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Abstract 

Background: In this study, an automatic corneal contour extraction algorithm 
with a shared model is developed to extract contours from dynamic corneal videos 
containing noise, which improves the accuracy of corneal biomechanical evaluation 
and clinical diagnoses. The algorithm does not require manual labeling and completes 
the unsupervised semantic segmentation of each frame in corneal dynamic defor-
mation videos based on a fully convolutional deep-learning network using corneal 
geometry and texture information.

Results: We included 1027 corneal videos at Tianjin Eye Hospital (Nankai University 
Affiliated Eye Hospital) from May 2020 to November 2021. The videos were obtained 
by the ultra-high-speed Scheimpflug camera, and then we used the shared model 
mechanism to accelerate the segmentation of corneal regions in videos, effectively 
resist noise, determine corneal regions based on shape factors, and finally achieve 
automatic and accurate extraction of corneal region contours. The Intersection 
over Union (IoU) of the extracted and real corneal contours using this algorithm 
reached 95%, and the average overlap error was 0.05, implying that the extracted cor-
neal contour overlapped almost completely with the real contour.

Conclusions: Compared to other algorithms, the method introduced in this study 
does not require manual annotation of corneal contour data in advance and can still 
extract accurate corneal contours from noisy corneal videos with good repeatability.
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Background
The cornea is the transparent part in front of the outermost layer of the eyeball wall, 
which constitutes two-thirds of the refractive power. It is mainly composed of non-
vascular connective tissue and has the mechanical characteristics of a biological 
tissue. The corneal biomechanical properties have been proven to play an essential 
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role in maintaining its structure, diagnosing ectatic diseases, screening glaucoma, 
and evaluating corneal refractive surgery [1, 2]. Therefore, the study of corneal 
biomechanics has gained popularity [3]. The Corneal Visualization Scheimpflug 
Technology (Corvis ST; Oculus, Wetzlar, Germany) is an existing in  vivo corneal 
biomechanical evaluation device. It flattens the cornea twice and automatically cap-
tures the entire corneal deformation process after an external air puff at a speed of 
4330 fps using an ultra-high-speed Scheimpflug camera, which is the most primitive 
and direct reflection of corneal biomechanics [4, 5]. However, corneal biomechanics, 
measured in dynamic states, still represent a new area of interdisciplinary research. 
The integration of ultra-high-speed Scheimpflug imaging with the proposed algo-
rithm has enormous potential as a research and clinical tool to accurately evalu-
ate in  vivo biomechanical properties of the cornea. Therefore, accurate extraction 
of corneal contours from dynamic videos is the premise of accurate calculation and 
evaluation of corneal biomechanical characteristics and an important basis for fur-
ther establishment of the corneal biomechanical model.

Most existing corneal contour extraction methods are based on traditional edge 
detection methods [6–10]. Magdalena et  al. proposed a corneal outer edge detec-
tion method based on Corvis ST with a minimum average error of 0.16% [6]. Kaspr-
zak et al. performed repeated Gaussian smoothing on the detected outer edge of the 
original cornea [7]. However, edge detection is not precise enough to locate the cor-
neal edge and often leads to the partial loss of the corneal contour.

The semantic segmentation framework of a deep convolutional neural network has 
strong feature extraction ability, and its classical model and many improved models 
are widely used in image semantic segmentation tasks [11–14]. Two convolutional 
network models, SqueezeNet [15] and GoogLeNet [16], are applied to the segmenta-
tion of tumor images, which improves efficiency and achieves high accuracy [13]. In 
addition, the latest transformer framework has been applied to image segmentation 
tasks; however, the framework must be trained with several data sets before excel-
lent results can be obtained. For medium-sized data sets (such as ImageNet-21  k 
[17]), the performance of the transformer model is not as good as that of the con-
volution architecture [18]. Owing to the small size of the corneal deformation video 
data set, this study proposes an unsupervised automatic corneal contour extraction 
algorithm based on a shared model using a convolution computing architecture.

The algorithm is based on a fully convolutional deep-learning network without 
the tedious and time-consuming manual marking of the corneal contour image for 
training. Using the powerful ability of the FCN to represent and combine the image 
details [19], it extracts the low- and high-order features of the image, assigns the 
same label to the corneal region pixels in each frame of the corneal deformation 
videos, and realizes the unsupervised semantic segmentation of the corneal image 
region. The model parameter-sharing mechanism is designed to accelerate the seg-
mentation of each frame image in the video, effectively improving the anti-noise 
ability and computational efficiency. The corneal region is screened according to 
the shape factor and finally realizes the high-precision automatic extraction of the 
noise-robust unsupervised corneal contour.
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Results
The method proposed is an unsupervised corneal contour extraction for a single 
frame video, which do not require training data for weight parameters, and its train-
ing stage is the inference process. In total, 1027 videos were analyzed for evaluating 
the performance. The image labeled actual corneal contours manually are served as 
the ground truth.

Intersection over Union (IoU) is a measure of the accuracy of the detected object 
[20]. It calculates the overlap ratio between the output image and the ground truth; in 
the words, if there are more intersections between the output and the ground truth, 
it indicates that the accuracy of the model is higher. Therefore, it is the most popular 
evaluation metric used in semantic segmentation tasks in the field of deep learning 
[21]. In this study, the overlap error [22] was used to assess the accuracy of corneal 
contour extraction and is defined as follows:

where S and G denote the extracted and actual corneal contours, respectively. From the 
above equation, it can be deduced that when the extracted corneal contour and true con-
tour coincide exactly, the value of IoU is 1, and the value of E is the minimum value of 0. 
While the extracted corneal contour and the real contour have no overlapping parts, the 
value of IoU is 0, and the value of E is the maximum value of 1. That is, the smaller the E 
value is, the more accurate the extracted corneal contour.

For corneal contour extraction in corneal force deformation video streams, 1027 
videos are all analyzed in total. To evaluate the accuracy, we choose five videos with 
much noise to demonstrate the anti-noise performance, and the effect of the pro-
posed algorithm was compared with that of existing algorithms, such as OTSU, Rob-
ert, Sobel, Canny, as shown in Fig. 1.

From Fig.  1, it can be seen that when the video contains noise, the contours 
extracted by existing methods are generally disturbed by noise, and the extracted 
corneal contours appear discontinuous, abnormal, or even mistake the noise as pixel 
points on the corneal contours. However, the proposed method in this study is not 
only noise-resistant, but also has a high accuracy of corneal contour extraction.

E = 1− IoU = 1−
Area(S ∩G)

Area(S ∪G)

Fig. 1 The Comparison of extraction effect for different methods
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To quantify the difference in accuracy between the proposed method and the existing 
corneal contour extraction methods, the mean and variance of the overlap error were 
calculated separately for the same videos using OTSU, Robert, Sobel, Canny, and the 
proposed method; the results are listed in Table 1.

Table 1 shows that the mean value of the overlap error of the existing contour extrac-
tion methods is greater than 0.2, while the mean value of the overlap error of the pro-
posed corneal contours extracted algorithm is only 0.05. This implies that the corneal 
contours extracted using the proposed method almost overlap with the real contours, 
even in the presence of noise interference.

To elaborate on fully convolutional network architecture, a U-Net, which was older 
but still more recent, was used to replace the FCN for the feature extraction module. The 
mean value and variance of the overlap error for Video 1, Video 2, Video 3, Video 4, and 
Video 5 are 0.42 ± 0.04, 0.11 ± 0.02,0.09 ± 0.02,0.18 ± 0.0, and 0.10 ± 0.02, respectively.

Furthermore, the overlap error with different activation functions, such as ReLU [23], 
MiSH [24], Pish [25], LeakyReLU [26], is compared, and the comparative result is shown 
in Table 2.

Table 2 shows that the mean overlap error for ReLU activation function is smaller than 
other different activation function.

For further analysis of the effect using different loss functions, the overlap error E was 
calculated for the above five videos using the cross-entropy loss function and improved 
loss function. The results are shown in Fig. 2.

From Fig. 2, it can be observed that the average overlap error value E obtained using 
the improved loss function is significantly smaller than the E value of the cross-entropy 
loss function. That is, the corneal contours extracted using the improved loss-function 
model were closer to the real corneal contours.

The corneal area in the video was relatively fixed, and the range of corneal variation 
between adjacent images was small. Therefore, this study used a shared mode. For 
the above videos, because the unsupervised corneal contour extraction method has 

Table 1 Comparison of overlap error (mean ± std)

Video1 Video2 Video3 Video4 Video5

OTSU 0.31 ± 0.13 0.64 ± 0.02 0.50 ± 0.22 0.24 ± 0.10 0.50 ± 0.10

Robert 0.54 ± 0.05 0.72 ± 0.01 0.69 ± 0.11 0.55 ± 0.07 0.66 ± 0.04

Sobel 0.54 ± 0.07 0.71 ± 0.04 0.66 ± 0.12 0.51 ± 0.07 0.68 ± 0.04

Canny 0.30 ± 0.15 0.66 ± 0.03 0.58 ± 0.17 0.32 ± 0.13 0.56 ± 0.05

The shared model 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.02

Table 2 Overlap error for different activation functions (mean ± std)

Video1 Video2 Video3 Video4 Video5

ReLU 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.02

MiSH 0.06 ± 0.05 0.10 ± 0.03 0.14 ± 0.07 0.13 ± 0.02 0.13 ± 0.05

Pish 0.27 ± 0.02 0.81 ± 0.16 0.83 ± 0.06 0.80 ± 0.01 0.82 ± 0.01

LeakyReLU 0.07 ± 0.02 0.07 ± 0.01 0.06 ± 0.02 0.03 ± 0.01 0.05 ± 0.02
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a certain randomness, a shared model and a randomly initialized parameter model 
were used for contour extraction, and both were repeated three times. The compari-
son results are listed in Table 3.

It is evident from the table above that the average overlap error value for each video 
was less than 0.1 using the shared model to guide the training. Although the aver-
age overlap error using the random initialization parameter model was significantly 
larger than that using the shared model, the repeatability of the shared model was 
also much better. This confirms that the shared-parameter model can effectively resist 
noise interference and extract more complete and accurate corneal contours.

To evaluate the training efficiency, the change process of the loss function is ana-
lyzed. In other words, when the loss function is less than 0.1 at first time, the current 
number of iteration epoch was remembered, and the smaller value is, the higher the 
efficiency is. For the above video, the number of iterations of the shared model and 
the randomly initialized parameter model were calculated separately, and the com-
parison results are shown in Fig. 3.

From the above figure, it can be seen that the number of iterations using the shared 
model with a loss function equal to 0.1 is much smaller than that of the random 

Fig. 2 Comparison of different loss functions

Table 3 Comparison results (mean ± std)

Video1 Video2 Video3 Video4 Video5

Random initialized model 0.09 ± 0.03 0.99 ± 0.09 0.07 ± 0.04 0.07 ± 0.03 0.07 ± 0.03

0.04 ± 0.02 0.44 ± 0.34 0.16 ± 0.10 0.54 ± 0.37 0.07 ± 0.04

0.05 ± 0.02 0.13 ± 0.11 0.99 ± 0.03 0.06 ± 0.04 0.24 ± 0.23

The shared model 0.05 ± 0.03 0.06 ± 0.02 0.05 ± 0.02 0.07 ± 0.04 0.06 ± 0.02

0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.05 ± 0.02

0.06 ± 0.08 0.06 ± 0.01 0.05 ± 0.02 0.06 ± 0.04 0.06 ± 0.02
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initialized parameter model. Particularly, the shared model can reduce training time 
more effectively.

Discussion
In this study, we described an unsupervised corneal contours extraction based on the 
fully convolutional network architecture. A total of 1027 videos were analyzed and a 
good performance was demonstrated on the extraction accuracy as well as noise resist-
ance. We show that a fully convolutional network trained pixels-to-pixels on seman-
tic segmentation can apply for automatic extraction of corneal contours, and the good 
initializing of the model parameters is crucial. Otherwise, some parts of the network 
may be overly activated, while others may not contribute. To our knowledge, this is 
the first work to apply unsupervised corneal contours extraction using a shared model 
mechanism.

Existing studies on corneal contours extraction were mostly supervised. Wangyi 
et al. proposed an automatic extraction algorithm for corneal image contours using 
swept-frequency optical coherence tomography [8]. The algorithm divides the image 
into high and low signal-to-noise ratio regions for processing. Using the peak point 
positioning method and combining the actual contour information of the cornea 
as a tradeoff factor, corneal contour positioning can be realized. The obtained cor-
neal thickness was closer to the actual value, and the average extraction accuracy 
improved by 4.9%. However, this method requires a large amount of annotation data, 
and the annotation process is lengthy and prone to human error. Ji et al. proposed 
a method based on edge detection and quintic polynomial approximation [9]. This 
method can achieve good results when there are small amounts of noise and arti-
facts in the image. However, owing to the accuracy of the corneal edge detection 
algorithm and the limitations of the polynomial fitting method, individual differ-
ences cannot be accurately considered in the process of dynamic corneal changes. 

Fig. 3 Comparison of the epochs when the loss function is 0.1
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Koprowski et al. proposed a corneal contour edge detection method based on Otsu 
segmentation and the Canny operator [10]. This method provides new clues for 
extracting contours after segmenting the image and achieves better results. How-
ever, it does not consider how to extract the contour from videos or the impact of the 
correlation between video frames on corneal contour extraction. Jiang et al. explored 
a retinal vascular image segmentation method based on the deep fully convolutional 
network (FCN) model [14]. This method performs intensive pixel-by-pixel predic-
tion from the perspective of full size with an average accuracy of 97%. However, all 
these methods only obtained satisfactory results for images with or without a small 
amount of noise. If the image quality is low or the noise level is high, extraction of 
the corneal contour cannot meet the clinical requirements.

Considering the presence of noise in corneal deformation videos and the lack of 
high-quality annotation data, this study introduced the perspective of contour cal-
culation after segmenting. Unsupervised semantic segmentation was performed 
on each frame of the corneal dynamic video using a shared model mechanism to 
accelerate image segmentation and effectively resist noise. Subsequently, the corneal 
region is selected based on the shape factor to accurately extract the corneal con-
tour. In addition, the shared model mechanism is proposed in this study. The effec-
tive use of known model parameters for the initialization improves the accuracy of 
semantic segmentation and speeds up the training process. By loading the model 
parameters of the previous frame, the FCN obtained almost ideal semantic segmen-
tation of the corneal image, and after fewer iterations, a more complete and accurate 
corneal region could be obtained. For random noise in the corneal video, the effec-
tive model parameters of the previous frame are used to initialize the network, so 
that the interference of random noise data in the current frame can be effectively 
avoided. Therefore, the proposed method not only reduces the training time, but 
also has high accuracy and stability for corneal images with noise, which shows good 
noise immunity. The experimental results also fully validate this conclusion.

Conclusions
In this study, we developed an unsupervised automatic corneal contour extraction algo-
rithm based on a shared model of dynamic corneal deformation videos. Low- and high-
order features were extracted from the image using a fully convolutional deep-learning 
network. Pixels with continuous spatial positions, similar shapes, and textural features 
were grouped together, and shape factors were designed to identify the corneal region. 
To resist random noise interference in the image, the training was guided by a shared 
model mechanism. Compared to the OTSU, Robert, Sobel, Canny, and other algorithms, 
the method introduced in this study does not require manual annotation of corneal con-
tour data in advance and can still extract accurate corneal contours from noisy corneal 
videos with good repeatability. Accurate corneal contour extraction is a prerequisite for 
calculating biomechanical parameters, this provides a promising way for the accurate 
characterization of corneal biomechanics, further providing more reliable guidance for 
doctors to diagnose corneal ectatic diseases, screen for glaucoma, and predict corneal 
refractive surgery from the perspective of evaluating corneal biomechanics.
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Methods
Data collection

The data set was retrospectively collected at Tianjin Eye Hospital (Nankai University 
Affiliated Eye Hospital) from May 2020 to November 2021 and analyzed in Decem-
ber 2022. A total of 1027 videos were captured by Corneal Visualization Scheimpflug 
Technology (Corvis ST), which applanates the cornea using a puff of air and the corneal 
deformation videos are recorded by a Scheimpflug high-speed camera only when the 
“Quality Control Score” displayed “OK”. The video frame rate is 13 fps. Each video had 
139 total frames with a total time of 31.88 ms.

Process

First, the Slic algorithm [27] was introduced to pre-group pixels according to the spa-
tial continuity of pixels in the video of corneal force deformation; then, the unsuper-
vised semantic segmentation of corneal images was completed by extracting the low and 
high features of the images based on corneal geometry and texture similarity informa-
tion through a fully convolutional deep-learning network. For continuity of the corneal 
region between video frames, a shared model mechanism was designed to accelerate 
the segmentation of the corneal region in the video and improve the noise immunity 
performance. The corneal region was then filtered by the shape factor, and finally, con-
tour extraction of the corneal region was completed. The pseudocode is presented in 
Algorithm 1.
Algorithm 1

Image semantic segmentation

FCNs have great potential for image detail feature extraction and show good per-
formance in unsupervised image segmentation [20, 28, 29]. In this study, to achieve 
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unsupervised semantic segmentation of corneal images, we extracted the color and 
texture features of each local pixel region for the Corvis ST corneal dynamic defor-
mation video stream using an FCN, predicted the unknown clustering labels for each 
frame image in the video stream, learned the optimal network parameters for pixel 
clustering, and extracted the pixel points in each cluster label.

In this study, the input is the corneal dynamic deformation videos X = {xi}
N
i=1

 , and 

we propose a distance metric D′ =

√

(

dc
m

)2

+

(

ds
S

)2

 to pre-group images, where 

m = 10, S = sqrt(N/K ) , N  is the number of pixels in the image xji , K  is the number of 
pre-groups, dc is the color distance in Lab color space, which is defined as 

dc =

√

(lj − li)
2
+ (aj − ai)

2
+ (bj − bi)

2

 , and the spatial distance 

ds =

√

(xj − xi)
2 + (yj − yi)

2 . For all pixel points of the j th frame in the i th video, we 
calculate the distance metric D′ . We assigned the same labels to spatially contiguous 
pixels with similar color or texture features, and different clustering labels to dissimi-
lar neighboring pixels. Thus, we obtain a set of K pixel indices, {Sk}Kk=1

 . Image xji is 
input to a six-layer FCN, and the structure is shown in Fig. 4.

Six convolution units are computed for image xji . Each convolution unit consists of 
a convolution calculation, batch normalization, and a ReLU activation function. The 
parameters of each network layer are listed in Table 4.

The detailed image feature mapping aji =
{

Wx
j
i + b

}

 was obtained using convolu-

tion networks, and the dimension with the maximum value was selected as the clus-
tering label bji for each pixel, where bji = argmax(a

j
i) ; that is, each pixel was assigned to 

the closest point. Then, the pixel points in the grouping set {Sk}Kk=1
 are counted, the 

Fig. 4 Structure of a fully convolutional network

Table 4 Parameters of fully convolutional network

Layer Type Maps Size Kernel Stride Padding Activation

In Input 3 (RGB) 576 × 150 – – – –

C1 Conv 128 576 × 150 3 × 3 1 1 BatchNorm, ReLU

C2 Conv 64 576 × 150 1 × 1 1 0 BatchNorm

C3 Conv 32 576 × 150 3 × 3 1 1 BatchNorm, ReLU

C4 Conv 16 576 × 150 1 × 1 1 0 BatchNorm

C5 Conv 8 576 × 150 3 × 3 1 1 BatchNorm, ReLU

C6 Conv 4 576 × 150 1 × 1 1 0 BatchNorm

Out – – 576 × 150 – – – Softmax
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cluster label with the largest number in each Sk is selected as the label for that group-
ing, and all pixel point labels cji are updated.

To achieve semantic segmentation of corneal images using a fully convolutional deep-
learning network, two processes must be repeated alternately. (1) to predict the pixel 
labels cji using fixed network parameters, and (2) to update the network parameters W  
and b use the predicted pixel labels, and to identify all points belonging to the corneal 
area. The former corresponds to the forward learning of the network, and the latter cor-
responds to the backpropagation of the error. The cross-entropy loss function is often 
used for image semantic segmentation, which can compensate for the defect in which 
the derivative form of the sigmoid activation function is prone to saturation to a certain 
extent and avoids gradient dispersion in the process of gradient descent calculation.

In this study, we introduce the shape factor as an additional term for the cross-
entropy loss function to address the following characteristics: the corneal region does 
not account for a large proportion of pixels in each frame, the corneal spatial location 
is relatively fixed, and the change in its geometry is small during the entire deformation 
process. Fs is defined as follows:

where L is the perimeter of the area enclosed by a contour, and S is the area enclosed by 
a contour.

During corneal deformation, the perimeter and contour area change simultaneously, 
and the shape factor remains unchanged. The original cross-entropy loss function Lce 
and shape factor loss function Lfs are combined, and the improved loss function is 
defined as follows:

where Lce is the cross-entropy loss function; the shape factor loss function.
Lf s = |Fs − C| ; C is a constant denoting the cornea-specific shape factor (here, the 

value is 10); Fs denotes the shape factor; and α is a weighting factor (here, the value is 
equal to 0.1).

The improved loss function takes the absolute value of the difference between the 
shape factor of the region in the segmented image, where the corneal category label 
is located and the constant of the true corneal shape factor as an additional term. The 
closer the corneal category label in the segmented image and the true shape factor of the 
cornea, the smaller the shape factor loss function Lf s . That is, the improved loss func-
tion enhances the focus on the specific shape of the cornea in the training process of 
the FCN. It optimizes pixel labels and shape features simultaneously, updates network 
parameters using stochastic gradient optimization, and alternates between iterative 

Fs =
�L�2

4πS

L = Lce + α × Lfs
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labels and contour shape features. Thus, it performed well in the semantic segmentation 
of corneas in videos of corneal deformation.

Corneal area detection and contour extraction

In a fully convolutional deep-learning network, neighboring pixels with similar tex-
tures, colors, luminance, and other features are clustered into irregular blocks of 
pixels with some visual significance. That is, pixel points with similar features are 
assigned the same category labels. However, extracting the corneal contours first 
requires determination of the type of label that represents the corneal region. Con-
sidering that the corneal region accounts for only a small percentage, it is relatively 
fixed in the image and the corneal always maintains its inherent shape during corneal 
deformation. The shape factor Fs described in the previous section was adopted. The 
ratio of the perimeter to the area of each label type was calculated to filter out the cor-
neal region, and boundary extraction of the corneal region was performed to obtain 
the corneal contour pixel points in each frame of the image in the video stream.

The shared model

A fully convolutional deep-learning network extracts image features through each 
layer of network learning, and the features learned layer-by-layer range from sim-
ple to complex. The features learned at the superficial level are simple edges, corner 
points, and textures, whereas those learned at the deeper level are more complex 
and abstract, with contour details and thicknesses. In the Corvis ST corneal dynamic 
deformation video, the corneal region was located in a relatively stable space with 
similar texture characteristics. The cornea retains its specific shape characteristics 
throughout the force–deformation process. The changes between adjacent frames 
were small and the underlying features were similar. Thus, the shallow network 
parameters of the FCN were similar, whereas the deep network parameters differed. 
Therefore, this study proposes a shared-model mechanism based on the charac-
teristics of Corvis ST videos. That is, the model parameters of the previous frame 
were used to initialize the adjacent frame images. Finally, the model was thoroughly 
trained. This process is illustrated in Fig. 5.
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