 ± 0.054 2.49 ± 0.54 1.90 ± 0.44 2.40 ± 0.55 2.85 ± 0.78 2.40 ± 0.55

αR 8.91 ± 3.53 9.88 ± 4.14 12.18 ± 8.14 10.44 ± 1.05 11.67 ± 4.65 14.72 ± 10.50

βR 2.69 ± 0.96 2.23 ± 0.84 2.32 ± 0.63 3.16 ± 1.09 2.66 ± 0.92 2.91 ± 0.80

γR 1.57 ± 0.67 2.01 ± 0.65 1.37 ± 0.47 1.90 ± 0.75 2.39 ± 0.69 1.64 ± 0.55

Table 2 R2 and Spearman correlation coefficient results for the proposed system using Cubemos 
SDK

Angle R
2 (%) Spearman coefficient (%)

2 m 2.5 m 3.5 m 2 m 2.5 m 3.5 m

αL 99.04 98.68 98.35 96.80 96.62 95.34

αR 98.88 98.78 98.53 96.81 96.52 96.24
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For Mediapipe, the overall trend was the same as that for Cubemos. However, 
there were some slight differences. First, the Mediapipe had a generally poorer per-
formance compared to Cubemos. The reason could be that Cubemos was designed 
to work with an Intel RealSense device, which we are using in our study. Second, the 
difference between 2 m and 2.5 m from the camera is much less evident in Media-
pipe. It still shows a noticeable difference at 3.5 m, but for the 0.5 m difference in 
distance, the results are quite similar. Last, the effect of distance on precision was 
greater in Mediapipe.

The precision of our system drops as the distance from the LiDAR camera 
increases, which has practical implications. This reduced precision can make joint 
angle estimations less reliable, particularly when participants are far from the LiDAR 
camera. Due to technological constraints, it might not be feasible to completely 
resolve this loss of precision at longer distances.

Thus, defining an acceptable operating range becomes essential for the users. 
Integrating this information into system interfaces and user manuals, and providing 
alerts for users operating beyond the recommended range can enhance awareness 
and adherence to optimal conditions.

To enhance the precision of joint angle estimations at extended distances, optimi-
zation strategies could involve exploring alternative sensors with higher resolutions 
or employing advanced signal processing techniques to compensate for reduced data 
quality at longer distances.

To enhance the precision of joint angle estimations at extended distances, optimi-
zation strategies could involve exploring alternative sensors with higher resolutions 
or employing advanced signal processing techniques to compensate for reduced data 
quality at longer ranges.

Table 3 MAE and RMSE results for the proposed system using Mediapipe framework

Angle MAE ( ◦) RMSE ( ◦)

2 m 2.5 m 3.5 m 2 m 2.5 m 3.5 m

αL 7.42 ± 1.18 8.79 ± 2.44 14.34 ± 9.18 8.56 ± 1.39 9.75 ± 2.40 16.19 ± 9.67

βL 1.87 ± 0.65 1.74 ± 0.59 3.05 ± 2.58 2.22 ± 0.71 2.13 ± 0.67 3.05 ± 2.58

γL 1.64 ± 0.36 1.77 ± 0.62 2.22 ± 1.24 2.08 ± 0.42 2.26 ± 0.71 2.66 ± 1.45

αR 8.48 ± 2.67 9.62 ± 3.14 15.63 ± 11.34 9.87 ± 3.09 11.12 ± 3.51 17.32 ± 12.16

βR 2.35 ± 1.30 2.20 ± 1.27 8.95 ± 7.15 2.78 ± 1.58 2.68 ± 1.71 11.14 ± 8.90

γR 1.97 ± 0.89 1.85 ± 0.88 5.53 ± 4.65 2.33 ± 0.96 2.28 ± 1.09 6.74 ± 5.41

Table 4 R2 and and Spearman correlation coefficient results for the proposed system using 
Mediapipe framework

Angle R
2 (%) Spearman coefficient (%)

2 m 2.5 m 3.5 m 2 m 2.5 m 3.5 m

αL 98.90 98.27 94.80 97.52 96.47 96.10

αR 98.67 98.68 93.06 97.20 96.25 94.17
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Calibration results

One of our observations when using the proposed system was that when subjects per-
formed exercises at a fast pace, the motion area within the frames exhibited blurri-
ness, resulting in challenges for the SDK to accurately detect joint positions. In these 
cases, as mentioned in “Method” section, we kept the previous locations of the joints. 
An example is depicted in Fig. 11. These instances are visually highlighted in Fig. 12 
with a red area.

This observation becomes evident in cases where the Mocap system indicated 
a joint angle of 0◦ , whereas our proposed system recorded angles ranging between 
0
◦ and 20◦ for the left arm and 0◦ and 90◦ for the right arm. This loss of informa-

tion within the proposed system is irreversible and cannot be fixed with calibration 

Fig. 11 A sample frame in which the Cubemos SDK failed to detect the elbow and wrist joints due to fast 
movement

Fig. 12 Proposed system vs. Mocap plots for αL at a 2 m, b 2.5 m, and c 3.5 m and for αR at d 2 m, e 2.5 m, 
and f 3.5 m
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methods. However, other data points highlighted with the gray area in Fig. 12 show 
a pattern closely resembling the ideal system. Therefore, a regression analysis is 
employed to calibrate the system and minimize the associated errors.

Figure 12 shows the dot plots of the shoulder angle (in the range of [ 0◦ , 90◦ ]) captured 
from the proposed system versus Mocap. This figure provides information on how the 
two angle signals change with respect to each other. These figures show that the closer 
the camera was to the subject, the more linear the trend (Fig. 12a). In other words, the 
angles α from Mocap and the proposed system seem to have a linear relationship, which 
will help further calibrate the system.

Cubemos SDK‑based system calibration results

The Cubemos results that showed a better performance and lower errors were chosen 
for the calibration. Figure 13 demonstrates the regression results using the 10 regression 
models for both SAL (Fig. 13a and b) and SAR (Fig. 13c and d).

When comparing the SAL results shown in Fig. 13a and b with SAR in Fig. 13c and 
d, we see that the errors decrease more for the left arm ( αL ) than for the right arm ( αR ) 
after calibration. This could be because there was a stronger linear relationship between 
the Mocap data and our proposed system, as shown in Fig. 12.

Overall, the linear models shown in the gray-shaded area in Fig. 13 provided lower 
overall RMSE and MAE compared to the nonlinear models shown in the blue-shaded 
area in Fig.  13. Linear Regression (LR), Ridge Regression (RR), Lasso Regression 
(LaR), and Elastic net Regression (ER) models exhibit identical performance in both 
RMSE and MAE. The coefficients of the polynomial regression terms with powers 
are notably small, resulting in a model that closely resembles linear regression. This 

Fig. 13 Regression results as a RMSE and b MAE for αL and c RMSE and d MAE for αR



Page 14 of 21Barzegar Khanghah et al. BioMedical Engineering OnLine           (2024) 23:11 

suggests that the regularization techniques used in LaR, RR, LR, and ER did not sig-
nificantly affect their performance compared to the simpler linear regression model.

For all models, a larger distance from the camera corresponded to higher RMSEs 
and MAEs for the right hand. This indicates that the observed trend persists even 
after the calibration process. Nevertheless, this pattern was not the same for the left 
hand. In the case of the Decision Tree (DT), Random Forest (RF), and Gradient Boost-
ing (GB) models, the 3.5 m distance resulted in lower RMSE and MAE compared to 
the 2.5 m distance. However, the lowest errors were consistently associated with the 
closest distance of 2 m from the camera. The linear Support Vector Regression (SVR) 
worked best for calibration at 2 m, whereas the linear models performed equally well 
for 2.5 m and 3.5 m distances from the camera. This shows that we should adjust our 
calibration method based on how far the patient is from the camera. We can obtain 
this information simply from our camera’s third dimension (depth-z).

The initial difference between the MAE and RMSE values before calibration indi-
cates a potential bias in our predictions. Since MAE is less affected by outliers 
than RMSE, a higher MAE indicates the larger errors on average. After applying 
calibration, we effectively addressed this bias, leading to improved overall model 
performance.

Figure  14 demonstrates the subject-by-subject results before (Fig.  14a and c) and 
after calibrations (Fig.  14b and d). These figures highlight the proposed technique’s 

Fig. 14 MAE and RMSE at all 3 distances for a αL before calibration, b αL after calibration, c αR before 
calibration, and d αR after calibration
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effectiveness in accommodating diverse participants with different physical charac-
teristics, exercise patterns, ranges of motion, and initial errors.

Figure 15a–c illustrates the ( αL ) values obtained from the calibrated system in direct 
comparison with the corresponding data acquired from the mocap (d–f).

Conclusion and future work
This experiment showed the potential of a marker-less Mocap system in tracking body 
joints and calculating different upper-limb angles. The signals acquired from the pro-
posed and ground truth systems were highly correlated and followed the same patterns. 
All MAEs were less than 10◦ . The depth feature of the camera is accurate and helpful in 
calculating in-depth angles that cannot be achieved using a regular RGB camera. The 
findings also suggest a negative correlation between the distance from the camera and 
the accuracy of the system. In other words, the farther the participant stands from the 
camera, the higher the angle estimation error will be.

The results of our experiment showed a better overall performance for the Cubemos 
SDK compared to the Mediapipe. We hypothesized that this is because the Cubemos 
SDK was created to work with the hardware we have used in this study, whereas Media-
pipe is a more general framework.

For the calibration part, the evaluation of the 10 regression models revealed that the 
polynomial regression model achieved the best results, while the DT model performed 
the poorest. In addition, the LR, RR, and LaR models demonstrated similar performance.

Although the outcomes were highly positive, our study does have certain limitations. 
The SDK-based system will not behave as expected for exercises that require the partici-
pants to point toward the camera. The available SDKs are trained in such a way that they 
recognize the human body facing the camera, but as soon as a joint becomes hidden 
from the camera, the data will be either lost or highly inaccurate.

Fig. 15 Signal αL from the calibrated system at a 2 m, b 2.5 m, and c 3.5 m distances, and from Mocap at d 
2 m, e 2.5 m, and f 3.5 m distances
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We further recognized that the positioning of the camera is crucial, especially for exer-
cises that need to be performed in laying down positions. Another limitation that we 
observed in this experiment is that the Mocap markers move during the trials. There-
fore, we will have erroneous angle creation, which will cause a lower accuracy in the final 
comparison of the systems.

The placement of Mocap markers had a direct impact on the results. We took care to 
be as consistent as possible with locating markers. For future studies, we recommend 
identifying the region of interest of each joint from the SDK so that the Mocap markers 
are attached to those specific locations for a fair comparison.

Regarding the future work and the potential implications of our study for the field of 
tele-rehab, our study points toward a potential avenue for automating range of motion 
assessments in clinical settings, signaling a prospective advancement in tele-rehab tech-
nology. Future research directions should delve deeper into refining calibration meth-
ods and enhancing hardware–software integration to address limitations and further 
improve accuracy. Moreover, the identified correlation between participant distance 
and system accuracy requires future research to explore strategies for mitigating this 
challenge.

Methods
System setup and data collection

We conducted our data collection at the KITE Research Institute—Toronto Reha-
bilitation Institute (TRI), University Health Network after obtaining approval from 
the Research Ethical Board (REB). Fourteen able-bodied participants consented to be 
recorded while performing 5 repetitions of shoulder abduction left and right (SAL & 
SAR) exercises, as shown in Fig. 16.

The demographic information of all 14 participants (8 females and 6 males) is shown 
in Table 5.

The participants performed 3 sets of 5 repetitions while standing at 3 different dis-
tances of 2 m, 2.5 m, and 3.5 m from the LiDAR camera placed on a table 1 m above 
the ground. The Intel RealSense L515 [23] LiDAR camera was used for the data col-
lection. The L515 includes Time of Flight (ToF) technology, offering high-resolution 
depth and 2D image capture with a range of up to 9 ms. It features a depth stream 

Fig. 16 A figure burrowed from [35], showing shoulder abduction exercise
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resolution of 1024 x 768 pixels and a 2D image resolution of 1920 x 1080 pixels, func-
tioning at a maximum frame rate of 30 fps. With a field of view (FoV) of 70.4◦ x 55◦ (± 
3
◦ ) and an accuracy of ±2% the L515 provided precise depth data for our experiment 

[23].
A CortexTM motion analysis [28] with 10 time-of-flight sensors was used as the 

Mocap system for this experiment. These sensors, using ToF technology similar to the 
L515, track movements with high precision and accuracy. The frame rate we selected 
for our work was 256 fps. The setup is shown in Fig. 17.

After consulting with a physiatrist, 17 Mocap markers were placed on participants’ 
upper extremities, including (i, ii) left and right ears, (iii) middle of the chest above 
sternum, (iv) on the back on C7, (v–x) for each left and right shoulder on top of the 

Table 5 Participant demographics

Subject # Sex Age Height (m) BMI (kg/m2)

S1 Female 22 1.59 23.73

S2 Female 25 1.68 21.26

S3 Male 24 1.75 29.39

S4 Female 22 1.62 20.19

S5 Female 26 1.68 19.49

S6 Male 28 1.80 24.69

S7 Male 28 1.92 24.41

S8 Male 27 1.75 27.75

S9 Female 23 1.65 22.04

S10 Male 22 1.75 21.22

S11 Female 22 1.75 26.12

S12 Male 28 1.70 25.95

S13 Female 23 1.60 21.48

S14 Female 26 1.65 22.04

Average – 24.71 ± 2.34 1.71 ± 0.08 23.55 ± 2.85

Fig. 17 The KITE-TRI basement setup: participant standing, LiDAR camera (red square), and Mocap cameras 
(yellow ovals)
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clavicle (collarbone), 10 cm from the top of the collarbone to the center of the chest 
on the collarbone, and 10  cm from the acromion process toward the middle of the 
spine, (xi, xii) on the back of the left and right elbow, (xiii–xvi) on the lateral sides 
of each left and right wrist near the radius and ulna connection to carpal bones, 
and (xvii) on the right arm to distinguish the right arm from the left arm later in the 
recordings. Figure  18 shows participants with Mocap markers attached to both the 
front and back of the body.

Data analysis methodology

Given that the performed exercise is shoulder abduction, the angles α and β were calcu-
lated from both Mocap and the LiDAR camera. Moreover, γ was calculated with respect 
to the normal vector perpendicular to the participant’s frontal plane to validate the reli-
ability of the system along the z-axis, which was acquired by the LiDAR camera. The 
angles are shown in Fig. 19.

Fig. 18 Photos from a front and b back of the participants with Mocap markers on

Fig. 19 a Shoulder α , b elbow β , and c arm–body γ angles in the transverse plane
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Knowing that a correct repetition of SAL/SAR involves having the elbow and arm in 
the same plane as the body, the expected value for α should be from 0◦ to a maximum of 
90

◦ , while β should remain at approximately 180◦ , and γ should be held at approximately 
90

◦.
Plots that show the difference between the two methods on the vertical axis against 

the best estimate of the true value on the horizontal axis are used to compare our results 
with those of Mocap [36]. In addition, the correlation coefficient was obtained to deter-
mine whether both systems provide similar trends over time. Finally, a statistical test 
was conducted to determine whether there were any significant differences in the angle 
measurements when the distance from the camera changed.

Handling frames with missing joints data

In certain frames during the tracking process, the SDK may encounter difficulty in 
detecting specific joints of the participant’s arm. To address this situation, a strategy 
is employed wherein the joint data from the last successful detection are used for the 
problematic frame. In other words, the system will keep using the latest joint informa-
tion acquired until the SDK successfully identifies the updated location of the joint. 
Upon detection, the newly obtained joint data are incorporated into the calculations, 
and simultaneously, the most recent joint data received are updated to correspond with 
the newly acquired data. This iterative procedure ensures continuity in joint tracking by 
seamlessly incorporating the most accurate and up-to-date information provided by the 
SDK.

Calibration

In this paper, we present a subject-based calibration phase for the system that used the 
best-performing SDK. The aim is to minimize the system’s error in the calculation of 
the α angle for left and right shoulders. In this phase, we evaluate the performance of 10 
different linear and nonlinear regression models, including LR, RR, LaR, and ER, linear 
SVR, as well as DT, Random Forest RF, GB, Polynomial Regression (PR) and SVR with 
the Radial Basis Function (RBF) kernel. We filtered the data based on the current sub-
ject, exercise, and distance and randomly split it into training and testing sets after shuf-
fling. Eighty percent of the data were used for training, whereas 20% remained unseen to 
the model as the test set.

The key idea is that in tele-rehab, the system can be calibrated individually for each 
patient. This adjustment can take place during the initial visit with the doctor, where the 
patient receives their prescription. This visit can be a great opportunity to fine-tune the 
system according to the patient’s unique exercises and movement patterns. We evalu-
ated our personalized calibration method using RMSE and MAE on the angle data.

Our study uses a personalized calibration method, where unique regressors are trained 
on each participant’s data. This approach ensures a custom-fit regressor for each indi-
vidual, accommodating the varying degrees of musculoskeletal disorders present among 
patients. As a result, every participant benefits from a regressor model tailored to their 
specific data, enhancing both the accuracy and precision of the calibration process for 
individualized performance.
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