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Abstract 

Background: Bioelectric signals, whether exogenous or endogenous, play crucial 
roles in the life processes of organisms. Recently, the significance of bioelectricity 
in the field of dentistry is steadily gaining greater attention.

Objective: This narrative review aims to comprehensively outline the theory, 
physiological effects, and practical applications of bioelectricity in dental medicine 
and to offer insights into its potential future direction. It attempts to provide dental 
clinicians and researchers with an electrophysiological perspective to enhance their 
clinical practice or fundamental research endeavors.

Methods: An online computer search for relevant literature was performed in Pub-
Med, Web of Science and Cochrane Library, with the keywords “bioelectricity, endog-
enous electric signal, electric stimulation, dental medicine.”

Results: Eventually, 288 documents were included for review. The variance in ion con-
centration between the interior and exterior of the cell membrane, referred to as trans-
membrane potential, forms the fundamental basis of bioelectricity. Transmembrane 
potential has been established as an essential regulator of intercellular communication, 
mechanotransduction, migration, proliferation, and immune responses. Thus, exog-
enous electric stimulation can significantly alter cellular action by affecting transmem-
brane potential. In the field of dental medicine, electric stimulation has proven useful 
for assessing pulp condition, locating root apices, improving the properties of dental 
biomaterials, expediting orthodontic tooth movement, facilitating implant osteointe-
gration, addressing maxillofacial malignancies, and managing neuromuscular dysfunc-
tion. Furthermore, the reprogramming of bioelectric signals holds promise as a means 
to guide organism development and intervene in disease processes. Besides, the devel-
opment of high-throughput electrophysiological tools will be imperative for identify-
ing ion channel targets and precisely modulating bioelectricity in the future.

Conclusions: Bioelectricity has found application in various concepts of dental medi-
cine but large-scale, standardized, randomized controlled clinical trials are still neces-
sary in the future. In addition, the precise, repeatable and predictable measurement 
and modulation methods of bioelectric signal patterns are essential research direction.
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Graphical abstract

Introduction
Bioelectricity is termed as any electrical phenomenon that is either actively generated by 
cells or applied to cells to influence their phenotype [1]. In 1792, Luigi Galvani was the 
first to record that an unintended spark discharge caused the contraction of frog muscle 
fibers. He asserted that the animal neuromuscular system operates as an electrodynamic 
system with the capacity to generate electricity. [2, 3]. The experiments on electric eel by 
Alexander von Humboldt in 1800s further refined Galvini’s theory [4]. In 1840s, du Bois-
Reymond verified and developed techniques for recording the tiny electric currents gen-
erated during nerve conduction, involving the insertion of electrodes into animal tissues, 
which laid down the foundation of modern electrophysiology [5]. In the 1940s, electrical 
stimulation therapy was tried to be introduced in some clinical practices such as treat-
ment of arrhythmia [6] and epilepsy [7]. But almost all these recordings are case reports, 
and massive severe complications and failure were reported due to limited electro-
physiological knowledges [8–10]. After 1950s, commercialized electric defibrillator was 
invented [11] and electrical stimulation was confirmed to be useful for cardiac pacing 
[12]. Up to now, electrical therapies has been verified to be beneficial to neuromuscular 
pain [13, 14], neuromuscular recovery [15, 16], wound healing [17], and bone fracture 
healing [18].

At present, bioelectrical studies encompass the measurement of voltage fluctuations 
and electric currents, as well as electrical interventions across a broad spectrum of 
scales, ranging from individual ion channel proteins to entire organs such as the heart. 
The transmembrane potential  (Vmem) is regarded as a fundamental aspect of endogenous 
bioelectricity. This phenomenon arises from the selective permeability of the cell mem-
brane and the active transport facilitated by ion pumps, leading to distinct distributions 
of charged ions (e.g.,  Na+,  K+,  Ca2+, and  Cl−) between intra- and extracellular compart-
ments [19]. This constant imbalance of electric charge generates voltage differences 
between two sides of cytomembranes, termed transmembrane potential or  Vmem [20]. In 
most cells, the resting transmembrane potential is negative on the inside relative to the 
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outside; for instance, in neurons, the resting transmembrane potential is approximately 
− 70 millivolts (mV) [21]. However, this value is not static. When there is a rapid influx 
of positively charged ions (e.g.,  Na+) into the cell or the efflux of negatively charged ions 
(e.g.,  Cl−) out of the cell, the membrane becomes less negative or even positive, a phe-
nomenon referred to as ‘depolarization.’ Conversely, when the transmembrane poten-
tial becomes more negative, it is termed ‘hyperpolarization’ (Fig.  1). These alterations 
in transmembrane potential play a crucial role in regulating electrical activities in excit-
able cells, such as neurons and muscle cells. Moreover, accumulated data have revealed 
the significant role of transmembrane potential in non-excitable cells [22]. Transmem-
brane potential is closely linked to the proliferation capacity of cells. In particular, rap-
idly proliferating embryonic and tumor cells tend to exhibit a reduced transmembrane 
potential difference, characterized by depolarization. Conversely, differentiated somatic 
cells, such as skeletal muscle cells, neurons, and fibroblasts, typically maintain a higher 
level of hyperpolarization [19]. The resting transmembrane potential of normal human 
breast epithelial cell is near − 60 mV but infiltrating ductal carcinoma tissue was found 
to be − 13 mV [23]. This probably due to aberrant expression of ion channels and trans-
porters [24]. Behavsar et al. successfully manipulated the  Vmem by blocking and unblock-
ing charged ion transporting channels to affect cellular proliferation [19], which further 
verified the roles of transmembrane potential in cellular phenotype.

Moreover, numerous studies have demonstrated that external electrical stimulation 
(EStim) influences cellular behavior, including transmembrane potential shifts [25], dif-
ferentiation of stem cell [26], cell proliferation [27], cell migration [28], inflammatory 
cytokines secretion [29] and collagen production [30]. However, the main limitation of 
current studies is the lack of consistency in the EStim parameters (type, duration, cur-
rent, voltage, direction, etc.) they employed. It has been confirmed that EStim of differ-
ent intensities probably lead to diverse, sometimes contrasting outcomes [25]. Thus, to 
date, there is no consensus regarding the optimal parameters for clinical EStim therapy. 
Our review provides an overview of the effects of endogenous bioelectricity and com-
piles a decade’s worth of research on external electric stimulation, including detailed 

Fig. 1 The schematic graphic displays how cells regulate transmembrane potential. Most cells maintain a 
transmembrane potential with the interior negatively charged relative to the exterior. When cell membrane 
receptors facilitate the influx of anions or efflux of cations, intracellular charge becomes more negative, a 
phenomenon referred to as hyperpolarization. Conversely, when anions efflux or cations influx, intracellular 
charge shifts towards less negative or even positive, termed depolarization
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parameters. Furthermore, we reviewed the applications of bioelectricity in the field of 
dental medicine and engage in a discussion regarding its prospects.

Methods
The literature was searched using PubMed, Web of Science and Cochrane Library using 
the key words bioelectricity, endogenous electric signal, electric stimulation and den-
tal medicine. Besides, the associated MeSH terms dental medicine was broadened to 
include periodontology, orthodontics, implantology, endodontics, pediatric dentistry and 
maxillofacial surgery. The BOOLEAN operators ‘AND’ and ‘OR’ were used to ensure 
maximum inclusion. Using PubMed database literature search strategies as an example, 
refer to Table 1.

A total of 9025 articles were retrieved. After removal of duplicated articles, non-med-
ical papers, papers with poor relevance to the MeSH terms and non-English literature, 
288 articles were scrutinized and discussed in this narrative review. Detailed search 

Table 1 Search strategy used for PubMed database with MeSH subheadings

1 Bioelectricity

2 Endogenous electric signal

3 Electric stimulation

4 1 AND dental medicine

5 2 AND dental medicine

6 3 AND dental medicine

Fig. 2 Flow diagram showing search process (following PRISMA guidelines)
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process and exclusion criteria can be found in Fig.  2. Each article was independently 
assessed by QM and one of the other authors, in cases where there was disagreement 
between researchers, consensus was reached by discussion between all the authors.

Endogenous electrical signals
The sources of bioelectricity: from organs to cells

The brain[31, 32], heart [33, 34], and bones [35] can generate endogenous bioelectric-
ity in the human body. The brain is a remarkably electrically active organ that generates 
and conducts electrical signals through neurons. The excited state of a neuron respon-
sible for signaling, known as the action potential (AP), is produced through the trans-
membrane transport of charged ions and transmitted as an electric signal along nerve 
axons [36]. It is noticeable that the nerve impulse has different action potential widths, 
frequencies and patterns which are essential to responses of downstream nerve cells or 
end-organs [37–39]. Besides, heart generates and propagates the electrical impulse to 
initiate and regulate its contraction and relaxation. The bioelectric impulse is gener-
ated from the sinoatrial node (SAN) and reaches the atrioventricular node (AVN), and 
activates ventricular myocardium through ventricular conduction system (VCS), this 
process has been completely reviewed by Weerd and Christoffels [40]. Interestingly, 
the bioelectric impulse also plays a role in the early formation of heart [41–43]. Wen 
et al. simulated the “funny” current, a current generated by the hyperpolarization-acti-
vated cyclic nucleotide-gated channel (HCN) family in the sinoatrial node (SAN) and 
crucially involved in the spontaneous diastolic depolarization of SAN cells, successfully 
promoting cardiogenesis in canine mesenchymal stem cells (cMSCs) [44, 45]. Bone and 
cartilage have piezoelectric property, for example, the human tibia generates a 300 μV 
piezoelectric potential from walking [46]. Bone surface compression induces a negative 
stress-generated potential (SGP), promoting tissue formation, while tensile forces gener-
ate a positive potential, leading to resorption [35]. In addition, when a fracture occurs, 
the fracture site turns more negatively charged. One plausible explanation for this phe-
nomenon is that the negative potential may attract a greater number of cells to engage 
in the repair process [3, 35, 47]. The piezoelectric properties of bone tissue are not solely 
attributed to cellular activity but also stem from extracellular organic and inorganic 
compounds. For example, collagen exhibits piezoelectric effects especially when it is dry 
[35]. In the bone tissue, its water absorption is limited by another inorganic component, 
hydroxyapatite, known as another common piezoelectric material [48, 49]. Given that 
collagen has an abundance of electrons while hydroxyapatite has few, they are consid-
ered as the negative and positive electrodes in bone tissue, respectively [50].

From yeast to human stem cells, they all share a common ability to generate trans-
membrane potential by regulating specific ion channels, typically involving sodium, 
potassium, and calcium ions. This regulation leads to an imbalanced distribution of 
charged ions across the cell membrane. The action potential represents one of the earli-
est recognized processes associated with changes in transmembrane potential. In excit-
able cells, such as neurons and muscle fibers, external stimulation initially triggers the 
activation of voltage-gated sodium ion channels, resulting in the inward flow of sodium 
ions  (Na+). This phenomenon induces cellular depolarization, causing a transient 
(< 1 ms) reversal of the transmembrane potential polarity [51]. Once the transmembrane 
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potential reaches a critical level, known as the threshold potential, it triggers the sub-
sequent initiation of an action potential through the activation of additional ion chan-
nels [52]. Within a brief duration of approximately 1 ms, the  Na+ channel undergoes a 
conformational change, preventing further passage of  Na+. Following this,  K+ channels 
open, allowing  K+ to flow out of the cell, leading to the restoration of the transmembrane 
potential towards negative values. This process is referred to as repolarization, mark-
ing the final phase of the action potential. In contrast, in non-excitable cells, changes in 
transmembrane potential also play a role in the activation of signaling pathways and the 
regulation of cellular metabolism, rather than being associated with nervous excitation 
or muscle contraction [53–55]. It is noteworthy that calcium and chloride channels play 
more essential roles in non-excitable cells than sodium or potassium [56, 57]. The fol-
lowing section outlines the activated mechanisms and effects of common ion channels:

The voltage‑gated sodium channels (VGSCs)

The VGSC is a selective ion channel which generates rapid internal sodium ion influx 
that drive depolarization of cells [58] It was first described clearly as a fast-responding 
initiator of action potentials in neurons and other excitable cells by Hodgkin and Hux-
ley in 1952 [59]. The sodium channel in eukaryotic organisms exhibits a high degree of 
conservation, composed of an α subunit with a noncovalently associated β1 subunit and 
a disulfide-linked β2 subunit [60, 61]. Sodium channel α subunits consist of approxi-
mately 2000 amino acid residues organized into four homologous domains, each con-
taining six transmembrane segments. The β subunits, on the other hand, are composed 
of an N-terminal extracellular immunoglobulin-like fold, a single transmembrane seg-
ment, and a short intracellular segment. These β subunits play a crucial role in modulat-
ing the kinetics and voltage dependence of sodium channel activation and inactivation 
[62, 63]. The crystal structure of the active-state conformation of sodium channel has 
been revealed by Jian Payandeh et al. [64]. In addition, models of the resting-state con-
formation are also been obtained using all-atom molecular dynamics (MD) simulations 
[65]. These studies have demonstrated that the sliding helix mechanism, wherein the 
S4 segment maintains its helical conformation primarily as it moves along its long axis, 
is the most plausible model to explain the mechanism of voltage-dependent activation 
[66]. Interestingly, the short intracellular loop binding homologous domains III and IV 
of α subunit can fold into the intracellular mouth of the pore and blocking it to inacti-
vate rapidly sodium channel, which is required for repetitive firing of action potentials 
in neural circuits [67]. The inactivation state of the sodium channel persists for a brief 
period to ensure the unidirectional propagation of the action potential. This temporary 
refractory period can also elevate the threshold for action potential initiation, result-
ing in reduced sensitivity to high-frequency stimulation [68]. However, a minor fraction 
of the total sodium current (approximately 1% to 2%) continues to flow even after cells 
return to their resting potential. This persistent sodium current is voltage-dependent 
and has been linked to atrial myopathy, although the precise mechanisms remain a sub-
ject of debate [69, 70]. Lastly, mutations of sodium channels cause numerous genetic dis-
eases, including inherited forms of periodic paralysis, cardiac arrhythmia, epilepsy, and 
chronic pain [63, 71, 72]. Sodium channels blocker has also been used clinically as local 
anesthetics, antiarrhythmics, and antiepileptics [63].
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The voltage‑gated potassium channels (VGKCs)

Potassium channels are found in the cytomembrane of nearly all species, with a few 
exceptions among parasites, and VGKC is the most prevalent member within this fam-
ily. VGKC is activated by a depolarized transmembrane potential and selectively induces 
 K+ inward influx to promote repolarization [73]. Its fundamental structure consists of a 
tetramer, with each monomer containing one pore-forming domain. Collectively, these 
four pore-forming domains create a central pore through which ions are transported 
[74]. The activated and inactivated states of potassium channels are governed by two 
gates, each with distinct gating mechanisms: one located on the intracellular side and 
the other on the extracellular side. The coordinated operation of these two gates serves 
to establish a negative relationship, facilitating the transition of VGKC into the inacti-
vated states [75]. Similar to sodium channels, VGKC also transitions into an inactivated 
state shortly after opening, a process linked to a conformational change in its ion selec-
tivity filter (SF) [74]. Besides VGKC, which contributes to action potential generation 
and maintains synaptic transmission [76], ligand-gated (Kligand) channels are another 
crucial family member of potassium channels gated by chemical factors such as calcium 
ion concentration [76]. The existence of calcium-activated potassium supports that pos-
sible interaction between different ion channels. Anyway, in addition to regulate action 
potential, potassium channels were also confirmed to regulate tumor cell behavior, mito-
chondrial function and cell cycle [77–79].

The voltage‑gated calcium channels (VGCCs)

The VGCC consists of α1, α2, β, γ, and δ subunits. It becomes active upon membrane 
depolarization and facilitates the influx of  Ca2+ in response to both action potentials 
and subthreshold depolarizing signals [80]. The VGCC is mainly expressed on cardiac/
smooth/skeletal muscular, endocrine, and immune cells [80–82]. Surprisingly, calcium 
current VGCC is detected in some primary tumor and breast cancer cell lines despite 
healthy human mammary epithelial cells do not express them [83, 84]. An explanation 
for this phenomenon is that the transient calcium influx through VGCC is essential for 
breast cancer cell growth, as the blockade of calcium channels significantly diminishes 
the proliferation of breast cancer cells [83]. Furthermore, based on the rate of activa-
tion, pharmacologic sensitivity, and also the voltage activation, VGCC can be catego-
rized into six classes: T, L, N, P, Q and R types [85]. T and L-type are two of the most 
understood type of VGCC up to now [85]. T-type VGCC is characterized by lower levels 
of depolarization of activation, rapid inactivation and small single channel conductance. 
In contrast, L-type is only activated by a more positive transmembrane potential and 
has slower voltage-dependent inactivation [80, 85]. In addition to responding to action 
potentials and subthreshold depolarizing signals, calcium channels play a crucial role 
in coupling excitation and contraction in cardiac muscle. The influx of  Ca2+ activates 
downstream ryanodine receptor 2 (RyR2), initiating release of  Ca2+, which in turn acti-
vates actomyosin and leads to cardiac contraction [86]. Calcium ion also can regulate 
genes transcription and cellular secretion as a second messenger [87, 88].
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The voltage‑gated chloride channel (VGCLC)

Chloride channels (CLCNs) are extensively distributed in tissues and organs through-
out the body, and they are activated by neurotransmitters, calcium ions, cellular 
swelling, and changes in transmembrane potential [89]. However, due to a lack of 
information, CLCN is well less understood than cation channels yet. The VGCLC 
family has nine different members which respond depolarization with an  Cl− inward 
flow at positive potentials, such as CIC-1 used in skeletal muscle, to maintain rest-
ing transmembrane potential. VGCLC plays a significant role in cellular survival, pro-
liferation, colony formation, migration and malignancy [90, 91]. Within organelles, 
VGCLC also participates volume regulation, transport of anionic substrates, and 
electroneutrality remaining [92].

Although the ion channels-induced ion concentration is the dominant source of 
bioelectricity, there are additional factors that contribute to the generation of endog-
enous bioelectricity. For example, some biochemical substances, including amino 
acids, peptides, proteins, viruses, and polysaccharides also has piezoelectric property, 
which have been comprehensively reviewed by Wang et al. [46].

The effects of bioelectric signals

Intercellular communication

Bioelectricity is considered a crucial signaling mediator which coordinates individ-
ual cell behaviors towards large-scale anatomical outcomes [93]. Previous part has 
demonstrated that cells regulate their own  Vmem via ion channels, and this paragraph 
will illuminate how this  Vmem propagate to and affect adjacent cells. The roles of gap 
junctions in  Vmem propagation gradually emerged over the past decades [94]. They 
are widely expressed intercellular structures and the gap junctions in non-neural 
cells likely play a similar primitive function as synapses [95]. Chicken mesenchymal 
cells can propagate the bioelectricity to neighbors by gap junction and sonic hedge-
hog to coordinate their movement patterns [96]. Another interesting example is mel-
anocytes. It was reported that calcium channel modulators can enhance or suppress 
pigmentation globally, but a gap junction inhibitor can change stripe patterning [97]. 
Meanwhile, it is well known that numerous carcinoma cells display diverse trans-
membrane potential from normal cell [98–100], and gap junction is as important for 
carcinogenesis [101]. Thus, some scholars proposed an interesting theory suggesting 
that malignant tumors use bioelectric signals to distinguish normal tissue from them-
selves and even affect the surrounding environment [95, 102]. Moreover, this propa-
gation of bioelectricity is likely a non-neuron long-distance signaling mechanism, 
depolarization of instructor cells in the head is sufficient to influence melanocytes in 
the tail even though the mechanism remains unknown [103, 104].

On the other hand, bioelectric signaling coordinates multicellular behavior to guide 
organ-level geometry, regulating size and shape of organs [93]. More importantly, 
this signaling pattern is reprogrammable even in complex multicellular organisms. 
The wound in planaria exhibited significant depolarization 3 h after amputation. This 
depolarization triggered the downstream expression of head-specific genes, facilitat-
ing head regeneration. The bioelectric signaling pattern surrounding the wound can 



Page 9 of 31Min et al. BioMedical Engineering OnLine            (2024) 23:3  

be disrupted by gap junction blockers or ion channel drugs. Depolarization applied to 
both ends resulted in the formation of mirrored two-headed worms, while the oppo-
site change induced the development of no-headed worms [105, 106]. This suggests 
that bioelectric signals can electrically interconnect cells during repair, regeneration, 
and development, offering high-level instructions for patterning and morphogenesis.

Coupling of bioelectricity with mechanical force

Abundance studies demonstrated that mechanical stimulation plays an essential role in 
wide biological processes [107–111]. A variety of mechanical stimulation, fluid shear 
stress, tension, and (hydrostatic) compression, and matrix stiffness can modulate dif-
ferentiation of stem cell [112], immune response [113], cellular apoptosis [114], tumor 
development [115] and bone remodeling [116]. An intimate connection between bio-
electricity and mechanical forces has been acknowledged, wherein intracellular bio-
electric signals and mechanical signals can reciprocally transfer. Cells sense mechanical 
stimulation through various mechanisms, with mechanosensitive ion channels (MSCs) 
serving as the primary cellular mechanical sensors expressed across all organisms and 
tissues, including the Piezo ion channel family [117]. This family includes two mem-
bers (Piezo 1 and Piezo 2), which are nonselective cationic mechanosensitive channels. 
Piezo 1 was first identified in a neuronal cell line but subsequently confirmed to be pre-
sented in numerous mammalian tissues with particularly high expression in lung, blad-
der, and skin [118, 119] Under mechanical stimulation, Piezo 1 permits inward cationic 
ion influx, leading to depolarization, and becomes inactivated when the transmembrane 
potential reaches zero mV [117]. It has been demonstrated that Piezo1 not only converts 
mechanical signals into electrical signals but can also be directly influenced by changes 
in the transmembrane potential [120]. This suggests that Piezo1 acts as a pivotal node 
bridging mechanotransduction and electrical signaling. The two-pore domain potas-
sium channels, specifically K2P (TREK-1), and the transient receptor potential vanilloid 
(TRPV) family represent two additional types of mechanosensitive ion channels that 
exhibit similar mechanosensitive mechanisms to Piezo1 [121–123]. In addition, calcium 
ions play a pivotal role as a common link between mechanotransduction and bioelec-
tric signaling. Calcium ions participate mechanotransduction by altering their cytosolic 
concentration and subsequently activating downstream factors, including nuclear factor 
of activated T cells (NFAT), mitogen-activated protein kinase (MAPK), and calmodulin 
[124, 125]. Conversely, electric fields can directly regulate intracellular  Ca2+ concentra-
tions, thereby altering cellular mechanical properties [126]. Another possible coupling 
mechanism is that electric stimulation promotes filamentous actin polymerization and 
redistribution [127, 128], which is associated with cellular deformation and directed 
migration [129, 130].

Cellular migration

Since Emil Du Bois-Reymond first recorded the endogenous current in a wound [131], 
it has been known that the healing wound exhibits cathodic characteristics [132]. In 
wounded skin, a current from surrounded normal skin to wound center was gener-
ated, which offers directional cues for the cells [131]. This endogenous field emerges 
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promptly upon the formation of a wound, operates prior to the establishment of chemi-
cal signals, and persists until the wound is completely covered by the epithelium [133, 
134]. It suggests that the endogenous bioelectricity runs through the entire process of 
wound healing and compensates for the absence of chemical signals in the very early 
stage. Interestingly, this field can control the orientation of mitotic spindles in proliferat-
ing epithelial cells, causing them to divide parallel to the wound edge and perpendicular 
to the electric field vector [135]. Furthermore, the directional cellular migration induced 
by endogenous electric field is also observed in bone fracture [136], spinal cord injury 
[137] and early embryonic development [138]. However, cellular electrotaxis can be vari-
ous based on different cell type. Specifically, neural crest cells, fibroblasts, keratinocytes, 
chondrocytes, rat prostate cancer cells, and many epithelial cell types migrate to cath-
ode. However, corneal endothelial cells, bovine lens epithelium, human granulocytes, 
and human vascular endothelial cells trends to anode. In the electrical field generated by 
constant current, osteoblasts migrate toward the cathode and osteoclasts goes to oppo-
site [139]. This diverse electrotaxis suggests the potential use of unidirectional current 
to steer directional bone remodeling in tissue engineering. There are three mechanisms 
of cellular electrotaxis: (1) the simplest mechanism is cell electrophoresis, charged cells 
migrated towards cathode or anode under the influence of electric field. Besides, cel-
lular physicochemical component directly dictates electrophoretic mobility which is 
considered as an important marker indicates cellular biological state, such as drug resist-
ance of cancer and function of red blood cell [140, 141]; (2) The endogenous electri-
cal field induces cellular migration by modulate chemokines and chemokines receptors 
[142–144]. Luo et al. suggested a hypothesis: electric fields generate chemokine gradi-
ents, offering directional cues for cells [131]. This hypothesis is intriguing, particularly 
considering the charged nature of chemokines, even though no direct evidence has been 
reported; and (3) The endogenous electrical field results in redistribution of intracellular 
ions, proteins, and structures, which motivate cell to migrate along the direction of cur-
rent. Electric field-induced depolarization occurs in the rear end of cell movement, then 
a  Ca2+ influx and a  Ca2+ wave to the front end [145]. In addition,  Na+/H+ exchanger 
(NHE) isoforms located in the cell membrane and intracellular organelles are also 
involved. Under the influence of an electric field, phosphorylated NHE3 assembles at the 
leading edge of the cell, forming complexes with PKCη and γ-tubulin that are essential 
for directional cell migration [145]. As a result,  H+ bubbles and β-actin are mustered at 
the leading edge, contributing to migration [146]. Collectively, the electric field can sig-
nificantly facilitate cell migration even though the rate and direction of migration can be 
diverse.

Cellular proliferation

Bioelectric voltage is significantly associated to cellular proliferation. The actively prolif-
erating cells usually has higher depolarization level, conversely, terminally differentiated 
somatic cells tend to display hyperpolarization. Bhavsar et  al. inhibited depolarization 
of bone marrow-derived stem/stromal cells (BMSC) by pharmacologically blocking ion 
channels, leading to a successful reduction of proliferation [19]. In contrast, sustained 
depolarization was able to induce DNA synthesis and mitosis in mature neurons [147]. 
For cells with the strongest proliferative capacity, such as cancer cells, transmembrane 
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potential is much more positive than in normal cells. This abnormality in transmem-
brane potential is associated with the aberrant expression of ion channels and trans-
porters, contributing to various stages of the cancer process, including cell proliferation, 
apoptosis, migration, and invasiveness [148]. For an instance, the triple-negative breast 
cancer (TNBC) patients have overexpressed  K+ channels (Kv1.5 or Kir2.1), causing more 
positive  Vmem [22]. Thus, there have been ongoing efforts to utilize transmembrane 
potential as an early diagnostic marker or a target for drug development [23, 149, 150]. 
In addition, it has been reported that bioelectricity is employed in the electrostatic and 
magnetic capture of circulating tumor cells from whole blood [151]. Lastly, the detailed 
mechanisms of cellular proliferation induced by bioelectricity are still debated. Since cel-
lular bioelectric state is a result of multiple factor (including various ion channels and 
extracellular environment), and many of these factors directly interact with cellular 
proliferation. Meanwhile, cellular proliferation is up to a bunch of biological elements, 
which make it more challenging to illuminate the mechanisms. Though the bioelectric 
regulation of cell cycle has been acknowledged [152], a comprehensive understanding of 
the intricate mechanisms necessitates further investigation.

Immune regulation

The immune regulation induced by bioelectricity is an excited topic. The positive impact 
of bioelectricity on wound healing has sparked scholars’ interest in its potential effects 
on preventing infections and inflammation. Exogenous direct-current stimulation 
applied to rabbit wounds exhibited a duration- and intensity-dependent antibacterial 
effect [131]. Nevertheless, intense direct-current stimulation can result in thermal injury 
to the host, which explains why certain studies have reported that intense electric stimu-
lation yields poorer therapeutic outcomes than milder approaches [153]. In contrast, the 
immune regulation is a much more elaborate application of bioelectricity. Excited sym-
pathicus can recruit immune cells to dental pulp, and the electric tooth stimulation can 
raise this effect [154]. Paré et al. used glycine receptor chloride (GlyCl) channels activa-
tor to reduce the transmembrane electric gradient (depolarization), enhancing X. laevis 
embryos’ resistance to infection [155]. Furthermore, potassium channel blocker, another 
typical intervention inducing depolarization, has a similar anti-infection effect. It sug-
gests that this infection-resistance was not specific to a type of ion, but due to alteration 
of  Vmem. The exact mechanisms are still unclear, might involves serotonergic signaling 
and melanocyte-stimulating hormone (MSH) action. In conclusion, bioelectricity has an 
important impact on the regulation of the immune system, but the exact mechanisms 
are still ambiguous due to the limited number of studies.

Exogenous electric stimulation
The parameters

Electrical stimulation (EStim) therapy has a long history in treating diseases. Ancient 
Egyptians and Greeks were known to use electric eel to treat pain and various ailments 
by applying the shocks to the body. In 1831, the first electric generator in history was 
invented. Following that, from the mid-1800s to the early 1900s, exploiting people’s fear 
and curiosity about electricity, numerous charlatans claimed that their ‘electric therapy 
devices’ could treat almost all known diseases. Abundance invalid cases even fatality 
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incidents impeded the development of electric stimulation therapy. Since the 1930s, 
with the advancement of modern medicine, EStim therapy has been substantiated as an 
effective approach for treating severe mood and psychotic disorders[156], bone fracture 
[157], and various neuromuscular pain [13, 14, 158]. However, some clinical trials and 
fundamental research have yielded diverse conclusions regarding EStim therapy [159–
161]. This could be due to the high heterogeneity in the parameters of electrical stimula-
tion used in these studies. The range of transmembrane potential changes is typically at 
the millivolt level [162], immortal breast cancer cells (− 30 mV) can exhibit extremely 
different genes transcription and cellular phenotype from normal breast epithelial cells 
(− 60 mV) [163]. In other words, even minor changes in EStim can lead to alterations 
in individual cell behavior, and achieving good repeatability requires extremely precise 
control of external EStim parameters. Moreover, even when exposed to the same EStim, 
different cell types may exhibit diverse responses. This variability can be attributed to 
the presence of distinct voltage-gated ion channels, charged components, electric resist-
ance and initial transmembrane potentials within cells. As mentioned earlier, for exam-
ple, osteoclasts and osteoblasts migrate in opposite directions when subjected to the 
same electric field [19]. Therefore, this paragraph aims to summarize and discuss the 
parameters of EStim employed by existing publications, offering the guide for determin-
ing optimal EStim protocol in the future research.

Type of electric stimulation

The clinically employed EStim technique comprises three categories: current stimula-
tion, capacitive coupling (CC), and inductive coupling (IC).

The current stimulation system is comprised of two electrodes, and it allows for the 
application of both direct current (DC) and alternating current (AC) between these elec-
trodes. DC EStim system is the most commonly used model in vitro experiment due to 
its straightforward device and rapid accumulation of electric charge [164]. It is notewor-
thy that the electrochemical by-products (such as chlorine, hydrogen peroxide and reac-
tive oxygen species) can inhibit the bacterial cells in vivo, but it interferes experimental 

Fig. 3 Three different direct-current EStim systems. a Direct current is applied between two metallic 
electrodes. b Two agar salt bridges connect culture medium to saturated solution of inert salt and delivery 
current. This system prevents cells from exposing directly to faradic products. c Microfluidic EStim chamber 
consist of a pair of electrodes, an inlet, an outlet and a fluidic channel. Cells are loaded through the inlet, 
driven to middle of the electrodes, exposed to EStim, and driven to outlet. The small cross-section of channel 
reduces the amount of toxic products
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result in vitro [165]. Therefore, salt bridge EStim chamber and microfluidic chip EStim 
chambers are two modified models which prevent cells from exposing directly to by-
products (Fig.  3). But these models are all based on 2-dimensions cellular cultivation 
system, which cannot replicate completely the electric current and cellular behavior in 
3-dimensions tissue. Related research based on 3-dimensional cellular cultivation is still 
necessary [165]. DC EStim has been applied in human and animals to regulate cortical 
excitability [166], promote osteogenesis [167], and guide cellular migration [168]. How-
ever, considering the potential damage from thermal accumulation and faradic product, 
the intensity and duration of DC applied on animal should be controlled strictly. AC 
EStim is a similar technique to DC but generates AC, and it is used frequently to modu-
late brain function [169, 170] and reduce pain [171]. In AC EStim system, the cathode 
and the anode periodically exchange with each other. This prevents the accumulation of 
oxidation or reduction products around a single electrode, which is its advantage com-
pared to DC. Besides, AC was believed to mimic endogenous signal than DC, but there 
is no evidence to support that AC performs better in medical therapy [83]. Clinically, 
though both DC and AC can be administered by non-invasive electrodes, they are only 
performed in the electricity sensitive neuromuscular tissue, such as transcranial cur-
rent stimulation and transcutaneous spinal direct-current stimulation [172, 173]. Since 
current generated by non-invasive electrode can hardly reach the deep target [174], the 
invasive electrodes are recommended for the tissue with higher electric resistance, such 
as bone, whereas patients may experience additional surgeries and an increased poten-
tial for infection due to the involvement of implantable electrodes. Thus, invasive DC or 
AC EStim are primarily utilized for those patients who require metal implants such as 
dental implants or fracture fixation nails.

The continuous current stimulation may lead to some side effects, such as thermal 
damage or chemical burning [175]. Implanted electrode can also provoke immune 
response or infection. Consequently, some scholars have suggested non-invasive and 
noncontact electric field stimulation techniques, including capacitive and inductive 
coupling electric field stimulation. Capacitive coupling entails the non-invasive place-
ment of two cutaneous electrodes on opposite sides of the wound to be stimulated but 
affects deeper tissues compared to invasive DC. Capacitive coupling has been validated 
as an effective method of physical stimulation for enhancing spinal fusion [176], fracture 
union [177], and wound healing [175]. It is noticeable CC also generate heats in the deep 
tissues. It has been utilized to heat the deeper layers of the skin to promote collagen 
production for cosmetic purposes [178]. Next, pulsed electromagnetic field (PEMF) is 
the most widely employed inductive coupling technique due to its non-invasive and safe 
characteristics. This technique utilizes external current-carrying coils, driven by a signal 
generator, to generate a magnetic field within deep tissue, which has been approved for 
fracture healing and spinal fusion [176].

Since investigations into the three EStim types involve various variable values, such as 
targeted tissues, frequency, intensity, and durations, it is challenging to determine the 
most effective one through direct comparisons of these studies. Only a meta-analysis 
compared them and demonstrated that there is no significant difference among effects 
of three techniques on spinal fusion [179]. Therefore, when choosing among the three 
electrical stimulation methods, the primary consideration should be whether the chosen 
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stimulation mode is suitable for the target site and acceptable to the patients, rather than 
solely focusing on their effectiveness.

Electrode polarity

Numerous investigations have reported that cathode and anode can elicit completely 
different tissue responses. For an instance, the cathode stimulation can favor the fracture 
healing, but the anode has adverse impact on healing [180]. The first reason is that cellu-
lar galvanotaxis is diverse, dependent on species and/or cell subtype. Most cells migrate 
towards cathode; this phenomenon may be attributed to the negative transmembrane 
potential of these cells. The side of the membrane facing the anode hyperpolarizes and 
attracts free calcium ions, leading to membrane contraction and propelling the cell 
towards the cathode [181]. However, some cells migrates to anode, such as osteoclast 
[139] and adipose-derived stem cells [28] and human vascular endothelial cells [182]. 
Mycielska et  al. believed that this abnormal galvanotaxis was associated with activa-
tion of voltage-gated cathode facing cathode [181]. Second, cathode stimulation more 
easily induce cellular depolarization than anode, initiating different signaling pathways 
[183]. Lastly, the faradic by-products at cathodes are different from those at anodes. The 
cathode can produce reactive oxygen species (ROS) and raise pH value, both of which 
increase osteoblast activity [176, 184]. In contrast, the anodic reaction makes the metal 
electrode dissolve and releases toxic ions [185]. Thus, it is crucial to decide the site of 
electrodes and current direction according to the target cell/tissue type and purpose. 
Considering injured skin as an example, a short-circuiting of the transepithelial potential 
results in a more negatively charged wound compared to the surrounding tissue [91]. 
When a fracture occurs, fracture site also turns negatively charged [47, 186]. The current 
from intact tissue to wound accelerates recruitment of immunocytes and cytokines, con-
tributing to inflammation and tissue repairment [91]. Therefore, this negative potential 
presented in the wound is considered a signal for ‘healing’. It explained why the cathode 
should be placed in the wound center and anode should be in the intact tissue.

Intensity of stimulation

All methods of EStim appear to raise the intracellular calcium level to stimulate cellular 
proliferation [187, 188]. However, excessive calcium can lead to cellular apoptosis [22]. 
Therefore, it is essential to investigate the appropriate intensity of electricity stimulation 
for EStim application. Yet, there is no clear consensus on the optimal intensity because 
associated literatures are highly heterogeneous (Table 2). Even the units used for evaluat-
ing the magnitude are debated. For current stimulation, volt (V) and ampere (A) are two 
common units, representing constant voltage stimulation and constant current stimula-
tion, respectively. Christian et al. believed constant voltage stimulation can reduce the 
potential tissue damage compared to constant current, but another study found the dif-
ference to be minimal [189, 190]. Furthermore, volt per meter (V/m) and ampere per 
square meter (A/m2) were considered as better units to evaluate intensity because they 
considering the volume and cross-section area of tissue [191]. In the context of PEMF, 
Gauss is the most frequently used unit to describe the magnitude of EStim [192, 193]. 
Hence, in future research, it is imperative to establish a universally recognized unit for 
describing the magnitude of electric fields within tissues.
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Table 2 A decade of literature on the utilization of the EStim system and their comprehensive 
parameters

Tissue or 
cell

Electrical 
Type

Intensity Pulse Frequency Duration Pulse 
width

Wave 
form

Outcomes Refs.

Rat (L3 and 
L4 dorsal 
root gangli-
ons)

Current 
stimulation 
(DC)

4 V/cm Yes Unmen-
tioned

20 min/
day; last for 
56 days

500 μs Square Accelerated 
femoral 
osteoporo-
tic fracture 
healing

[157]

Sheep (pel-
vic limb)

Current 
stimulation 
(AC)

1500 μA yes 60 kHz 12 h/day, 
last for 
30 days

40 ms Unmen-
tioned

Accelerated 
fracture 
healing

[199]

Sheep (den-
tal implant–
bone 
interface)

Current 
stimulation 
(DC)

7.5 μA No – 6 h/day, last 
for 84 days

– – No 
detectable 
improve-
ment

[200]

Human 
(mesenchy-
mal stem 
cells)

Capacitive 
coupling

1–2 V/cm No – Continuous 
stimulation, 
last for 
14 days

– – Osteogenic 
differen-
tiation and 
increased 
calcium 
deposition

[194]

Rat 
(hindlimb 
skeletal 
muscle)

Current 
stimulation

1.5 V Yes 40 Hz 60 min/
day, 5 days/
week, last 
for 28 days

Unmen-
tioned

Unmen-
tioned

Reduced 
muscle 
atrophy

[201]

Human 
(chondro-
cytes)

Capacitive 
coupling

2–3.5 V/cm Yes 1 kHz 45 min × 
3 times /
day, last for 
7 days

Unmen-
tioned

Unmen-
tioned

Increased 
genes 
expressions 
of collagen 
type II and 
aggrecan

[202]

Human 
(calvarial 
osteoblasts)

Capacitive 
coupling

20 mV/cm Yes 60 kHz 1 h Unmen-
tioned

Unmen-
tioned

Increased 
genes 
expressions 
of bone 
morpho-
genetic 
proteins 
(BMP)-2 
and -4, TGF-
β1,—β2 
and -β3, 
fibroblast 
growth fac-
tor (FGF)-2, 
osteocalcin 
(BGP) and 
alkaline 
phos-
phatase 
(ALP)

[203]

Human 
(mesenchy-
mal stem 
cells)

Current 
stimulation 
(DC)

1 V/cm No – 10 min/
day, last for 
14 days

– – Early osteo-
genesis 
in hMSCs; 
increased 
reactive 
oxygen 
species

[198]

Current 
stimulation 
(AC)

1 V/cm Yes 10 Hz 10 min/
day, last for 
14 days

100 ms Square Late osteo-
genesis

Mouse 
(bone 
marrow-
derived 
mac-
rophages)

Current 
stimulation 
(AC)

0.5 V Yes 500 Hz 6 h/day, last 
for 3 days

Unmen-
tioned

Square M1 polari-
zation

[197]

Current 
stimulation 
(AC)

0.5 V Yes 500 Hz 6 h/day, last 
for 3 days

Unmen-
tioned

Sinusoidal M2 polari-
zation
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Table 2 (continued)

Tissue or 
cell

Electrical 
Type

Intensity Pulse Frequency Duration Pulse 
width

Wave 
form

Outcomes Refs.

Human 
(chondro-
cytes)

Current 
stimulation 
(DC)

1.5 V No – 1.5 h/day – – Early late 
osteogen-
esis

[167]

Human 
(dermal 
fibroblasts)

Capacitive 
coupling

54 V/cm Yes 60 Hz 2 h/day 100 μs Unmen-
tioned

Increased 
proliferation 
and migra-
tion

[175]

Human 
(keratino-
cytes)

Capacitive 
coupling

54 V/cm Yes 60 Hz 2 h/day 100 μs Unmen-
tioned

Increased 
proliferation 
and migra-
tion

Mouse (skin 
wound)

Capacitive 
coupling

54 V/cm Yes 60 Hz 2 h/day 100 μs Unmen-
tioned

Accelerated 
wound 
healing

Mouse Inductive 
coupling 
(PEMF)

146.7 
Gauss

Yes 75 Hz Continuous 
stimulation, 
last for 
5 days

– Unmen-
tioned

inhibition 
of inflam-
matory 
cytokines

[192]

Human 
(teared 
supraspina-
tus tendon)

Inductive 
coupling 
(PEMF)

25 Gauss Yes 50 Hz 25 min/
day, 5 days/
week, last 
for 14 days

Unmen-
tioned

Unmen-
tioned

No 
detectable 
improve-
ment

[204]

Mouse 
(swelled 
paws)

Inductive 
coupling 
(PEMF)

145 Gauss Yes 10 Hz Continuous 
stimulation, 
last for 
32 days

Unmen-
tioned

Unmen-
tioned

Reduced 
local 
inflam-
matory 
cytokines 
and bone 
destruction

[193]

Rat (osteo-
chondral 
defect)

Inductive 
coupling 
(PEMF)

Unmen-
tioned

Yes Unmen-
tioned

3 h/day, last 
for 14 days

Unmen-
tioned

Unmen-
tioned

Chondro-
genesis and 
cell hyper-
trophy via 
ERK and 
p38 MAPK 
pathways

[205]

Mouse 
(melanoma 
B16F10)

Inductive 
coupling 
(PEMF)

400 A Yes 80 Hz Unmen-
tioned

Unmen-
tioned

Unmen-
tioned

Electropo-
ration; 
Enhanced 
uptake of 
platinum

[206]

Rat (cardiac 
tissues)

Current 
stimulation 
(AC)

5 V Yes 1 Hz 1 h/day, last 
for 3 days

10 μs Square Increased 
oxygen 
consump-
tion and 
membrane 
perme-
ability; 
Decreased 
contraction 
frequencies

[196]

Human 
(mesenchy-
mal stem 
cells)

Capacitive 
coupling

1 V/cm Unmen-
tioned

Unmen-
tioned

2 h/day, last 
for 21 days

Unmen-
tioned

Unmen-
tioned

Osteogen-
esis

[207]

Human 
(palatal 
wound)

Current 
stimulation 
(AC)

100 μA Yes 9 kHz 30 s/day, 
last for 
3 days

Unmen-
tioned

Unmen-
tioned

Positive 
effect 
on early 
wound 
closure; 
reduced 
inflam-
matory 
cytokines

[208]
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The duration of exposure to EStim also dictates the intensity of stimuli. Many studies 
have employed intermittent stimulation once a day, primarily due to concerns regarding 
potential damage from EStim, particularly with current stimulation. Only a few studies 
have explored continuous stimulation using low-magnitude capacitive or inductive elec-
trical fields [194, 195]. Functional and molecular alterations can typically be observed 
as early as 3 days after EStim initiation [196, 197], while the histological changes often 
require a more extended timeframe [195, 198]. In conclusion, the intensity of stimula-
tion is depended to EStim types, magnitudes and durations, and the optical intensity 
may largely vary depending on the target tissue. More details can be found in Table 2.

Pulsed electric stimulation

In contrast to static electric stimulation, pulsed electric stimulation leads to different 
cellular reaction [209]. For pulsed EStim, three parameters should be considered: fre-
quency, waveforms and pulse width. First, low-frequency pulsed current (5 Hz) elicits 
the more severe muscular fatigue than high-frequency (75 Hz), but it is easier for mus-
cle to recover from the fatigue induced by low-frequency stimulation [210]. It was also 
reported that high-frequency stimulation can stimulate cell to release more anabolic 
signal and cytokines [211, 212]. Second, rectangular and sinusoidal pulse shapes are 
two fundamental waveforms most frequently used in pulsed EStim [213]. Transcranial 
magnetic stimulations with rectangular wave cause greater cortical inhibition than those 
with sinusoidal waves [214], but there is no difference between effects of two waveforms 
on facial muscles [215]. In addition, square waveform promoted M1 polarization but the 
sinusoidal waveform promoted both M1 and M2 polarization [197]. Wave width stands 
out as a critical parameter in electroporation. A pulsed electric field with nanosecond-
level pulse width can create significantly smaller pores on the cytomembrane compared 
to those observed with microsecond-range electroporation, which only permits the 
passage of small molecules like ions [216]. Hence, some biological effects, such as cell 
apoptosis induced by electroporation, can only be triggered by EStim with definite wave 
width [217]. In summary, despite a number of clinical research revealed the significance 
of parameters of pulsed EStim, the underline mechanisms still require more investiga-
tions before complete emerging.

Table 2 (continued)

Tissue or 
cell

Electrical 
Type

Intensity Pulse Frequency Duration Pulse 
width

Wave 
form

Outcomes Refs.

Mouse (skin 
wound)

Capacitive 
coupling

53 V/m Yes Unmen-
tioned

Continuous 
stimulation, 
last for 
12 days

Unmen-
tioned

Unmen-
tioned

Reduced 
scarring, 
enhanced 
collagen 
synthesis; 
increased 
angiogen-
esis

[195]
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Applications in dental medicine

Diagnosis and therapy of endodontic disease

Electric stimulation has been used to assess the condition of the nerves within the dental 
pulp [218]. However, this assay method may not always accurately reflect the actual state 
of dental pulp, as immature teeth or teeth with temporarily disable the sensory nerves 
can exhibit false-positive or false-negative responses [219, 220]. The site where the probe 
is placed and adjacent restorations also can interfere the assay results [221]. At present, 
some scholars have explored the laser Doppler flowmetry as the next-generation method 
for determining dental vitality. This approach assesses pulpal blood flow rather than 
nerve fibers, offering a promising alternative [210].

Another example of application is electric apex locator, which utilizes high-frequency 
microcurrent and records electric impedance between canal and periodontium to meas-
ure the canal’s working length and locate the apex constriction. The accuracy of meas-
urement is essential for the success of endodontic procedures [222].

Besides, some studies tried to conduct bone diagnosis monitor using electromechani-
cal impedance technique [223]. An external piezoelectric transducer was used to apply 
the high-frequency vibration on tooth, effectively transmitting these vibrations into the 
deeper bone tissue. The vibration of bone, which are influenced by its inherent, were 
subsequently recorded using a piezoelectric patch. This non-invasive method serves 
as a means to detect bone density and can also be utilized to assess the osteointegra-
tion of dental implants [224]. However, it is still uncertain whether these vibrations may 
adversely affect the osteointegration of implants, especially those with poor stability. 
Thus, more clinical trials are still necessary.

EStim coupled with dental biomaterials

Considering that electric stimulation has demonstrated its potential to enhance bone 
fracture healing in animal and clinical experiment, its application in maxillofacial sur-
gery has gradually emerged over the past decade. While exogenous electric stimulation 
usually requires an external electric source and wires, these devices connected to the 
maxillofacial surgical area can interfere with patients’ daily activities and reduce compli-
ance [159]. Even though those devices can be intraorally placed, the oral environment 
may cause the electric source corruption and the release of toxic chemical substances. 
A promising solution is coupling the EStim with tissue engineering [225]. A predictable 
approach involves applying the EStim to treat cell-scaffold constructs before implanta-
tion, which can greatly improve outcome in tissue engineering treatments. Bueno found 
that xanthan/polypyrrole scaffolds treated with EStim favored cell adhesion [226]. Simi-
larly, Cheng et al. successfully employed 0.33 V/cm electric field to enhance osteo-differ-
entiation of human dental pulp-derived stem cells on the polypyrrole (PPy) films [227]. 
These modified biomaterials hold potential applications in the maxillofacial surgery and 
dental bone augmentation.

On the other hand, a wealth of piezoelectric biomaterials has been reported [228–
232], capable of self-generating long-term electric stimulation from within tissues. 
These piezoelectric biomaterials usually have highly ordered crystal lattices. When 
subjected to mechanical-stress-induced deformation, a relative shift of the positive 
and negative charge center within the material crystal structure occurs, resulting in 
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motion of an electric dipole or polarization [233]. In simpler term, these materials 
can convert the mechanical stress from physiological activities into the electric cur-
rent. These materials, including barium titanate (BT), boron nitride (BN), zinc oxide 
(ZnO), hydroxyapatite (HA), poly(vinylidene fluoride) (PVDF), poly(vinylidene fluo-
ride-trifluoro ethylene) (P(VDF-TrFE), gallium nitride (GaN), lithium niobate (LN), 
lithium sodium potassium niobate (LNKN), potassium sodium niobate (KNN), have 
been widely investigated for various biomedical applications [234]. Besides utilized 
in bone tissue engineering [235], the piezoelectric material can be incorporated to 
dental composite as nanofillers. Montoya et  al. developed a novel multifunctional 
dental composite with barium titanate (BaTiO3) nanoparticles which serves antibac-
terial and mineralization roles [236]. Furthermore, piezoelectric biomaterials can be 
harnessed to offer energy for photo-biomodulation therapy. Park et al. reported on 
an implant which uses barium titanate piezoelectric material to harvest energy from 
human chewing and brushing, supplying energy to a red LED [237]. At last, Carter 
et  al. proposed the use of converse piezoelectric materials, which deforms under 
electric stimulation, suggesting these materials can provide beneficial mechanical 
stimulations in areas where mechanical loading has decreased or stress shielding has 
occurred [238]. Nonetheless, the potential for this micro-motion of converse piezoe-
lectric materials to cause mechanical damage to the surrounding tissue raises uncer-
tainties, which could hinder its broader application.

Orthodontic tooth movement

Orthodontic tooth movement (OTM) is a process of alveolar bone remodeling 
inspired by compressive force. Due to the piezoelectric properties of bone, electric 
signal is considered as one of initiating factors of OTM [239]. Consequently, some 
scholars have explored the potential of EStim as an adjunctive intervention to accel-
erate OTM. Spadari et  al. reported that a 10  μA current increased the number of 
osteoclasts and enhanced vascularization during OTM in rats [240]. In addition, a 
15 μA current was verified to up-regulate cAMP and cGMP in cats’ periodontal liga-
ment [241], which are second messengers starting bone turnover [242]. However, 
these reports did not specify the tooth movement rate or other current parameters 
(direct/alternating, direction, frequency, waveforms). Besides, PEMF was reported 
to increase of 31% in the rate of canine retraction by a recent clinical trial includ-
ing 19 patients [243]. A similar conclusion was reached by another trial conducted 
by Showkatbakhsh et al. [244], whereas the quality of these studies may not be suf-
ficient to definitively support microcurrent or PEMF as effective adjunctive inter-
ventions. Further randomized control trials (RCTs) with larger sample sizes are still 
necessary before considering the clinical application of EStim.

Orthodontic pain management is another crucial aspect associated with patients’ 
compliance during orthodontic therapy. Orthodontic stress can excite primary 
somatosensory cortex (S1), the ventrocaudal part of the secondary somatosensory 
cortex (S2), and the insular oral region (IOR) in the brain through neural electric 
signal, leading to radiating pain [245]. A study based on rabbits revealed that electric 
acupoint stimulation can reduce algogenic substance PGE2 in peripheral nervous 



Page 20 of 31Min et al. BioMedical Engineering OnLine            (2024) 23:3 

system and increase analgesic substance (endorphin) in central nervous system 
[246]. Moreover, two clinical trials also demonstrated that transcutaneous electric 
nerve stimulation can decrease orthodontic pain, even its effective seems to be lower 
than laser therapy [247, 248]. In a RCT involving on 32 female patients, it was shown 
that PEMF reduced orthodontic pain after 24 h [249]. While these pieces of evidence 
are more convincing than those suggesting EStim accelerates OTM, they still exhibit 
high heterogeneity in parameters and a high risk of bias. Further research investigat-
ing the mechanistic aspects of EStim as an analgesic therapy is still needed.

Osteointegration of dental implant

Pure titanium and titanium alloys are the most commonly used materials for orthope-
dic/dental implants [250]. They are ideal for implantable electrodes due to their excellent 
electrical conductivity. It is noticeable only currents exceeding 10 μA promote the oste-
ointegration [251]. This might explain why some research yielded negative results when 
using insufficient microcurrent (7.5 μA) [200]. Pettersen et al. suggested pulsed current 
perform better than continuous current, as it mimics peripheral nerve stimulation. As 
a result, he recommended the 20 μA and 50 Hz as the optimal parameter to induce cell 
to adhesion to titanium plate and simulate collagen production [250]. The capacitive 
electric field of 3 V can increase bone formation and bone contact around implant in 
beagles [252]. Interestingly, some weaker pulsed currents (115 Hz, 1.68 μA/cm2) were 
found to inhibit the rate of osteointegration, although exact reason is unknown [253]. 
Another concern with EStim is its potential to cause corrosion of metal implants, with 
the released metal ions possibly affecting osteointegration, reducing implant mechani-
cal strength, and impairing local tissue [254]. Future clinical trials should focus on long-
term effect of EStim on osteointegration of implants.

Maxillofacial malignant disease

Previous research has shown that malignant cells exhibited different cell transmem-
brane potential compared to non-malignant cells [255]. This suggests that transmem-
brane potential could serve as a potential diagnostic or therapeutic target for malignant 
diseases. For instance, Yu et  al. employed an engineered voltage-gated calcium chan-
nel that can be selectively activated in breast tumor to selectively kill breast tumor cells 
[23]. In the field of dental medicine, early studies attempted to treat maxillofacial carci-
noma using high-voltage electrical impulses [256]. However, a significant drawback of 
this method was that electric impulses also cause severe damage to normal tissue. Later, 
nanosecond pulsed electric fields were reported to sensitize oral tongue squamous cell 
carcinoma to conservational radiation and chemical therapy [257, 258]. To achieve more 
selective and effective therapies, further research into the mechanisms and clinical trials 
examining the effects of EStim on maxillofacial malignant diseases are necessary.

Maxillofacial nerves

Previous studies have established the sensitivity of the neuron system to electrical stimu-
lation (EStim). In the field of dental medicine, EStim has found application in various 
contexts, including the enhancement of facial nerve repairment [259], the stimulation of 
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the hypoglossal nerve to address obstructive sleep apnea (OSA) [260], and the manage-
ment of orofacial neurogenic pain [261–264].

Following an extensive literature review, only one animal study has been identified 
that reported the potential of electric stimulation in facilitating the repairment of the 
maxillofacial nerve. Mendez et  al. [259] applied brief electrical stimulation (BES) and 
suggested its capacity to expedite preferential motor reinnervation. However, robust evi-
dence in this context remains limited.

In contrast, numerous studies have validated hypoglossal nerve stimulation as a novel 
therapeutic approach for moderate and severe OSA [265–267]. Hypoglossal nerve stim-
ulation involves the generation of electric impulses by an implanted chest skin-based 
generator. This electric stimulation of the hypoglossal nerve enhances the function of 
tongue protrudors and retractors, resulting in pharyngeal dilatation during expiration 
and greater airway stability [260].

The mechanisms behind the analgesic effects of electrical stimulation remain some-
what enigmatic. One theory postulates that EStim inhibits the transmission of pain 
signals through C fibers while exciting A fibers, thereby exerting presynaptic inhibi-
tion [268]. However, Nathan and Wall reported that EStim appears ineffective in treat-
ing severe post-herpetic neuralgia, attributing this ineffectiveness to damage to A fibers 
[269]. Unfortunately, due to the unclear underlying mechanisms of diseases like trigemi-
nal neuralgia and orofacial pain, our understanding of electrical stimulation therapy pri-
marily remains at the level of symptomatic treatment.

Maxillofacial muscles

Various forms of electric stimulation have been employed to manage maxillofacial mus-
cular disorders and pain. First, two clinical trials conducted by Fagade et al. have dem-
onstrated that 30-min sessions of transcutaneous electrical nerve stimulation (TENS) 
improved forced mouth-opening exercises in patients who had undergone trismus [270, 
271]. Moreover, TENS has proven effective in reducing pain associated with temporo-
mandibular joint disorders (TMD) [272].

Second, microcurrent nerve stimulation (MENS) is another frequently utilized elec-
trical stimulation technique known for its efficacy in alleviating muscle myofascial pain 
induced by bruxism or TMD [273–275]. A randomized controlled trial by Saranya et al. 
revealed its superior effectiveness in pain relief when compared to TENS [273].

Lastly, percutaneous needle electrolysis (PNE) has been reported to rapidly reduce 
temporomandibular myofascial pain, as evidenced by a randomized controlled clinical 
study [276]. Despite the long-standing clinical use of electrical stimulation as a therapeu-
tic modality, our understanding of its mechanisms for muscle analgesia remains limited. 
Therefore, further investigation into the cellular mechanisms involved is imperative.

Future direction
In the early stages of bioelectricity discovery, it was primarily recognized as a physiologi-
cal phenomenon influencing various life activities. During that time, electricity was a 
relatively novel concept, leading to public curiosity, fear, and even religious reverence 
towards it. Consequently, a multitude of electrotherapy devices entered the market with-
out undergoing rigorous clinical trials, often with grossly exaggerated claims, resulting 
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in severe physiological harm to patients in some instances. As our understanding deep-
ened, we came to realize that bioelectricity is a result of differences in intra- and extra-
cellular ion concentrations, dispelling notions of it being an occult phenomenon [277]. 
Advancements in molecular biology in the modern era allowed us to gain profound 
insights into bioelectricity. Figures such as Roderick Mackinnon, William Catterall, and 
Ardem Patapoutian made significant contributions in this area, unveiling the molecular-
level processes through which charged ions traverse cell membranes and their impacts 
on physiological process [278–283]. Up to now, we have recognized that the bioelec-
tricity is one of signal mediators, an important chain of biophysiological cascade. Bio-
electrical signals not only affect individual cells but are also transmitted between cells 
following specific patterns. Michael Levin et  al. proposed a groundbreaking perspec-
tive in which non-excitable tissues can harness bioelectric encoding of distributed goal 
states, akin to how the brain functions [93, 105]. This bioelectric pattern plays a fun-
damental role in the normal morphogenesis of multiple organs [284–287]. The future 
focus of research should center on decoding and reprogramming this bioelectric pattern, 
offering possibilities for intervening in physiological development and disease processes. 
These findings also lay the theoretical fundament for the development of Xenobot with 
complicated functions [288].

All types of electric stimulations, ion channel blockers, and even mechanical stimula-
tions are all considered as interventions targeting this bioelectric pattern in some ways. 
In the field of dental medicine, these interventions have achieved some clinical success, 
as mentioned in the previous chapter. However, the primary limitation lies in the lack of 
consensus regarding the application methods and parameters of electrical stimulation, 
which may contribute to conflicting research findings. It is difficult to determine optimal 
methods and parameters because stimulation parameters used by existing publication 
is too heterogeneous to be referred by clinician. Meanwhile, resistance and endogenous 
bioelectricity can vary significantly in various tissue with different states. This leads to 
inconsistent alterations in the bioelectrical state, even when the same parameters of 
electrical sources are employed within various tissues of different individuals. There-
fore, a non-invasive visualized tools for dynamically monitoring bioelectricity state is 
required to determine the optimal stimulation on the dental clinical practice. Another 
challenge is that most mechanism studies focus on single ion or single channel. But even 
at the level of individual cells, their bioelectric status results from the interaction of hun-
dreds of ion channels. Similarly, the bioelectric state within tissues is an outcome of the 
interactions among various cell types. Thus, high-throughput electrophysiology tech-
niques aid in enhancing our understanding of cellular electrophysiological regulatory 
mechanisms. On the other hand, currently, prevailing approach for modulating cellular 
bioelectricity relies on ion channel activators or inhibitors. Pharmacological modulation 
is subject to numerous influencing factors, leading to a lack of precision and reproduc-
ibility. It is necessary to generate more predictable bioelectric interventions. The ideal 
bioelectric modulation should be capable of modulating cell membrane potential at mV 
or even μV levels, thereby purposefully influencing tissue development, repair, and even 
regeneration. Lastly, the development of biocompatible and wearable nanomaterials is a 
crucial area for the future. Induced bioelectric changes represent an important category 
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of effects to consider for bioengineers developing dental biomaterials that guide stem 
cell differentiation and promote regenerative tissue growth.

Conclusions
A comprehensive understanding of endogenous bioelectricity has been gained. How-
ever, the therapeutic efficacy of exogenous electrical stimulation in organisms remains 
controversial, primarily due to the heterogeneity of existing research methods. Over the 
past decade, bioelectricity has begun to find applications in various domains of dental 
medicine. However, the existing literature primarily consists of case reports and small-
scale trials. Heterogeneity in both EStim system and clinical outcomes is also a concern. 
Therefore, the imperative for large-scale, standardized, randomized controlled clinical 
studies persists. Furthermore, in the future, precise measurement and modulation meth-
ods of bioelectric signal patterns represent a critical research direction in this field.
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