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Abstract 

Background: Atherosclerosis is one of the most frequent cardiovascular diseases. 
The dilemma faced by physicians is whether to treat or postpone the revascularization 
of lesions that fall within the intermediate range given by an invasive fractional flow 
reserve (FFR) measurement. The paper presents a monocentric study for lesions signifi‑
cance assessment that can potentially cause ischemia on the large coronary arteries.

Methods: A new dataset is acquired, comprising the optical coherence tomography 
(OCT) images, clinical parameters, echocardiography and FFR measurements collected 
from 80 patients with 102 lesions, with stable multivessel coronary artery disease. 
Having the ground truth given by the invasive FFR measurement, the dataset is chal‑
lenging because almost 40% of the lesions are in the gray zone, having an FFR value 
between 0.75 and 0.85. Twenty‑six features are extracted from OCT images, clinical 
characteristics, and echocardiography and the most relevant are identified by examin‑
ing the models’ accuracy. An ensembled learning is performed for solving the binary 
classification problem of lesion significance considering the leave‑one‑out cross‑vali‑
dation approach.

Results: Ensemble models are designed from the multi‑features voting from 5 
features models by prediction aggregation with a maximum accuracy of 81.37% 
and a maximum area under the curve score (AUC) of 0.856.

Conclusions: The proposed explainable supervised learning‑based lesion classifi‑
cation is a new method that can be improved by training with a larger multicenter 
dataset for further designing a tool for guiding the decision making of the clinician 
for the cases outside the gray zone and for the other situation extra clinical information 
about the lesion is needed.
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Background
Cardiovascular diseases, especially coronary artery disease (CAD), currently affect a 
major part of the population, along with the presence of arterial hypertension (AHT) [1]. 
The diagnosis and treatment of these patients is costly in terms of human and material 
resources. Many efforts are directed toward improving clinical management by reducing 
the diagnosis time interval, creating multidisciplinary teams, and optimizing the mate-
rial costs.

In this context, medical imaging is helpful, and because of that, it is a continually grow-
ing domain that unifies the efforts of physicians, scientists, and engineers. Its impact on 
daily clinical management is high [2], especially in cardiovascular diseases and cancer, 
the two leading causes of death worldwide. This was empowered by the growth of com-
putational power and data storage, which enable more accurate image classification, 
object detection, and image enhancement by means of image processing [3].

One of the most important cardiovascular diseases is atherosclerosis, which consists 
of a narrowing of the blood vessel lumen, mainly due to fat deposits. It may affect the 
major coronary arteries, causing myocardial ischemia at different degrees of exertion [4].

Optical coherence tomography (OCT) is acquired during invasive coronary X-ray 
angiography (XA), and it provides high-resolution images of the proximal coronary 
arteries with accurate quantification of the lumen and the structure of the vessel walls 
[5]. It may be used in the planning of interventional clinical procedures by selecting the 
diameter and length of the stents, the need for additional lesion preparation for highly 
calcified lesions and in the evaluation of stent expansion, apposition, and the presence of 
dissections. Direct measures of coronary stenoses, such as minimal luminal area (MLA) 
or minimal luminal diameter (MLD), are generally used for this aim [6, 7].

At the time of the invasive clinical procedure, the functional significance of a steno-
sis is optimally classified based on the evaluation of the fractional flow reserve (FFR), 
which is measured as the ratio between the pressure distal to the stenosis and the aortic 
pressure. In the medical literature and practice, the optimal cutoff value is 0.8 [8, 9]. A 
value less than 0.8 indicates functionally significant stenosis, requiring a revasculariza-
tion procedure (either surgical or interventional) in addition to medical treatment.

Disadvantages of the invasive FFR are:

a. Invasive procedure which involves inserting a catheter into the arteries. This proce-
dure carries inherent risks such as bleeding, infection, and artery damage.

b. Patient discomfort because it can cause pain and anxiety for patients. It often 
involves the use of a contrast agent, which may have side effects, and typically 
requires patients to remain still for an extended period.

c. Additional costs ranging from 500 to 2000 euros are needed when compared with 
non-invasive methods due to the equipment and expertise required for the catheteri-
zation procedure.

d. Additional time both for the patient in terms of preparation and recovery.

The gray zone with high uncertainty regarding the lesion significance is generally con-
sidered in the interval of 0.75 ≤ FFR ≤ 0.85 for which the physician will need extra infor-
mation including the invasive FFR measurement.
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Generally, the lesions situated in the gray zone have the medical recommendation for 
revascularization. Still, the physician must consider the clinical procedure risks and the 
overall clinical state of the patient (age, obesity, etc.) for deciding the treatment.

Virtual FFR (vFFR) can be estimated via machine learning (ML) algorithms from 
XA [10], OCT [11], intravascular ultrasound (IVUS) [12] and combinations of OCT 
and IVUS imaging [13] based on the computational fluid dynamics (CFD). All these 
approaches rely on features that characterize the vascular geometry, specifically the arte-
rial lumen, and on clinical parameters.

Virtual FFR-based XA has the potential to alter decision making and it can increase 
the operators’ confidence in their decision [14].

Intracoronary OCT and FFR were acquired for the left anterior descending artery 
lesions in [11] for 125 patients with an accuracy of the OCT-based machine learning 
algorithm of 95.2%.

A total of 41 coronary stenoses in 30 patients were assessed consecutively in the 
paper [15] by quantitative coronary angiography (QCA), FFR, and intracoronary OCT. 
The study revealed that the diagnostic capability of MLA and MLD in identifying sig-
nificant stenoses was moderate, with an area under the curve (AUC) of 0.80 for MLA 
and 0.76 for MLD. The optimal cutoff of OCT-measured MLA to identify stenoses with 
FFR ≤ 0.80 was 1.62  mm2.

FFR estimation from intracoronary OCT imaging based on CFD modeling, also 
known as OCT-based optical flow ratio (OFR), was addressed in [16], and a prototype 
software package (OctPlus) was built. Bifurcation fractal laws were applied to correct the 
step-down phenomenon lumen size for 125 vessels from 118 patients, with an average 
FFR of 0.80 ± 0.09. The overall vessel-level diagnostic accuracy was 90%, with a sensitiv-
ity and specificity of 87% and 92%, respectively.

Another study aimed to evaluate the diagnostic performance of the OFR [17] to com-
pare it with the angiography-based quantitative flow ratio (QFR), using wire-based FFR 
as the gold standard in 212 vessels from 181 patients. The average FFR was 0.82 ± 0.10, 
and 40.1% of vessels had an FFR ≤ 0.80. The diagnostic accuracy, sensitivity, and specific-
ity of OFR to identify FFR ≤ 0.80 were 92%, 86% and 95%, respectively.

An angiography-based machine learning (ML) algorithm was developed in [18] to 
classify lesions based on FFR cutoff value with an overall accuracy of 82% and AUC of 
0.87.

The goal of the present study is to solve the binary classification problem for predict-
ing the intermediate coronary lesions significance based on the patient’s medical charac-
teristics and the features extracted from the lumen radii from intracoronary OCT.

Results
Population characteristics

Baseline patient and lesion characteristics are summarized in Tables 1 and 2: 80 patients 
with 102 intermediate coronary lesions are included in this study, where 57 are located 
on the left anterior descending coronary artery (LAD) with a mean FFR of 0.76, 20 on 
the left circumflex artery (LCX) with a mean FFR of 0.86, and 25 on the right coronary 
artery (RCA) with a mean FFR of 0.83.
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The histogram of the corrected FFR values is presented in Fig.  1 to reveal the data 
concentration around the gray zone. This is justified by the fact that the physicians gen-
erally perform invasive FFR measurements when there is an uncertainty in the decision-
making of revascularization.

Lesion severity classification performance

The tenfold cross-validation strategy was applied for each univariate model with the 
same random seed variation. Each one of the features was analyzed with the follow-
ing algorithms: SVM with different kernels, decision tree, k-nearest neighbors, random 

Table 1 Baseline patient characteristics and risk factors (n = 80)

Male 66 (82%) Hypertension 60 (75%)

Female 14 (18%) Hypercholesterolemia 62 (77.5%)

Age (years) 60.5 ± 11.2 years Smoking history 42 (52.5%)

Race All Caucasian Family history of CAD 3 (2.9%)

BMI 27.7 ± 2.5 kg/m2 Previous myocardial infarction 46 (45%)

Diabetes 27 (33.75%) Ejection fraction 48.28 ± 6.31%

Previous Angina 64 (80%)

Table 2 Lesion characteristics (n = 102)

Fractional flow reserve Index artery

Mean ± SD 0.80 ± 0.08 LAD 57

Median (IQR) 0.83 (0.75–0.86) LCX 20

FFR ≤ 0.80 48 RCA 25

FFR < 0.75 25

0.75 ≤ FFR ≤ 0.85 47

FFR > 0.85 30

Fig. 1 Histogram of the FFR values
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forest with different numbers of trees [19], AdaBoost [20] and naive Bayes [21]. From a 
total of 12 algorithms, only the one with the highest accuracy was selected in Table 3.

The models with a maximum accuracy of 60% (the top 14 feature models) were further 
analyzed through a box plot [22], as shown in Fig. 2. Two features have strong correla-
tion, and radius rapport was eliminated from the study.

For feature analysis, the correlation matrix was computed and shown in Fig. 3, from 
where it can be observed that two features, radius rapport and percentage diameter 
reduction have perfect correlation, hence, the last one was eliminated from the feature 
map.

Some OCT features, for example, percentage diameter reduction and proximal radius 
rapport, mean radius, and mean lumen radius for stenosis region, have good positive 
or negative correlations due to their linear computation formulas (see Table 9). Still, in 
practice, if one of the multicollinear feature is removed, the ensemble model perfor-
mance is decreasing, suggesting that their combination in voting is valuable.

In the simple and weighted voting approach, the accuracy is improved after running 
the ROC analysis and the models’ aggregation for the top 13 models. The performances 
of the ensembled model are displayed in Table 4 along with their corresponding AUC 
scores in Table 5.

Table 3 Accuracies of the tenfold individual feature models

No Feature input ML algorithm Mean Acc Standard 
deviation

Max Min

1 Minimal lumen diameter Scale SVM 63.43 6.46 71.57 53.92

2 Proximal radius rapport Poly SVM 64.31 5.14 71.57 53.92

3 Radius rapport Poly SVM 65.59 4.39 71.57 54.9

4 Percentage diameter reduction Poly SVM 66.18 1.4 68.63 63.73

5 Mean radius Decision Tree 62.75 6.75 71.57 53.92

6 Minimum lumen radius Naive Bayes 60.59 6.06 71.57 53.92

7 Weight Naive Bayes 64.51 4.27 69.61 53.92

8 Mean lumen radius for stenosis region Scale SVM 67.35 2.01 71.57 64.71

9 Mean radius per length Scale SVM 61.76 6 71.57 53.92

10 Maximum radius rapport K‑nearest neighbors 64.31 5.79 71.57 53.92

11 Stenosis lesion length Poly SVM 66.27 1.53 68.63 63.73

12 Hematocrit level Decision Tree 62.25 6.59 71.57 53.92

13 Interventricular septum Scale SVM 64.61 4.54 71.57 53.92

14 Maximum lumen radius AdaBoost 65.39 2.98 69.61 58.82

15 Smoking Scale SVM 55.5 4.8 59.8 47.52

16 Dyslipidemia Naive Bayes 54.71 6.51 60.54 43.88

17 AHT Scale SVM 53.53 3.72 56.86 47.34

18 Diastolic pattern Naive Bayes 52.88 4.44 56.86 45.5

19 Age Linear SVM 51.17 3.64 54.43 45.11

20 Diabetes Random Forest 60 50.33 4.01 53.92 43.66

21 Distal area Decision Tree 50.53 3.79 53.92 44.22

22 Echo EF Poly SVM 49.59 4.83 53.92 41.56

23 Hb Linear SVM 48.72 5.8 53.92 39.06

24 Hight Random Forest 60 51.43 2.78 53.92 46.8

25 Proximal area Linear SVM 50.52 3.8 53.92 44.2

26 Sex Linear SVM 48.59 5.94 53.92 38.7
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Fig. 2 Box plot on the accuracies of the top 14 feature models

Fig. 3 Correlation matrix for top 14 features
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The model aggregation of the crisp labels of all features using the mean ROC cutoff 
value (M3 method) for the voting combination of 7, 8, 9, 10, 11, 13 features models led to 
the same evaluation metrics with an accuracy of 80.39%.

The best accuracy was obtained for 5 features (minimal lumen diameter, proximal 
radius rapport, percentage diameter reduction, mean radius, minimum lumen radius) 
ensemble model with 81.37% (Table 6). The ROC analysis for both crisp labels and class 
probabilities are further displayed in Fig. 4.

For a narrower gray zone of 0.75 ≤ FFR ≤ 0.83 [23, 24] the model has an accuracy of 
only 71.43%. Outside this interval, the model performed significantly better (Table 7).

The best ensembled model is further analyzed regarding its dependencies with other 
clinical parameters, such as sex, vessel type, if the vessel is proximal LAD, if the patient 
is hypertensive or if he has diabetes (Table 8).

Table 4 The ensemble models accuracies with a confidence interval of 95% obtained after ROC 
analysis using weighted voting

No. of feat Class probabilities for all 
features using the mean ROC 
cutoff values (M1) (%)

Class probabilities using the 
corresponding ROC cutoff for 
each feature (M2) (%)

Crisp labels for all features 
using the mean ROC cutoff 
value (M3) (%)

1 75.49 (66.32,83.0) 75.49 (66.32,83.0) 73.53 (64.23,81.0)

2 76.47 (67.37,84.0) 72.55 (63.19,80.0) 73.53 (64.23,81.0)

3 78.43 (69.5,85.0) 73.53 (64.23,81.0) 79.41 (70.57,86.0)

4 77.45 (68.43,84.0) 71.57 (62.16,79.0) 74.51 (65.27,82.0)

5 75.49 (66.32,83.0) 68.63 (59.09,77.0) 81.37 (72.73,88.0)

6 73.53 (64.23,81.0) 69.61 (60.1,78.0) 79.41 (70.57,86.0)

7 75.49 (66.32,83.0) 71.57 (62.16,79.0) 80.39 (71.65,87.0)

8 73.53 (64.23,81.0) 70.59 (61.13,79.0) 80.39 (71.65,87.0)

9 75.49 (66.32,83.0) 72.55 (63.19,80.0) 80.39 (71.65,87.0)

10 76.47 (67.37,84.0) 69.61 (60.1,78.0) 80.39 (71.65,87.0)

11 75.49 (66.32,83.0) 69.61 (60.1,78.0) 80.39 (71.65,87.0)

12 77.45 (68.43,84.0) 70.59 (61.13,79.0) 79.41 (70.57,86.0)

13 77.45 (68.43,84.0) 71.57 (62.16,79.0) 80.39 (71.65,87.0)

Table 5 The AUC scores with their lower and upper limits using weighted voting

No. of feat AUC using crisp labels AUC using class probability

1 0.811 (0.725,0.897) 0.81 (0.724,0.896)

2 0.826 (0.743,0.909) 0.796 (0.707,0.885)

3 0.814 (0.729,0.9) 0.826 (0.743,0.909)

4 0.824 (0.74,0.907) 0.786 (0.695,0.877)

5 0.828 (0.745,0.91) 0.738 (0.64,0.836)

6 0.852 (0.775,0.929) 0.807 (0.64,0.894)

7 0.815 (0.73,0.901) 0.822 (0.739,0.906)

8 0.856 (0.78,0.933) 0.78 (0.689,0.872)

9 0.832 (0.75,0.914) 0.784 (0.693,0.875)

10 0.815 (0.73,0.901) 0.825 (0.742,0.908)

11 0.81 (0.724,0.897) 0.783 (0.691,0.874)

12 0.822 (0.738,0.906) 0.786 (0.696,0.877)

13 0.856 (0.78,0.932) 0.815 (0.73,0.901)
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Table 6 The evaluation metrics computed for the best ensemble model with a confidence interval 
of 95%

Evaluation metrics Values

Sensitivity (%) 80.85 (67.46,89.58)

Specificity (%) 81.82 (69.67,89.81)

PPV (%) 79.17 (65.74,88.27)

NPV (%) 83.33 (71.26,90.98)

Fig. 4 ROC curve with the optimal cutoff value along with the AUC score for 13 features ensemble model: a 
class probability and b prediction output

Table 7 Diagnostic performances depending on FFR value

FFR < 0.75 or FFR > 0.83 0.75 ≤ FFR ≤ 0.83

Accuracy (%) 85.14 71.43

Table 8 Diagnostic performances for different clinical parameters

Vessel Type Proximal LAD Sex Hypertensive Diabetes

LAD LCX RCA Yes No F M Yes No Yes No

Accuracy (%) 78.95 85 84 87.1 78.87 82.35 76.47 81.33 81.48 81.43 81.25
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The LAD vessels are harder to diagnose due to an accuracy of 78.95%, as well as, if they 
are not proximal. Additionally, the patient’s sex is a factor of discordances, quantified 
by a difference in accuracy of 6% between women and man. The presence of diabetes or 
hypertension give similar performances and they are not discordance factors.

A multivariate model was tested for the top 5 to 13 features and the best accuracy was 
obtained for random forest classifier on the top 13 features with an accuracy of 71.56% 
which is lower than in the aggregation approach.

Discussion
Machine learning in stenosis classification

The paper proposed a new ML model as a potential tool for deciding the lesion signifi-
cance based on the patient clinical characteristics and features extracted from the radii 
profile achieved from the intracoronary OCT. In the study, it was assumed that this 
medical imaging technique will provide better quality data in the assessment of the radii 
profiles.

The results sustain the hypothesis that the most important features in the ensemble 
model are extracted from OCT imaging; hence, the best model uses the top 5 features, 
all related to the radii profile: the minimal lumen diameter, proximal radius rapport, per-
centage diameter reduction, mean radius, and minimum lumen radius.

The criterion for performance evaluation was considered the models’ accuracy due 
to balanced classes of the dataset. Nevertheless, the confidence intervals of the other 
ensemble models’ performances overlap, and the differences are not statistically 
significant.

There are no similar methods reported in the scientific literature, but a comparison is 
made with other papers related to the virtual FFR.

ML-based techniques were employed in [11] for 125 patients considering intracoro-
nary OCT and FFR. The partition ratio was 5:1 for splitting the training and testing data-
sets. A random forest model was used, with the six most important features as inputs: 
MLA, percentage of the stenotic area, lesion length, proximal lumen area, preprocedural 
platelet count, and hypertension. The sensitivity, specificity, positive predictive value, 
negative predictive value, and accuracy of the OCT-based machine learning-FFR for the 
testing group were 100%, 92.9%, 87.5%, 100%, and 95.2%, respectively.

Another attempt considered in [14] by the same authors identified 36 features, includ-
ing 16 clinical lesion characteristics and 20 OCT extracted features. The classification 
performances were assessed using sensitivity, specificity, positive predictive value, nega-
tive predictive value, and accuracy as 85.7%, 100%, 100%, 77.8%, and 90.5%, respectively.

Even if the accuracies of these models are higher, it must be noted that the splitting 
ratio of 5:1 for training versus testing inherit a risk of generalization lack. In the present 
study, with almost the same number of cases, the leave group out approach was chosen 
for preventing this issue.

All these papers don’t mention if their private dataset have FFR values inside the gray 
zone.

A study aimed to evaluate the OFR diagnostic performance [17] in comparison with 
the angiography-based QFR, having the wire-based FFR as a gold standard for 212 ves-
sels from 181 patients with an average FFR of 0.82 ± 0.10 from which 40.1% of vessels 
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had an FFR ≤ 0.80. The diagnostic accuracy, sensitivity, and specificity of OFR to identify 
FFR ≤ 0.80 were 92%, 86% and 95%, respectively. The computational burden of this algo-
rithm is one of the most important issues.

The study [18] tends to be more relevant in our comparison, used an angiography-based 
ML algorithm for classifying the lesions significance using the FFR cutoff value with an 
overall accuracy of 82% and AUC of 0.87 for 1501 patients with 1501 intermediate lesions.

In the scientific paper [25], a deep learning (DL) approach was used for estimating the 
FFR based on the CFD simulations applied to synthetically generated coronary anatomy 
with an accuracy of 83.2%.

The best comparison with the current study that used the same OCT dataset, is reported 
in [26], which used DL algorithms applied on raw radii profiles extracted from the images. 
Few-shot learning reached the highest accuracy of 77.5%. The present model outperformed 
the DL-based model due to an enhanced dataset that included the clinical characteristics of 
the patient.

An independent comparison study [27] was done for 5 software/methods of angio-FFR 
estimation on a large dataset. The ROC analysis was performed for each method for detect-
ing the FFR ≤ 0.8 and the AUC values were between 0.73 and 0.75, which are lower than the 
previously diagnostic performances reported in their validation studies.

Although the model accuracy of 81.37% is slightly lower than ones from the other studies 
which reported accuracies ranging from 82% to 95.2%, it is essential to consider that our 
cohort consisted of nearly 50% stenoses in the gray zone, with an FFR of approximately 0.8, 
unlike the others with a smaller representation in this region. Still, for cases with FFR out-
side the gray zone, the model reached an accuracy of 85.14%.

Our method claims a better computational time, due to the fact it does not need the 3D 
modeling reconstruction, CFD simulations or deep learning implementation, making it 
suitable for a further development in the clinical practice.

Ensemble learning reduces the generalization error and improves the overall perfor-
mance of the individual model accuracy from an average of 67.35% to 81.37%. Its inputs 
were the crisp labels (significant lesion or not significant) for all features using the mean 
ROC cutoff value approach.

The ensembled model boosted the model performances in comparison to the multivari-
ate model from 71.56% to 81.37%.

From the current study, the following interpretations can be concluded:

• measurements related to the stenosis region are the dominant features due to their 
strong correlation with FFR,

• weight is an important physiological characteristic of the patient.
• features related to the lesion region have an important impact on the classification out-

put,
• AUC score for the crisp labels outperforms the class probability approach.

Clinical implications

To evaluate the clinical impact, the study focused only on non-culprit lesions of 
patients with ACS and multivessel disease. There were no other restrictions or 
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regulations regarding the data acquisition which offer a broader perspective of the clini-
cal applications.

The explainability goal was targeted for a better understanding and acceptance as deci-
sion support in daily clinical practice.

The accuracy for a narrower gray zone of 0.75 ≤ FFR ≤ 0.83 for clinical decision making 
of percutaneous coronary intervention (PCI) reached 71.43% and it can suggest that the 
invasive FFR measurement is mandatory for the critical region, whereas, for the cases 
of outside this interval, the model performance improves substantially to an accuracy of 
more than 85%.

Therefore, the model offers good performances outside the gray zone that can guide 
the decision making for choosing the proper treatment that may include the immediate 
revascularization or taking medications.

For the cases inside the interval, the algorithm suggests the need for getting extra 
information about the lesion type by performing the invasive FFR measurement. Never-
theless, additional medical information may also include the evaluation of the coronary 
flow reserve which imply the coronary blood flow velocity measuring. This can be done 
both invasively using an ultrasound transducer-based catheter or non-invasively, using 
positron emission tomography (PET).

The importance of the study is given by the fact that it is not possible to rely only 
on 2D invasive coronary angiography and FFR measurement for treating non-culprit 
lesions. FFR measurement is subject to artefacts which will yield inaccurate results and 
it’s producing a hemodynamic disturbance due to the hyperemia inducing state [28]. 
Moreover, having a model that could simplify the amount of information coming from 
all invasive assessments (OCT or FFR) could be a real help for interventionists who must 
take important and instant decisions on treating patients in cardiac catheterization labs.

Clinical implementation

To implement the model in a clinical setting, we envisage the followings: patients are 
included only after signing an informed consent form; a set of initial inclusion and 
exclusion criteria are also checked, and if they are met, the XA and OCT exams are per-
formed; data is then extracted and annotated using the dedicated tool.

The XA and OCT data are processed using a cloud-based or on-premise application 
and the prediction model will run using an artificial intelligence service. Finally, the pre-
diction outputs are interpreted by the clinical expert, who then takes the final diagnosis 
and treatment decision.

Limitations

The study was limited by a single-center acquisition and there was no other dataset 
similar to be found in public databases, which constrained the current study to only 80 
patients. Finally, to generalize the proposed model, further validation is necessary in a 
large multicenter cohort of subjects of different races.

The ground truth that is built based on a fixed FFR cutoff value, forced the inclusion of 
confidence intervals to make them more clinically relevant.
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The lumen geometry extracted from OCT imaging may be influenced by the errors in 
the acquisition process, by the contour detection and its corrections performed in the 
built-in software.

Contributions and further perspectives

The study contributions include new features extraction from intracoronary OCT 
(Table 9) capable of quantifying stenosis lesion severity and building the ensemble model 
obtained using the ML approach for classifying the significance of coronary lesions.

A further perspective includes the extension of the dataset at least with 100 new 
patients for testing other ML strategies for preserving the explainability goal, which 
creates a classification mechanism that is interpretable and can be reproductible by 
humans.

The inclusion of other clinical biomarkers and angiography results can contribute to 
designing a holistic model for clinical decision making of vascularization.

Conclusions
OCT-based machine learning lesion classification can be used to acquire morphological 
and functional information into a single procedure, suggesting that it may enhance the 
treatments of coronary artery stenoses.

The paper introduces a single-center study for evaluating the importance of inter-
mediate coronary lesions that may lead to ischemia in the major coronary arteries. The 
assessment primarily involves extracting features from both OCT images and patient 
characteristics.

Methods
Data acquisition

The dataset was collected from the Clinical Emergency Hospital, Bucharest, Romania, 
and it was conducted in compliance with the Declaration of Helsinki for investigation in 
human beings.

Table 9 Features computed directly from the OCT images

No Name Formula

1 Mean lumen radius rmean = average of radii along the vessel segment

2 Minimum lumen radius rmin

3 Maximum lumen radius rmax

4 Mean lumen radius for stenosis region Average of radii along the stenosis region

5 Mean radius per length rmean/vessel segment length

6 Maximum radius rapport (rmax − rmin)/rmax

7 Stenosis lesion length lengthS

8 Percentage diameter reduction 100 ∗
(

1− 2∗rmean
rproximal+rdistal

)

9 Proximal radius rapport
(

rrproximal
− rdistal

)

/rrproximal

10 Radius rapport
((

rproximal + rdistal

)

/2− rmin

)

/
((

rproximal + rdistal

)

/2
)

 

11 Proximal area π rproximal
2

12 Distal area π rdistal
2
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The study protocol was approved by the local ethics committee of the hospital, after 
all patients gave their written informed consent before enrollment.

The dataset comprises 80 patients with 102 lesions with stable coronary artery dis-
ease or acute coronary syndrome (ACS) and multivessel disease. Only non-culprit 
lesions were considered in ACS patients. Culprit lesions were examined and treated 
during hospitalization, whereas non-culprit lesions were evaluated based on XA, 
OCT and invasive FFR during a second hospitalization, generally after two weeks.

OCT imaging was performed using Optis (St. Jude Medical/Abbott, St. Paul, MN, 
USA) and Dragon Fly catheters. The fiber probe was pulled back at a constant speed, and 
cross-sectional images were acquired with 5 frames/mm during manual contrast injec-
tion. The maximum vessel length that can be evaluated during one pullback is 75 mm.

FFR measurement was performed using a Quantum system (St. Jude Medical/Abbott, 
Minneapolis, MN, USA). The measurement was performed after the administration of 
adenosine, either intravenously at a constant rate of 140 μg/kg/min or as an intracoro-
nary bolus (50–100 μg for the right and 100–400 μg for the left coronary artery) [29].

The clinical protocol states that after recording FFR, the pressure wire is pulled 
back with the sensor at the tip of the guiding catheter to measure the pressure drift. 
If these values differed by more than ± 3 mmHg, pressures must be re-equalized, and 
the measurements are repeated.

Echocardiography was performed for all patients, and the relevant clinical measure-
ments were given by the physician: ejection fraction (echo EF), diastolic pattern, and 
interventricular septum size. From the blood tests, hemoglobin (Hb) and hematocrit 
(Ht) levels are used in the study.

Data processing

The OCT images were anonymized and exported in Digital Imaging and Communica-
tions in Medicine (DICOM) format [30] with a spatial resolution of 704 × 704 pixels.

The images were analyzed by the clinical team, and the inner vessel contour was 
automatically traced in the OCT console. Another verification was done on acquired 
data and some slices with improper contours were eliminated or they had been cor-
rected in a built-in software.

The interventional cardiologist annotated the dataset as follows:

• OCT frames related to the proximal and distal region of the vessel segment,
• OCT frames related to the proximal and distal region of the lesion,
• tracing the lumen border from the medical imaging device under medical imaging 

expert guidance for computing the vessel’s radii and the estimation of MLD.

Figure 5a is a sample of OCT slice with the coronary artery lumen tracing after con-
tour correction, which is used to build the unidimensional signal of the diameters’ 
evolution along the vessel length (Fig. 5b).

The 12 features mentioned in Table  9 are computed directly from that unidimen-
sional signal, considering the proximal and distal radii of the lesion (r_proximal and 
r_distal respectively) given by the medical expert.
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The difference between MLD and minimum lumen radius is that the first one is esti-
mated by the physician and the last one is computed directly from the evolution of 
the diameters along the vessel length (Fig. 5b). This signal is subject to changes due to 
the OCT imaging preprocessing done in the built-in software, where the contours are 
manually adjusted when it was needed.

Thirteen clinical characteristics of the patients were used as features in the algo-
rithm: sex, age, height (cm), weight (kg), smoking (0 no; 1 past; 2 present), AHT, dys-
lipidemia, diabetes, ejection fraction, diastolic pattern, interventricular septum size, 
hemoglobin, and hematocrit levels.

The ground truth is related to FFR measurement, which has been corrected previously 
considering the pressure drift (D), which represents the arithmetic difference between 
aortic pressure (drift_Pa) and distal pressure (drift_Pd). The drift is done at the end of 
the measurements to check the pressure curves if they are superimposed [31].

Even if drift values of 1–2 mmHg are generally accepted as insignificant in medical 
practice [32], a drift of 2–3 mmHg was considered relevant in the study, improving 
the models’ accuracy. Hence, a correction of the measured distal pressure (corrected_
Pd) was introduced considering the drift measurement:

where Pd is the distal pressure measured at the beginning of the FFR investigation.
The updated value of FFR ( corrected_FFR ), which is measured at maximal hyper-

emia, will be computed as in the medical literature [21]:

where Pa is the aortic pressure measured at the beginning of the invasive FFR 
investigation.

Only 15 lesions out of 102 were adjusted according to the above-mentioned formula 
(2). Twelve lesions had a drift variation of 2 mmHg, and only 3 lesions had a drift var-
iation of 3 mmHg. The correction value influenced the ground truth for two lesions 
by underestimating the initial value of 0.8 and setting the case into the positive class.

The medical data were extracted both from the clinical records and from the medi-
cal images as following:

(1)Corrected_Pd = Pd+ D

(2)Corrected_FFR =
corrected_Pd

Pa

Fig. 5 a OCT slice with lumen border tracing, the corrected contour is represented in light blue by the 
built‑in software and the contour provided by the machine in orange, b Unidimensional signal with the 
evolution of the diameters extracted from the OCT slices along the vessel length
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• OCT imaging and invasive FFR for each one of three coronary arteries (RCA, 
LCX or LAD) were performed in PCI during the angiography procedure,

• The FFR value was corrected using Eq. (2),
• A database was constructed in which the cardiologist recorded the start and end 

of the OCT frames to delimitate the vessel segment, the start and end of the OCT 
slices corresponding to the lesion,

• Patient characteristics were extracted from the clinical records: physiological, ana-
tomical, and behavioral features correlated to coronary artery disease.

The algorithm overview

The ground truth is computed based on the corrected value of FFR into two classes, if 
the coronary lesions are hemodynamically significant or not:

The feature matrix was first normalized using L1 norm or Manhattan distance 
which computes the sum of the magnitudes of the features.

Twelve base learners were tested for 10 different seeds, such as support vector 
machine (SVM) with different kernels, decision tree, random forest with different 
number of trees, k-nearest neighbors, AdaBoost, logistic regression or naive Bayes 
[33–35]. The usage of the same random seed per model computation for each type 
of classifiers, can guarantee a precise, reproducible, and uniform evaluation of each 
algorithm.

The leave-group out method [36] was applied at the patient level, hence 80 training/
testing folds for each model computation, as follows: for each fold, a threshold value 
was set to balance sensitivity and specificity on the respective training set. Finally, the 
chosen threshold is applied to classify the test sample(s).

To evaluate the results, diagnostic statistics [37] were computed for all approaches: 
accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predic-
tive value (PPV).

The accuracy is computed as the ratio between the correct predictions and all sam-
ples’ predictions, as revealed in relation (4):

where TP is the true positive, TN is the true negative, FP is the false positive and FN is 
the false negative.

The area under the curve by receiver-operating characteristic (ROC) analysis [38] 
was used on mean probabilities of the positive or negative class (significant or nonsig-
nificant lesion) and on mean prediction output for all models. Instead of the popular 
Youden index, the closest to (0,1) criteria [39] gave better results in identifying the 
best cutoff value for the given inputs. Each optimal threshold and its average are fur-
ther used in constructing the final model.

(3)y =

{

0, Corrected_FFR > 0.8
1, Corrected_FFR ≤ 0.8

(4)Acc =
TP+ TN

TP+ TN+ FP+ FN
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Ensemble learning groups different models for solving difficult problems to improve 
the overall performance accuracy and reduce the variance at the cost of increasing the 
bias [40, 41].

For feature analysis and dependencies, the correlation matrix was computed based on 
Pearson correlation [42]. Percentage diameter reduction and radius rapport revealed a 
perfect correlation, hence, the last one was eliminated from the feature map.

The following experiments were conducted considering an ensemble model made of 
13 univariate models obtained for each feature individually illustrated in Fig. 6.

Based on models’ performance, eleven features were extracted from the intracoro-
nary OCT frames: MLD, proximal radius rapport, percentage diameter reduction, mean 
radius, minimum lumen radius, mean lumen radius for stenosis region, mean radius per 
length, maximum radius rapport, stenosis lesion length, and maximum lumen radius. 
In addition to that, the weight, the hematocrit level, and the interventricular septum are 
added into the final feature map.

Considering the univariate models of the top 13 most relevant features obtained after 
tenfold cross validation, a multi-feature voting is used for building the ensemble model. 
ROC analysis was applied, and the ensemble predictions were computed by averaging 
the output prediction of all 10 models.

The output of the class label (Oi) can take different types of values according to the 
information provided by the classifiers  Ci:

In the scientific literature [41] it is suggested that the class probabilities estimated by 
most classifiers have, in general, lower performance, except for the situation of a careful 
calibration.

Considering the crisp label and the calibrated class probability as inputs for the ROC 
analysis, the final outputs of each model are used in a voting system to obtain the three 
different aggregation strategies:

(5)Oi ∈

{

{0, 1}, crisp label
[0, 1], class probability

Fig. 6 Algorithm overview of the ensembled model
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• M1—the mean ROC cutoff value of the class probabilities of all univariate models is 
the threshold of the final predictions that are further used as inputs into the voting 
system.

• M2—the cutoff values after the ROC analysis of each corresponding feature model 
are the thresholds for the resulting models that are further used as inputs into the 
voting system.

• M3—the optimal cutoff value obtained after the ROC analysis of the crisp labels of 
each univariate model is the threshold for the final models that are further used as 
inputs into the ensemble model.

For comparison, a simple majority vote and a weighted voting [43] are implemented in 
the classification system having as input the mean of the models’ outputs after perform-
ing the ROC analysis.

In the simple majority vote approach, every classification model votes for one class 
label, and the final output class label is the one that receives more than half of the votes.

As implementation, the ensemble model’s output is given by the combination of each 
one of the 13 univariate models that can vote. A 0.5 threshold is applied to their mean 
for computing the final prediction output.

Weighted voting assumes that the individual classifiers have unequal performance and 
it will give more voting power to the stronger classifiers. The weights should be propor-
tional to the performance of the individual learners.

The optimal weights  (wi) assigned to the classifier  (Ci) are computed from [43] with 
the following formula (6):

where  acci denotes the accuracy of the classifier  Ci and i =
−

1, 13 features.
Finally, the mean of each output  (Oi) is multiplied by the corresponding weight and 

compared to threshold value of 0.5 to compute the ensembled model output.
The implementation of the algorithms was performed using the scikit-learn Python 

library [44].
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