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Abstract

Artificial intelligence (Al) has shown excellent diagnostic performance in detecting vari-
ous complex problems related to many areas of healthcare including ophthalmology.
Al diagnostic systems developed from fundus images have become state-of-the-art
tools in diagnosing retinal conditions and glaucoma as well as other ocular diseases.
However, designing and implementing Al models using large imaging data is chal-
lenging. In this study, we review different machine learning (ML) and deep learning
(DL) techniques applied to multiple modalities of retinal data, such as fundus images
and visual fields for glaucoma detection, progression assessment, staging and so on.
We summarize findings and provide several taxonomies to help the reader under-
stand the evolution of conventional and emerging Al models in glaucoma. We discuss
opportunities and challenges facing Al application in glaucoma and highlight some
key themes from the existing literature that may help to explore future studies. Our
goal in this systematic review is to help readers and researchers to understand critical
aspects of Al related to glaucoma as well as determine the necessary steps and require-
ments for the successful development of Al models in glaucoma.
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Introduction

Glaucoma is an optic neuropathy accompanied by characteristic structural and func-
tional changes [1]. It affects over 90 million individuals worldwide and constitutes the
second leading cause of blindness and subsequent disability overall [2, 3]. The number of
people aged 40—80 years with glaucoma worldwide was estimated to be 64.3 million in
2013, with projections that this number will increase to 76.0 million in 2020, and 111.8
million in 2040 [4]. Because older people make up the fastest-growing part of the US
population, glaucoma will become even more prevalent in the US in the coming dec-
ades. As such, population-based screening for glaucoma becomes critical.

Glaucoma detection is challenging particularly at the early stages of the disease;
however, early detection may lead to slowing its progression and future vision loss
[5]. A major challenge in detecting glaucoma is that signs and symptoms may mani-
fest only when significant vision has been already lost. Therefore, it is critical to
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diagnose glaucoma early to prevent future vision loss [6]. Glaucoma diagnosis typi-
cally includes assessment of the optic nerve head (ONH) through retinal examination,
intraocular pressure (IOP) measurement, evaluation of visual fields (VFs), and exam-
ining other related factors.

Assessing the ONH in glaucoma is an important diagnostic step, as the primary impli-
cation for glaucoma is glaucomatous optic neuropathy (GON), which is widely identified
through fundus photographs or optical coherence tomography (OCT) images. Currently,
fundus photography is better suited for glaucoma screening because fundus cameras are
affordable and more importantly, portable. However, development of low-cost and port-
able OCT systems is advancing as well, and these portable OCT technologies are poised
to gain popularity in the coming years. Fundus photography has been the most estab-
lished modality for documenting the status of the optic nerve and detecting GON since
1857. As a result, large, annotated datasets of fundus photographs are currently avail-
able and importantly, they are appropriate for machine learning (ML) and deep learning
(DL) models. In contrast, clinical evaluations of the ONH are subjective and prone to
error. According to prior research, it has been reported that both ophthalmology train-
ees and comprehensive ophthalmologists underestimated the likelihood of glaucoma
in 20% of disc photographs. Additionally, ophthalmology trainees and comprehensive
ophthalmologists were twice as likely to underestimate or overestimate the likelihood
of glaucoma due to various factors, such as the variability in cup-to-disc ratio, peripapil-
lary RNFL atrophy, and the presence of disc hemorrhage [7]. Optic nerve assessment
is primarily performed in a subjective manner while most of the useful structural and
functional features of healthy and diseased patients are overlapping therefore leading to
inter- and intra-observer variability. The problem is worse for monitoring as glaucoma
progression is often slow and happens over decades, making prediction of progression
highly challenging. As such, automated ML models may provide more objective, consist-
ent, and more accurate outcomes.

Artificial intelligence (AI) and DL models are emerging areas that automate the inter-
pretation of retinal images. Advancements in computer systems and availability of large
datasets and algorithms allow these systems to mimic human thought processes such as
learning, reasoning, and self-correction. DL, a subfield of ML and Al, has made signifi-
cant progress over the past few years and development of objective systems to automate
glaucoma detection has been highly promising [8]. Although many studies demonstrated
promising results in detecting glaucoma using Al, limitations still exist in many perspec-
tives. For example, lack of standardized and consensus glaucoma definitions makes it
difficult to evaluate the results consistently in different datasets; the shortage of large, well-
annotated datasets of good quality limited the generalizability of AI model; the limited
interpretability and liability of the DL model hurdled the implementation of it in clinic.

This review aims to identify ML-based models applied to glaucoma over the past few
years and create a reference of those models and their performance. We also generate
several taxonomies including categories of ML models, input data types, and level of
performance and compare different ML types to identify better performing approaches.
Lastly, we provide insight into current challenges and future directions as well.

The paper is organized as follows:
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This paragraph ends the introductory section. An overview of Al in glaucoma is pre-
sented in Section “Literature review”. Section "Overview of the AI models in glaucoma"
outlines applications of specific Al models in glaucoma based on various categories. Sec-
tion "Discussion” presents open issues and future directions of Al in glaucoma. Finally,
Section “Conclusions” concludes this review. Section "Methods” presents literature
search and filtering strategies for this review.

Literature review

Glaucoma

Glaucoma is a group of heterogenous diseases that may lead to irreversible vision loss
[1]. In some forms of glaucoma, increased IOP impacts the retina and ONH, which in
turn, may lead to irreversible vision loss [9]. Lowering IOP is a proven treatment for
open-angle glaucoma (OAG).

Although glaucoma detection is challenging, particularly at the early stages of the dis-
ease, early detection is critical in order to provide timely treatments that may be effec-
tive in slowing its progression [5]. Glaucoma is typically diagnosed by evaluating the
ONH and the adjacent retinal nerve fiber layer (RNFL) through retinal examination and
imaging tools, assessing VFs, and evaluating IOP levels.

Al for glaucoma

Not only is glaucoma diagnosis potentially time-consuming and costly, but also its reli-
ance on an individual clinician’s knowledge and ability makes it subjective and prone
to over/under estimation [10]. Alternatively, automated Al models could minimize sub-
jectivity by interpreting and quantifying retinal and optic nerve images. Al has several
other applications for glaucoma. For instance, Al can be used to optimize workflows and
processes in glaucoma clinics that may lead to more time for clinicians to interact with
patients thus enhancing overall care. Al could be used to quantify optic cup, disc, and
rim characteristics in fundus images, retinal layers in OCT images, and patterns of VF
loss. Such applications hold promise for providing improved glaucoma assessment, as
well as forecasting, screening, diagnosing, and prognosing glaucoma. Figure 1 describes
the overall AI domain and its subcategories including ML and DL. While DL models
are more appropriate for analysis of image-based glaucoma data, other categories of ML
models may be more appropriate for VF and other non-image data. Different categories

Artificial
Intelligence (Al)

Machine
Learning (ML)

To incorporate human behavior or
intelligence to machine or systems

Methods to learn from data or past
experience, which automates analytical
model building

Deep Learning
(DL)

Computation through multi-layer neural
network or processing

Fig. 1 lllustration and definition of artificial intelligence (Al), machine learning (ML), and deep learning (DL)



Huang et al. BioMedical Engineering OnLine (2023) 22:126 Page 4 of 48

of AI models including expert systems may be utilized to optimize glaucoma clinic

workflows and processes.

Overview of the Al models in glaucoma

This section reviews different Al models from the literature that have been used for
glaucoma assessment. Figure 2 shows different ML-based models that have been applied
to detect glaucoma. These models have been grouped into two major categories includ-
ing supervised and unsupervised learning models. In supervised learning, the model
is trained on labeled data with each data instance having a known outcome. Unsuper-
vised learning describes algorithms for finding patterns in data, without prior knowledge
of outcomes for data instances [11]. Based on this taxonomy, we will highlight some
of the representative ML studies applied to glaucoma and provide their strengths and

limitations.

Machine learning

Supervised machine learning

Supervised ML [12-80] has been widely used in glaucoma detection, severity classifica-
tion, progression prediction, segmentation, etc., based on different modalities, such as
VF, fundus, OCT, clinical data, transcriptomic data, etc.

Several metrics were used for model evaluation, such as: accuracy (the proportion of
correctly classified samples relative to the total number of samples); sensitivity/recall
(the rate of positive samples correctly classified, reflecting the ratio of correctly classified
positive samples to all samples assigned to the positive class); specificity (measures the
rate of negative samples correctly classified, determined by the ratio of correctly classi-
fied negative samples to all samples belonging to the negative class); error rates (the ratio
of the incorrectly classified samples to the total number of samples); precision (the pro-
portion of true positive predictions out of all positive predictions from the model); true
positive rate (TPR, the proportion of actual positive samples that the model correctly
identified as positive); false positive rate (FPR, the proportion of actual negative sam-
ples that the model incorrectly identified as positive); area under the receiver operating
characteristic (ROC) curve (AUC, the model’s performance across various thresholds,

Hard clustering

l Logistic Regression (LR) | (K-means)
» Clustering } .
- . Soft clustering
‘ K-Nearest Neighbors (KNN) }' . ; (fuzzy c-means, GMM)
7/ Machine
[ Supporter Vector Machine (SVM) |« { learning > Association Analysis
N\ approach
\
| Tree-based ensembled method ]‘ . Feature extraction ‘
‘] Dimension ¢ RORHNMERS,
Reduction "
l Neural Network (NN) » J Feature selection ‘

(MRMR, PCC, MB)

Supervised learning ‘ Unsupervised learning

Fig. 2 Various types of ML models applied to glaucoma. GMM: Gaussian Mixture Modeling; PCA: Principal
Component Analysis; NMF: Non-negative Matrix Factorization; AA: Archetypal Analysis; PCC: Pearson
Correlation Coefficient, MB: Markov Blanket; mRMR: Minimum Redundancy Maximum Relevance
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presenting TPR against FPR at various threshold settings), area under precision—
recall curve (AUPRC, the classification model performance appropriate for imbalanced
classes, demonstrating the precision against the recall at different threshold settings).

Logistic regression (LR) is a supervised model designed to estimate the probability
between categorical classes. LR has also been used in glaucoma diagnosis in various
studies. Lu et al. [28] used four ML classifiers to detect glaucoma based on biomechani-
cal data from 52 patients including 20 glaucoma (40 eyes) and 32 healthy (64 eyes). The
LR model obtained the best accuracy of 0.983, AUC of 0.990, sensitivity of 98.9% (at 80%
specificity), and sensitivity of 97.7% (at 95% specificity) based on 3-fold cross-validation
(CV). Baxter et al. [35] developed machine models to predict the requirement for sur-
gical intervention in individuals diagnosed with primary open-angle glaucoma (POAG)
utilizing systemic parameters obtained from the electronic health records (EHR) system
from 385 POAG patients. They used leave-one-out CV, and the best model was multi-
variable LR with an AUC of 0.67. This model also provided the odds ratio of the factors
which were associated with the risk of glaucoma surgery. Higher mean systolic blood
pressure (OR: 1.09, P<0.001) and use of anticoagulant medication (OR: 2.75, p =0.042)
were significantly associated with increased risk of glaucoma surgery. The major advan-
tage of the LR models is their simplicity and explainability, which would be an essential
advantage in glaucoma research and clinics.

K-Nearest Neighbor (KNN) is a supervised classification technique to estimate the
likelihood that a data point belonging to a specific group by analyzing the groups to
which its nearest neighboring data points belong. The KNN model has been used in
glaucoma detection and some of the studies obtained better results using KNN than the
other models. Singh, et al. [40] developed several ML models for glaucoma diagnosis
from 70 glaucomatous and 70 healthy eyes based on OCT data. They extracted 45 fea-
tures from OCT images and the highest AUC of 0.97 was achieved by a KNN model
tested using 5-fold CV. Singh et al. [48] also developed an interconnected architecture
with Customized Particle Swarm Optimization (CPSO) and four machine-learning clas-
sifiers based on 110 fundus images and found CPSO-KNN demonstrated superior per-
formance compared to other models, achieving an accuracy of 0.99, specificity of 0.96,
sensitivity of 0.97 and precision of 0.97, F1-score of 0.97 and kappa of 0.94 by utilizing
5-fold CV.

Support Vector Machine (SVM): SVM is a supervised ML technique that has the
capability to tackle both classification and regression problems. The algorithm aims to
identify the optimal line or decision boundary that separates different groups, enabling
accurate classification of additional data points into their respective categories. SVM
classifier has been widely reported in the literature for detecting glaucoma. For instance,
Goldbaum et al. [12] compared various ML models for glaucoma diagnosis based on
Standard Automated Perimetry (SAP) data collected from 189 normal eyes and 156
glaucomatous eyes, and SVM with Gaussian kernel with the input of VF sensitivities at
each of 52 locations plus age. Results from this study obtained the second highest per-
formance with AUC of 0.903, sensitivity of 0.53 (at specificity of 1.0) and sensitivity of
0.71 (at specificity of 0.9) based on 10-fold CV. Zangwill et al. [13] employed SVM mod-
els to detect glaucoma based on Heidelberg Retina Tomograph (HRT) data collected
from 95 glaucomatous eyes and 135 normal eyes, and obtained the best performance
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with AUC of 0.964, sensitivity of 97% (at 75% specificity), and sensitivity of 85% (at 90%
specificity) with the input of all parameters combined, including RNFL regional and
global parameters, sectoral mean height contour along the disc margin, sectoral para-
papillary mean height contour, sectoral RNFL thickness along the disc margin, and sec-
toral parapapillary RNFL thickness. Evaluations were performed based on 10-fold CV.
Burgansky-Eliash et al. [14] developed different ML models for glaucoma detection from
47 glaucomatous eyes and 42 healthy eyes based on OCT parameters and found SVM
with eight OCT parameters achieved the best performance with AUC of 0.981, accu-
racy of 0.966, sensitivity of 97.9% (at the specificity of 80%), and sensitivity of 92.5% (at
specificity of 92.5%) using 6-fold CV. Townsend et al. [15] developed several ML models
for glaucoma detection based on HRT3 data collected from 60 healthy subjects and 140
glaucomatous subjects. The SVM-radial applied on all HRT3 parameters showed sig-
nificant improvement over the other models and obtained an AUC of 0.904, accuracy
of 85.0%, sensitivity of 85.7% (at 80% specificity) and 64.8% sensitivity (at 95% specific-
ity) based on leave-one-out CV. Garcia-Morate et al. [16] developed an SVM model to
detection glaucoma using 136 glaucomatous eyes and 117 non-glaucomatous eyes based
on HRT?2 parameters. The SVM model exploiting 22 parameters obtained the highest
performance with AUC of 0.905, sensitivity of 85.3% (at 75% specificity), and 79.4% sen-
sitivity (at 90% specificity) using 10-fold CV. Bizios et al. [17] developed numerous Al
models to detect glaucoma based on OCT-A scans collected from 90 healthy and 62
glaucomatous subjects and reported that SVM achieved the best performance with an
AUC 0f 0.989 (95% confidence interval: 0.979-1.0) using 10-fold CV.

In summary, SVM worked well in dealing with VF, HRT, and OCT parameters to
detect glaucoma mostly in earlier studies from 2002 to 2010. SVM is straightforward to
implement and has relatively high explainability.

Tree-based ensembled model: The tree-based ensembled method has been reported
to have better performance than a single tree-based model. Random Forest (RF),
XGboost, and gradient boosting models from this family have been widely used in glau-
coma diagnosis based on VFs and OCT parameters and have shown reasonable perfor-
mance. Barella et al. [19] developed multiple ML models to detect early to moderate
POAG from 57 early to moderate POAG and 46 healthy patients based on RNFL and
optic nerve parameters collected from SD-OCT instrument. RF obtained the best AUC
of 0.877 based on 13 input parameters with sensitivity of 64.9% (at 80% specificity) and
sensitivity of 49.1% (at 90% specificity) using 10-fold CV. Hirasawa et al. [18] used vari-
ous ML models to predict vision-related quality of life (VRQoL) based on VF and visual
acuity from 164 glaucomatous patients. Based on this regression problem, RF and boost-
ing models obtained the lowest error rate with root mean square error (RMSE) of 1.99.
Silva et al. [20] developed models for glaucoma diagnosis based on SD-OCT and SAP
(24-2) data collected from 62 glaucomatous patients and 48 healthy subjects. Based on
four features, RF achieved the best AUC of 0.946 with the sensitivity of 95.16% (at 80%
specificity), and the sensitivity of 82.25% (at 90% specificity) using 10-fold CV. Kim et al.
[25] developed several ML models for diagnosis of glaucoma based on RNFL thickness
and VFs collected from 399 cases and RF showed the best performance with an accuracy
of 98%, sensitivity of 98.3%, specificity of 97.5%, and AUC of 0.979 when using seven fea-
tures on internal testing set with 100 cases. Oh et al. [44]applied various ML models to
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detect glaucoma based on clinical data (IOP, OCT measurements, VF examinations) col-
lected from 1244 eyes and observed XGboost the best performing model with an accu-
racy of 94.7%, sensitivity of 94.1%, specificity of 95.0%, and AUC of 0.945 with 10-fold
CV.

Neural network (NN), also known as artificial neural networks (ANNs), are struc-
tured with layers of nodes and usually consist of an input layer, one or multiple hidden
layers, and an output layer. Within this network, each node, also known as an artificial
neuron, establishes connections with other nodes and possesses an assigned weight and
threshold. When the output of a node surpasses a predetermined threshold, it becomes
activated and transmits its output to the subsequent layer of the network; otherwise, no
output is passed along to the next layer of the network. NNs have long been used for
glaucoma-related tasks based on VFs and other imaging parameters. Omodaka et al.
[24] used an NN with a structure of nine input layer units, eight hidden layer units, and
four output layer units to identify the status of 163 eyes based on 15 features selected
by minimum redundancy maximum relevance (mRMR) from 91 OCT parameters. The
model achieved an accuracy of 87.8% (Cohen’s Kappa of 0.83) based on 10-fold CV. An
et al. [27] used the same dataset and compared the performance of NN, SVM, and Naive
Bayesian models based on nine parameters selected by combining mRMR and genetic-
algorithm-based feature selection. They identified the NN model as the best performing
algorithm, with accuracy of 87.8% using 10-fold CV.

Overall, these conventional supervised ML models have been used widely in glaucoma
diagnosis based on VFs, RNFL parameters, or other clinical factors. Among these mod-
els, we observed that SVM was used more frequently and obtained better performance,
compared to other conventional ML models.

Unsupervised machine learning

Unsupervised learning is used for learning representative features and extracting pat-
terns from data. Many studies applied unsupervised learning for extracting VF or RNFL
loss patterns, glaucoma staging, segmentation and other features by using clustering,
association analysis, dimension reduction, etc. [37, 41, 43, 49, 56, 60, 62, 81-92].

Clustering We can broadly group the clustering models into either of two categories:
hard or soft clustering algorithms.

Hard clustering: In hard clustering, each data point is clustered or grouped to just
one cluster and not others. K-Means is a hard clustering algorithm. In K-Means, the
algorithm determines the optimal initial centroid points by minimizing the sum of
the squared distances between each point and its assigned centroid across all clusters.
Huang et al. [87] applied K-Means clustering to identify different stages of glaucoma
without any supervision by experts. They identified four severity levels based on 13,231
VFs and determined objective thresholds of — 2.2, — 8.0 and — 17.3 dB for VF mean
deviation for distinguishing normal, early, moderate, and advanced stages of glaucoma.
Ammal et al. [90] used K-Means to segregate optic disc (OD) and optic cup (OC) for fur-
ther glaucoma diagnosis model development based on fundus images from the Retinal
Fundus Images for Glaucoma Analysis (RIGA) dataset, and validated the model using
another dataset with 90 images. The result of the K-Means was compared with severity
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levels determined by ophthalmologists on the same data set, and authors showed that
the outcome was similar.

Soft clustering: In soft or fuzzy clustering, instead of putting each data points into only
one cluster, the data point can be assigned to different clusters with different likelihoods.
Fuzzy c-Means and Gaussian Mixture Model (GMM) are examples of soft clustering.
Fuzzy-c Means: Praveena et al. [86] applied K-Means, Fuzzy c-Means (FCM) and Spa-
tially Weighted fuzzy C-Means Clustering (SWFCM) to automatically determine the
cup-to-disc ratio (CDR) from the fundus photographs of 50 normal and 50 glaucoma
eyes. The K-value is determined by hill climbing algorithm. K-Means was used for seg-
menting OD, while FCM was used for segmenting optic cup. SWFCM was used for seg-
menting both OD and OC. The error rate was calculated with reference to the manually
determined CDR value (considered the gold standard) provided by ophthalmologists for
comparison. The mean error of the K-Means clustering method for elliptical and mor-
phological fitting was 4.5% and 4.1%, respectively. The mean error was reduced by the
FCM clustering to 3.83% and 3.52%, and the mean error was minimized to 3.06% and
1.67% using SWFCM. GMM: GMM attempts to find a mixture of multidimensional
Gaussian probability distributions. Yousefi et al. [82] applied GMM to identify differ-
ent patterns of VF loss. Their GMM successfully detected three distinct clusters, which
included normal eyes, eyes in the early stage of glaucoma, and eyes in the advanced stage
of glaucoma based on SAP VFs collected from 2085 eyes. Based on another subset with
270 eyes, they showed that GMM detected progressing eyes at an earlier stage, com-
pared to other methods.

Association analysis Association analysis: Association rule algorithms aims to find
interesting relationships among variables within extensive datasets, provided they sat-
isfy the predetermined minimum support (a threshold for determining the minimum
association) and confidence level (or accuracy, minimum threshold of the correct rule or
prediction) set by the user, in order to discover a pattern with strong association. Apriori
algorithms, one of the association rule categories, focus on identifying frequent associa-
tions in order to unveil intriguing relationships between attributes. Al-Shamiri et al. [89]
applied Apriori algorithm to discover risk factors of glaucoma based on a survey data-
set from 4000 patients. Their association analysis revealed several glaucoma risk factors
including family history of glaucoma, high IOP, optic nerve damage, high myopia, dia-
betes, hypertension, history of eye surgery, use of some medicines, psychological stress,
pressure work or study-related pressure, gastroenterology disease, and chronic constipa-
tion.

Dimensionality reduction A comprehensive eye examination to diagnose glaucoma
typically includes collecting numerous imaging, VF, and ocular measurements, and thus
provides high-dimensional datasets. A challenge is that ML models typically tend to over-
fit when dealing with glaucoma data and thus is not generalizable when tested on new
data. However, reducing the dimensionality may address the issue by selecting a smaller
subset of the features or deriving new features from a pool of features, while preserving
the information of the original features as much as feasible.
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Transformations: Transformation methods typically perform linear or nonlin-
ear transformations to map a high-dimensional space of initial input data into a lower
dimensional space of the features to reduce dimensionality. The widely used methods
in glaucoma research are principal component analysis (PCA), archetypal analysis, and
non-negative matrix factorization (NMF).

PCA: PCA [93] refers to a mathematical technique that employs an orthogonal trans-
formation to convert a collection of observations, which may consist of correlated vari-
ables, into a new set of linearly uncorrelated variables known as principal components
(PCs). Christopher et al. [29] applied PCA to structural RNFL features from RNFL thick-
ness maps and retained 10 PCs for glaucoma diagnosis and glaucoma progression pre-
diction based on 235 eyes and compared OCT and SAP features. The LR model based
on PCA from RNFL data obtained a better performance than other available param-
eters such as mean cpRNFL, SAP 24-2 MD, and FDT MD in both glaucoma diagno-
sis (AUC of 0.95; CI 0.92-0.98) and progression prediction (AUC of 0.74; CI 0.62-0.85)
using leave-one-out CV. Yousefi et al. [88] applied PCA to 52 TD values of 13,231 VFs
and selected 10 PCs (explained 90% of variance in VFs) which were subsequently input
to a manifold learning model, two features (dimensions) were ultimately retained. They
applied unsupervised ML and identified 30 clusters based on those two features and
used those clusters for glaucoma progression detection.

Archetypal Analysis: Wang et al. [83] applied Archetypal Analysis to identify the cen-
tral VF patterns of loss from 13,951 VF tests (Humphery, 10-2). They discovered 17
distinct central VF patterns and noted that incorporating coefficients from central VF
archetypical patterns strongly enhances the prediction of central VF loss compared to
using global indices only. In another study, Wang et al. [84] employed Archetypal Analy-
sis to identify the central VF patterns in end-stage glaucoma based on 2912 reliable VFs
(10-2) and found central VF loss in end-stage glaucoma exhibits characteristic patterns
that could potentially be associated with various subtypes. Nasal loss is likely the initial
central VF loss, and a particular subtype of nasal loss is highly prone to progress into
complete or total loss. Such explainable models may also shed light on some aspects of
glaucoma pathophysiology. Follow-up studies based on deep archetypal analysis (DAA)
identified more patterns of VF loss, their role in forecasting glaucoma, and their associa-
tion with rapid glaucoma progression [94-96].

NME: Wang et al. [81] utilized NMF to identify distinct patterns of the RNFL thickness
(RNFLT) based on RNFLT collected from 691 eyes. NMF identified 16 distinct RNFLT
patterns (RPs). Using these RPs resulted in a substantial enhancement in the prediction
of VF sensitivities. The Al-based RNFLT patterns hold promise in assisting clinicians to
more effectively evaluate and interpret RNFLT maps.

Feature selection: Feature selection models to identify the most optimal subset of
original input variables. Various feature selection methods have been used in glaucoma
research and some improved the performance of ML models. Examples include Pearson
Correlation Coefficient (PCC)-based variable selection, Markov Blanket (MB) variable
selection, and the minimum Redundancy Maximum Relevance (mRMR) approaches.
Lee et al. [33] developed a set of ML models for glaucoma diagnosis based on VF data
collected from 632 eyes and compared the result of models with different input features
which were selected by PCC-based variable selection, MB variable selection, mRMR,
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and features extracted by PCA. By employing a combination of total deviation (TD)
values, the GHT sector map, and variable selection using SVM and MB methods, the
researchers achieved the highest performance, as evaluated through 5-fold CV, with an
AUC of 0.912. Omodaka et al. [24] used mRMR to select 15 features from 91 quantified
ocular parameters and used an NN model for OD classification based on 165 eyes of 105
POAG patients, and obtained an accuracy of 87.8%, Cohen’s kappa of 0.83 using 10 -fold
CV. An et al. [27] applied a combination of mRMR and genetic algorithm-based fea-
ture selection to identify nine most valid and relevant features from a pool of 91 ocular
parameters and patients’ background information of 163 glaucomatous eyes to develop
ML model for classifying glaucomatous optic discs, and using the selected nine parame-
ters yielded the highest accuracy of 87.8% with an NN model evaluated based on 10 -fold
CV.

Deep learning

Emerging DL models have been widely used in ophthalmology and many DL models
have shown promising performance in glaucoma screening, diagnosis, or quantification
and segmentation of fundus photographs, VFs, and OCT images [31, 34, 51, 53, 85, 97—
290]. We will discuss some of the applications in glaucoma in three broad categories of
discriminative, generative, and hybrid models, as shown in Fig. 3.

Discriminative models

Discriminative models separate data points into different classes and learn the bounda-
ries using probability estimates and maximum likelihood. Discriminative models are
most common in glaucoma and have been extensively used in detection, optic disc/cup,
and region of interest (ROI) segmentation.

Convolutional Neural Network (CNN): CNN has been widely used in glaucoma diag-
nosis based on retinal images such as fundus photograph and OCT images. Chen et al.
[97] developed one of the earliest CNN models for glaucoma diagnosis based on fun-
dus images from ORIGA and SCES datasets. The CNN model with five layers obtained
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Fig. 3 Classification of DL models. CNN: Convolutional Neural Network; RNN: Recurrent Neural Network;
LSTM: long short-term memory; DCGAN: Deep Convolutional Generative Adversarial Network; SSCNN:
Convolutional Neural Network model with self-learning; SSCNN-DAE: Semi-supervised Convolutional Neural
Network model with autoencoder
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the best performance with AUCs of 0.838 and 0.898 based on fundus images from the
ORIGA (internal testing) and SCES (independent validation) datasets, respectively. Ahn
et al. [100] developed a CNN model to discriminate glaucomatous from normal eyes
based on 1542 fundus images. The model outperformed LR and InceptionV3 model with
an accuracy of 87.9% and AUC of 0.94 on internal testing set. Norouzifard et al. [102]
applied transfer learning based on VGG19 and Inception-ResNet-V2 architectures in
identifying glaucoma from 447 fundus photograph and re-tested the model on an inde-
pendent dataset (HRF with 30 fundus images). They reported that that VGG19 obtained
80.0% accuracy on independent dataset. Masumoto et al. [103] developed a CNN model
to classify glaucoma patients into four severity levels based on fundus images from 1399
patients/images. The model obtained AUCs of 0.872, 0.830, 0.864, 0.934 for normal vs all
glaucoma, early glaucoma, moderate glaucoma, and severe glaucoma, respectively, on
the internal testing set. Fuentes-Hurtado et al. [104] applied DenseNet-201 in classifying
1912 rat OCT images into healthy and pathological using leave-P-out CV (P=15) and
obtained an AUC of 0.99. Shibata et al. [105] developed a CNN model using the ResNet
architecture based on 1364 glaucomatous and 1768 non-glaucomatous fundus images
and tested on independent dataset with 60 glaucomatous eyes and 50 normal eyes. The
model obtained an AUC of 0.965 (95% CI 0.935-0.996) that was higher than the per-
formance of ophthalmology residents with an AUC between 0.762 and 0.912 and other
models, such as VGG16, RF and SVM. Asaoka et al. [31] developed a six-layer DL model
to diagnose early-glaucoma based on 4316 OCT images and obtained an AUC of 0.937
(95% CI 0.906—-0.968) based on an independent dataset with 114 patients with glaucoma
and 82 normal subjects using a DL transfer model, which was significantly higher than
the AUC of 0.631 to 0.862 obtained based on other models (RF and SVM). Using the
Youden method, the model attained optimal discrimination with a sensitivity of 82.5%
and specificity of 93.9%. Phene et al. [109] developed a CNN model based on Inception-
v3 architecture to predict referable GON from ONH features using 86,618 color fundus
images and validated the model using three independent datasets, then compared the
outcome with glaucoma specialists. For referable GON, they achieved AUCs of 0.945
(0.929-0.960), 0.855 (0.841-0.870), and 0.881 (0.838-0.918) based on the fundus images
in the first dataset (with 1205 images), second dataset (with 9642 images), and third
dataset (with 346 images), respectively. The model’s AUCs ranged from 0.661 to 0.973
based on glaucomatous ONH features. The CNN model detected referable GON with
higher sensitivity than compared with eye care providers.

Al-Aswad et al. [289] evaluated the performance of Pegasus (an Al system based on
deep learning) in glaucoma screening based on color fundus photographs by compar-
ing with six ophthalmologists. They found there was no statistically significant distinc-
tion between Pegasus (AUC of 0.926, sensitivity and specificity of 83.7% and 88.2%,
respectively) and the “optimal” consensus among ophthalmologists (AUC of 0.891, sen-
sitivity and specificity of 61.3—-81.6% and 80.0-94.1%, respectively). The correspondence
between Pegasus and the gold standard yielded a score of 0.715, whereas the highest
level of agreement between ophthalmologists and the gold standard stood at 0.613. Jam-
mal et al. [112] developed a CNN model using ResNet34 architecture (M2M DL) to pre-
dict RNFL thickness and grading glaucomatous eyes based on 32,820 pairs of fundus
photographs and SD-OCT scans. A total of 490 images were used for testing the model,
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then the outcome was compared with two glaucoma specialists, the predicted RNFL
thickness obtained through M2M DL exhibited a notably stronger absolute correlation
with SAP mean deviation (r=0.54) compared to the probability of GON determined
by human graders (r=0.48; P<0.001). Furthermore, the M2M DL algorithm demon-
strated a significantly higher partial AUC compared to the probability of GON assessed
by human graders (partial AUC=0.529 vs 0.411, respectively; P=0.016). Yu et al. [274]
trained a 3D CNN to estimate global VF indices based on macula and optic disc OCT
scans from 10,370 eyes, and showed that integrating information from macula and optic
disc scan achieved better result compared with inputting separate scan. The combined
scan obtained 0.76 Spearman’s correlation coefficient and 0.87 Pearson’s correlation
based on VFI and MD while the median absolute error was 2.7 for VFI and 1.57 dB for
MD from one of the 8-fold CVs. Wang et al. [34] compared four different CNN mod-
els for detecting glaucoma based on RNFL thickness maps from 93 glaucomatous eyes
and 128 healthy eyes and found ResNet-18 and a customized CNN architecture called
GlaucomaNet had higher performance compared to SVM and KNN. The ResNet-18
architecture obtained the highest accuracy of 90.5%, with sensitivity of 86.0%, specific-
ity of 93.8%, and AUC of 0.906 using 5-fold CV. Kim et al. [113] developed DL models
for glaucoma diagnosis based on 1903 fundus images using VGG16 and ResNet-152-M
architectures and employed Grad-CAM to visualize regions that were more impor-
tant for the model to make diagnosis. They used both the whole fundus image as well
as cropped versions with OD region only and observed that the ResNet-152-M model
achieved an accuracy of 96%, sensitivity of 96%, and specificity of 100% based on 220
fundus images from an independent dataset.

CNN models have been also applied to VFs to detect glaucoma. Kucur et al. [101] pro-
posed an eight-layer CNN model for discrimination of early-glaucoma versus control
samples, trained on Glaucoma Center of Semmelweis University in Budapest (BD) data-
set with 2267 OCTOPUS G1 VFs (30°) and Rotterdam Eye Hospital (RT) dataset with
2573 HFA VFs. The CNN model had the highest average precision (AP) with 0.874 and
0.986 based on BD and RT datasets, respectively, using 10-fold CV. Performance was
similar to other methods using MD thresholds and NN model.

CNN models were also applied to ROI localization in glaucoma studies. Mitra et al.
[108] developed a CNN mode to detect the bounding box coordinates of OD that acts
as a ROI based on fundus images from MESSIDOR and Kaggle datasets and tested the
model using fundus images in the DRIVE and STARE datasets. The average IOU of their
model was 96.83%, 95.45%, 96.19%, 95.93% on internal testing set of MESSIDOR and
Kaggle, independent datasets of DRIVE and STARE, respectively.

CNN models have been widely employed in optic disc/cup segmentation, which plays
an important role in glaucoma detection as CDR is a glaucoma risk factor. Kim et al.
[114] developed a fully convolutional networks (FCN) with U-Net architectures for optic
disc/cup segmentation based on fundus ROI region from 750 fundus images of RIGA
dataset. The best segmentation results for OD showed Jaccard index of 0.95, F-meas-
ure of 0.98, and accuracy of 99%. The best segmentation results for OC showed Jaccard
index of 0.80, F-measure of 0.88, and accuracy of 99% evaluated by 5-fold CV. Xie et al.
[210] developed a new method to segment inner retina thickness using 41 OCT macu-
lar scans. The approach addressed spike-like segmentation errors and lack of contextual
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data by reconstructing more B-scans, concatenating smoothed and contrast-enhanced
images into a six-channel input image stack, and merging predicted surfaces from both
horizontal and vertical B-scans. The suggested method surpassed the performance of
cutting-edge techniques when it came to mean absolute surface distances (normal: 2.18,
glaucoma: 3.02), Dice coefficients (GCIPL normal: 0.952, GCIPL glaucoma: 0.899), and
Hausdorff distance (RNFL-GCL normal: 12.1; RNFL-GCL glaucoma: 28.9) in an inde-
pendent test dataset. Li et al. [182] developed a joint OD and OC segmentation model
using a region-based DCNN (R-DCNN) based on 2440 fundus images and validated the
model based on both in-house testing dataset and public datasets (DRISHIT-GS and
RIM-ONE v3) and compared with that of ophthalmologists. The model achieved high
Dice similarity coefficient (DC) and Jaccard coefficient (JC) for both OD (DC: 98.51%,
JC: 97.07%) and OC (DC: 97.63%, JC: 95.39%) segmentation on the in-house dataset,
comparable to that of ophthalmologists. On DRISHTI-GS and RIM-ONE v3 datasets,
the model obtained higher DC (DRISHTI-GS: OD: 97. 23%, OC: 94.56%; RIM-ONE v3:
OD: 96.89%, OC: 88.94%) and JC (DRISHTI-GS: OD: 94.17%, OC: 89.92%; RIM-ONE v3:
OD: 91.32%, OC: 78.21%) values than previous studies.

An automatic two-stage glaucoma screening system was developed by Sreng et al. [291]
and was evaluated on 2787 retinal images from 5 public datasets (REFUGE, ACRIMA,
ORIGA, RIM-ONE and DRISHTI-GS1). The system utilized DeepLabv3+ combined
with pretrained networks for OD segmentation in the first stage and pretrained net-
works ensembled with SVM for glaucoma classification in the second stage. The best
model for OD segmentation achieved high accuracy (99.70%), Dice coefficient (91.73%),
and IoU (84.89%) on REFUGE dataset based on the combination of DeepLabv3+and
MobileNet. The ensembled classification model outperformed conventional meth-
ods with high accuracy (97.37%, 90.00%, 86.84%, 99.53% and 95.59%) and AUC (100%,
92.06%, 91.67%, 99.98% and 95.10%) values on RIM-ONE, ORIGA, DRISHTI-GS1,
ACRIMA and REFUGE datasets.

Recurrent Neural Network (RNN): RNN is specifically designed to handle sequen-
tial data by preserving an internal state, enabling the network to remember information
from prior inputs. The network takes a sequence of inputs, one at a time, and updates
its internal state based on the current input and its previous state. The output of the
network at each step depends on the current input and the current state. Long Short-
Term Memory (LSTM) networks were introduced as a specialized type of RNN. LSTM
networks incorporate memory cells and forget gates, allowing them to manage infor-
mation as it enters and exits the memory, thus mitigating the drawbacks of traditional
RNNSs. Veena et al. [145] used an RNN-LSTM model with three dense and three dropout
layers and one batch normalization layer for glaucoma diagnosis based on the segmen-
tation result of the fundus images from DRISHTI-GS (101 images) database (no report
of classification accuracy). LSTM has been successfully applied to longitudinal data in
glaucoma studies as well. Dixit et al. [147] used LSTM to assess glaucoma progression
based on longitudinal VF data from 11,242 eyes. Using four consecutive VFs for each
subject, the convolutional LSTM network achieved an accuracy of 91-93% when evalu-
ated against various conventional glaucoma progression algorithms. The model trained
on both VFs and clinical data displayed superior diagnostic capabilities (AUC:0.89-0.93)
compared to a model exclusively trained on VF (AUC:0.79-0.82, P<0.001) using 3-fold
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CV. In summary, the majority of the studies using discriminative DL models in glau-
coma have applied transfer learning and compared performance of different CNN model
architectures in a specific task, such as classification based on fundus, VFs, or OCT
images. Among the pretrained CNN architectures in glaucoma studies, ResNet has been
the most popular architecture used in CNN models and has achieved a higher accuracy
compared to the other CNN architectures.

Generative Adversarial Network (GAN)/semi-supervised model
Generative Adversarial Networks (GANSs) represent a recent breakthrough in DL. First
proposed by Goodfellow et al. [292], it constitutes two networks one for image genera-
tion and the other for discrimination (between the generated image and authentic). This
model has demonstrated high levels of performance in a variety of applications including
glaucoma to generate synthesized retinal images in a semi-supervised learning fashion.
Diaz-Pinto et al. [240] developed a new retinal image synthesizer and a semi-supervised
learning approach for glaucoma assessment utilizing a Deep Convolutional Generative
Adversarial Network (DCGAN) based on a dataset consisting of 86,926 fundus images.
The model was able to generate (close to) realistic retinal images and discriminate glau-
comatous eyes from normal ones with an AUC of 0.9017, specificity of 79.86%, sensitiv-
ity of 82.90%, and F1-score of 0.8429 based on the internal testing set. Tang et al. [205]
developed a semi-supervised model using a multi-level amplification iterative training
method to detect glaucoma based on three different datasets; Sanyuan dataset (11,443
images), Tongren dataset (7806 images), and Xiehe dataset (4363 images). They tested
the model based on REFUGE dataset and obtained an accuracy of 95.75%, sensitivity of
87.5%, specificity of 96.7%, and F1-score of 0.919, which were higher than the accuracy
of the models previously published. Alghamdi et al. [241] developed a semi-supervised
CNN model with self-learning (SSCNN) and Semi-supervised CNN model with autoen-
coder (SSCNN-DAE) based on both labeled and unlabeled data from RIM-ONE and
RIGA datasets. Compared with transfer CNN (TCNN), SSCNN-DAE obtained a higher
accuracy of 93.8%, sensitivity of 98.9% and AUC of 0.95 based on the internal testing set.
Overall, GAN and semi-supervised learning can improve the model performance
significantly compared to supervised DL models when dealing with small datasets or
datasets with limited number of labeled images. Because this is a typical problem in
glaucoma studies, such models may be applicable to address related glaucoma chal-
lenges. However, GAN has been not widely used in glaucoma studies probably because
there is a huge concern related to synthesizing retinal images in ophthalmology [293].

Hybrid models

Hybrid models, or fusion networks, are formed based on combining multiple DL models
using a single modality or multiple modalities. It has demonstrated a better performance
in some glaucoma diagnosis scenarios than a single CNN model [294-298]. In addi-
tion, Muhammad et al. [107] developed a hybrid deep CNN model based on AlexNet
architecture to extract features from OCT scans, coupled with RF classifier to distin-
guish healthy suspects and mild glaucoma using 102 eyes. The model with the input of
RNEFL probability map had the best accuracy of 93.1% using leave-one-out validation.
An et al. [110] developed a hybrid CNN mode based on fundus and OCT scans from
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208 glaucomatous eyes and 149 healthy eyes. They first trained a VGG19 architecture
separately based on fundus images cantered at optic disc, disc RNFL thickness maps,
macular GCC thickness maps, disc RNFL deviation maps, and macular GCC deviation
maps, then combined the feature vector representation of each CNN model and used
a RF classifier to combine models for glaucoma diagnosis. The hybrid model achieved
an AUC of 0.963 based on 10-fold CV. Patil et al. [111] developed GlaucoNet which
stacked an autoencoder with a CNN model for glaucoma diagnosis based on fundus
images from DRISHTI-GS and DRION-DB datasets. The accuracy, precision, F1-score,
recall, specificity, and AUC of the model based on the DRISHTI-GS (internal testing set)
were 98.2%, 94.6%, 0.979, 99.6%, 94.6%, and 0.94, respectively. Based on the DRION-DB
(internal testing set), the corresponding performance metrics were 96.3%, 93.9%, 0.941,
94.2%, 92.6%, and 0.90, respectively. The model outperformed the previous state-of-
the-art studies. Cho et al. [247] developed a hybrid model composed of an ensemble of
56 CNNs with different architectures by averaging the outcome of those models based
on 3460 fundus photographs to identify unaffected controls, early-stage, and late-stage
glaucoma. The proposed hybrid model demonstrated a significantly better performance
compared with the best single CNN model, with an accuracy of 88.1% and an average
AUC of 0.975 based on 10-fold CV. Akbar et al. [248] developed a hybrid model by com-
bining the DenseNet and DarkNet CNN architectures for glaucoma diagnosis based on
1270 fundus images from HRF, RIM 1, and ACRIMA databases. The hybrid model out-
performed the two single CNN networks and achieved an accuracy of 99.7%, sensitivity
of 98.9%, and specificity of 100% based on the HRF as the internal validation set. Based
on the RIM1 as the internal validation set, accuracy, sensitivity, and specificity were
89.3%, 93.3%, 88.46%, respectively, while based on ACRIMA as the internal validation
set, accuracy, sensitivity, and specificity were 99.0%, 100%, and 99%, respectively. Joshi
et al. [178] developed a hybrid model based on the ensemble of VGGNet-16, ResNet-50,
and GoogLeNet CNN architectures using fundus images collected from a private data-
set (PSGIMSR with 1150 images) and three publicly available datasets (DRISHTI-GS
with 101 images; DRIONS-DB with 110 images; and HRF with 30 images). The hybrid
model outcome was formed based on the majority voting of the three models. The
hybrid model yielded an accuracy of 91.13%, sensitivity of 86.58%, and specificity of
95.21% on PSGIMSR dataset, and achieved accuracies of 95.63%, 98.67%, 95.64%, and
88.96%, respectively, on the DRIONS-DB, HRF, DRISHTI-GS, and combined datasets
based on 10-fold CV.

It is becoming evident that hybrid CNN models with fusion of different single CNN
architectures using a single data modality or multi-modality are being increasingly
applied and receiving more attention from investigators. Because glaucoma is a complex
and multifactorial disease, hybrid models that utilize different data modalities to detect
glaucoma may provide different pieces of information regarding glaucoma to better por-
tray the disease. This is true based on information theory. In addition, multiple sources
of information may increase the overall information about the disease. Thus, we predict
attention to, and utilization of, hybrid CNN models will continue to increase in glau-
coma studies.

Overall, diagnosis, screening of glaucoma and glaucoma progression detection are
the major goals in studies discussing various applications of Al in glaucoma. Currently,
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most of the studies are focused on glaucoma diagnosis or screening and have applied
both conventional ML and DL approaches. However, detecting glaucoma progression
remains a significant hurdle in clinical practice since detecting true changes due to the
disease is challenging. Some of the imaging modalities generate substantial test—retest
variability, which complicates distinction between genuine change and fluctuations.
Furthermore, there is a lack of consensus regarding specific criteria for glaucoma pro-
gression based on VF or structural parameters. Despite these obstacles, several research
groups have proposed models for detecting glaucoma progression using traditional ML
based on VF test [46, 82, 299] or both VF test and OCT parameters [29, 38]. Wang et al.
[299] applied archetypal analysis to detect VF progression from 11,817 eyes and vali-
dated it on 397 eyes and achieved an agreement (kappa) and accuracy of 0.51 and 77%,
respectively. They showed that archetypal analysis was more accurate than Advanced
Glaucoma Intervention Study (AGIS) scoring, Collaborative Initial Glaucoma Treat-
ment Study (CIGTS) scoring, MD slope, and permutation of pointwise linear regression
(PoPLR). Shuldiner et al. [46] assessed several ML models to predict rapid progression
based on 22,925 initial VFs from 14,217 patients and found SVM as the best performing
model with an AUC of 0.72 (95% CI 0.70-0.75). Lee et al. [38] included 33 initial clini-
cal parameters in ML models to predict normal-tension glaucoma (NTG) progression
in young myopic patients based on 155 patients and obtained an AUC of 0.881 (95% CI
0.814-0.945) based on extremely randomized tree which was better than RF. There are
also several studies that applied DL models to detect or predict progression based on
VF and clinical data [147], OCT images [237, 243] or fundus images [164]. Bowd et al.
[243] developed a DL-autoencoder (AE) to detect glaucoma progression based on OCT
RNFLROI from 44 progressing, 189 non-progressing, and 109 healthy eyes. The DL-AE
ROIs achieved sensitivity and specificity of 0.90 and 0.92, respectively, which was higher
than models based on global cpRNFL annulus thicknesses. Li et al. [164] developed Al
models to predict glaucoma progression based on color fundus photographs and dem-
onstrated AUCs of 0.87 (0.81-0.92) and 0.88 (0.83—0.94) based on two external datasets.
Successful detection of progression may facilitate earlier interventions thus diminishing
the likelihood of patients experiencing vision impairment due to glaucoma over their
lifetimes. Nevertheless, existing studies have not showed solid results in forecasting the
rate of progression or the timing of its occurrence.

Discussion

Al is an active research area that encompasses a wide range of approaches of ML,
employing different applications such as ML and DL algorithms, which have been suc-
cessfully applied in various domains such as image processing, pattern recognition,
speech recognition, and natural language processing. When applied in medical fields
such as ophthalmology, these models show promising potential for improving access to
health care and enhancing patient outcomes. Early ML models in the form of neural net-
works were applied to VFs for diagnosing glaucoma in the 1990’s [300, 301]. With later
advancements in Al models, various groups demonstrated the efficacy of these models
in detecting glaucoma. The following is a summary of our findings regarding AI mod-
els in glaucoma. DL-based models are typically more accurate than conventional ML
approaches, as evidenced by their performance in glaucoma applications such as image
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processing, pattern recognition, diagnosis, and prognosis. ML/DL techniques, such as
CNNs, RNNs, LSTM, GAN, DBN, etc., can be easily adapted to various glaucoma prob-
lems including screening, diagnosis, and prognosis. DL-based techniques can handle
more complicated problems such as high-dimensional data and interactions between
different data modalities. Ensemble DL models can improve the performance of glau-
coma detection. Combination of multiple modalities of the data can improve the model
performance. However, there are also several limitations with respect to Al liability,
reimbursement, and ethical principles, including non-maleficence of AI models in glau-
coma, patient autonomy, and equity and absence of bias in benefits and rights, that are
out of the scope of this article and may be discussed in more focused future studies.

Datasets

Datasets serve as the key element for developing Al models and they play a critical role
in reproducibility and generalizability. Conventional statistical learning models can
be applied to clinical datasets to identify associations even based on a relatively small
sample size. However, in addition to quality, quantity is also important in developing
emerging DL models. For instance, labeling fundus images by non-glaucoma experts
may degrade the quality of the dataset, leading to non-solid constructs. Increased quan-
tity, along with improved quality, usually leads to better model performance and higher
likelihood of generalizability. Well-annotated, multi-modal datasets can also positively
impact AI models for more accurate detection of the disease. However, obtaining a suf-
ficiently large dataset with several modalities can be challenging due to numerous hur-
dles such as low disease prevalence, data confidentiality, data protection regulations, and
labor-intensiveness of the process.

Moreover, lack of standardized definitions for glaucoma poses another challenge in
achieving consistent evaluation of the AI models. Christopher et al. [136] investigated
the impact of study population, labeling, and training on glaucoma detection using Al
models, and found that the diagnosis performance varied based on the reference stand-
ard (RS) and labeling strategy. To develop solid AI models for detecting glaucoma, it is
vital to train the models based on dependable datasets and evaluate the models based on
consistent ground truths. Thakoor et al. [281] attempted to improve the generalizability
of Al models in glaucoma detection and found that the model trained and tested with
the same RS demonstrated the highest accuracy. However, substantial disagreement,
even among experienced glaucoma specialists, makes it challenging to establish a uni-
form reference for ground-truth labeling [281].

Many of the currently available datasets have been gathered from populations with
limited representation of different ethnicities, used specific hardware and imaging set-
tings to collect data, and used high-quality images that are far from real-world settings.
One potential drawback of lack of diversity within the models, is that these datasets
may not readily generalize to real-world patient populations. Asaoka et al. [118] applied
ResNet model based on 3132 fundus images 0.877 to 0.948 and from 0.945 to 0.997
based on two independent validations datasets. Nonetheless, their model was not evalu-
ated based on diverse ethnic groups, which is important as fundus images from patients
with different ethnic backgrounds may exhibit distinct characteristics such as variation
in retina color as well as optic disc structure.
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Al models

Although there are several different CNN-based AI models reported in the literature
with high performance in detecting glaucoma, the generalizability of those models
is questionable since independent validation is lacking in many studies. Independent
validation is a crucial step in developing AI models because it can determine whether
a model has learned meaningful disease-related features and patterns to generalize
well to unseen data. It also aids uncovering potential biases or overfitting issues when
the model performs exceptionally well based on the training data but performs poorly
based on the new data. Moreover, assessing the robustness of AI models against vari-
ations and changes in the data distribution is especially important when deploying
models in real-world applications where input data may change over time. Addition-
ally, validating AI models based on independent (accessible) datasets allows for fair
comparison of Al models using the same evaluation dataset, ensuring transparency.
For the literature we reviewed, most of the articles only used internal testing or CV,
and less than about one-third of the articles used independent validation, which are
summarized in Table 1. Also, many models were developed based on very clean data-
sets, for example including only high-quality images and clear pathological features,
whereas this does not reflect the case in real-world data. In addition, many models
demonstrated good performance in differentiating healthy versus moderate/severe
glaucoma; however, this does not add significant clinical value, as differentiation
between these two types of conditions is also easily achieved by clinicians. Thus, more
helpful models should be developed based on a wide spectrum of glaucoma severity
subjects, including early-stage glaucoma.

It is also challenging to compare the performance of different AI models as they
typically used differing definitions of glaucoma, different methodologies to develop
models and various strategies for labeling, as well as images from glaucoma patients
at varying levels of severity. In addition, they typically employed images with diverse
quality under different instrument settings and included different populations from
primary, secondary, or tertiary centers. As a result, for example, it is unfair to com-
pare a model trained on normal subjects and glaucoma patients at the moderate to
advanced stages of the disease with another model trained on a dataset with patients
at a wider spectrum of glaucoma severity. Model reliability is also a barrier for real-
life clinical applications, as most DL models are deterministic and provide an output
regardless of whether the input image is even relevant. Finally, most DL models pro-
vide a “black box” architecture without appropriate visualization and interpretability,
thus lowering user trust and creating another challenge for a successful integration.

Future directions

Two autonomous Al models have been approved by the FDA to detect more than mild
diabetic retinopathy and diabetic macular edema [302]; however, there is no FDA-
approved autonomous Al instrument for detecting glaucoma. Therefore, the develop-
ment of innovative Al models to autonomously assess and detect glaucoma remains an
important goal for improving treatment outcomes for this major blinding disorder. To
achieve this goal, we suggest implementing the following directions in the future studies:
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Lack of consistent and objective definitions of glaucoma and its progression leads to
improper Al model evaluations. As such, addressing this challenge is a primary step
to improve integration of Al glaucoma research and clinical applications. One poten-
tial solution may be using quantified parameters from VF and OCT data to create
objective criteria for glaucoma definition. More recently, some groups have worked
on identifying more objective criteria for defining GON and glaucoma staging based
on OCT and VFs [87, 303, 304]. However, this active area of research requires further
studies. Firstly, these criteria need to be validated further based on larger and more
diverse datasets. Secondly, data collected from different OCT or VF instruments may
impact the identified objective criteria. Lastly, comorbidity and ethnic-specific crite-
ria may influence findings thus considering the effect of these parameters is vital. The
other area that needs attention is the architecture of the Al models. In particular, DL
models sometimes can be fragile, unexplainable, and non-interpretable. Many teams
are currently working on these limiting aspects of the DL models and hopefully some
limitations will be addressed in the near future. New studies may incorporate inter-
pretability into the AI model through various techniques, such as feature importance,
SHAP value, Grad-CAM, saliency map, and Poly-CAM. Some current studies have
already included interpretability elements like feature importance and Grad-CAM.
Thakoor et al. [279] developed end-to-end CNN architectures to detect glaucoma
based on OCT images. They applied Grad-CAM and tested with concept activation
vectors (TCAVs) to infer what image concepts CNN models rely on to make predic-
tions and compared with that of human experts by tracking eye fixations. They iden-
tified consistent regions of OCT are evaluated based on CNN and OCT experts in
detecting glaucoma. Such studies can shed lights on improving interpretability of Al
models by applying multiple consistent methods and comparing with clinicians’ eye
fixations. Future work may validate these studies using more diverse datasets. Also,
comparative studies can be conducted based on multiple data modalities by including
or masking human focused region to indirectly identify areas that are more important
for CNN models.

Another practical approach to partially address some of these limitations is to perform
accurate quantification of CDR in fundus and RNFL thickness profiles in OCT images to
enhance performance and improve interpretability. Moreover, longitudinal assessment
of these clinically relevant quantified parameters may allow a more consistent and accu-
rate monitoring and progression detection.

Another future direction could be improving datasets for training Al models. Some
of the reference datasets are annotated by non-glaucoma experts thus may not repre-
sent GON accurately. Therefore, generating more accurate reference datasets with
panels of glaucoma specialists are warranted. We also suggest selecting diverse popu-
lations of patients (for instance, datasets for population-based screening and diagnosis
for intended use) from different ethnicities across all glaucoma severity levels to mini-
mize selective bias. Due to the complex nature of glaucoma (e.g., different disease pro-
cesses can lead to the same optic nerve degeneration, glaucoma can look and progress
differently due to different disease mechanisms, glaucoma has several phenotypes such
as open angle, closed angle, secondary glaucoma, low tension, etc.), making it difficult
to standardize outcomes of glaucoma studies across different investigations, we strongly
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recommend generating multi-modal glaucoma datasets given the fact that glaucoma is
multi-factorial and complex, thus several modalities may enhance detection and moni-
toring tasks. However, obtaining a sufficiently large dataset with several modalities can
be challenging. A primary priority for future Al studies could be implementing guide-
lines regarding designing and reporting Al studies [305, 305-307] to minimize evalua-
tion and comparison challenges.

Another promising solution is developing foundational model using self-supervised
learning [308] based on known diverse datasets to improve the performance and gen-
eralizability. This is particularly important given the fact that the performance of the
Al models can vary depending on the severity level of the patients with glaucoma in
the dataset, as Al models may perform better on datasets with a greater number of
patients at the advanced level of glaucoma compared to datasets with a greater number
of patients at the early stages of glaucoma.

Improving dependability of AI models can build trust. One direction could be devel-
oping probabilistic DL models [231] that can generate the likelihood as well as the level
of confidence of the model on generated outcome. This way, clinicians have two levels
of outcome to make a final decision and thus may trust the class of AI models better.
However, probabilistic models are more challenging to develop due primarily to more
complexity that typically leads to suboptimal performance, thus only a few studies have
utilized probabilistic models. Recent CNN architectures such as ConvNeXt [309] and
availability of larger datasets may however address these challenges.

The paradigm of applications of Al in glaucoma changed in 2016 with applications
of deep CNN models in glaucoma. [310]. However, we believe a second major impact
will result from the application of ChatGPT [311], first initiated in late 2022. ChatGPT
can be a great tool for many different aspects of glaucoma, and a recent study showed
that ChatGPT can assist glaucoma diagnosis based on clinical case reports and obtained
comparable performance with senior ophthalmology residents [312]. We believe the
development of large language models (LLMs) with glaucoma domain-specific knowl-
edge that leverage multi-modal data in combination with active learning holds more
promise for future integration into clinical practice.

Conclusions

The advancement of Al in glaucoma detection and monitoring is progressing rapidly. In
recent years, numerous innovative DL models have been developed specifically for diag-
nosing glaucoma, showcasing remarkable performance. However, despite their promis-
ing results, none of these models have received FDA approval for being used in glaucoma
clinical practice. This is partly due to obstacles such as inconsistencies in defining glau-
coma, the generalizability and reliability of the models, and their interpretability. To
enhance the integration of these technologies into healthcare settings, future research is
essential to address these potential challenges, including generation of dependable gold
standards, improving model generalizability, reliability, interpretability as well as legal,
ethical, and patient privacy issues, among several others. Successful integration of Al in
glaucoma clinical practice, and ophthalmology, requires addressing challenges facing all
elements of the healthcare pipeline.
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Search strategy:
title (glaucoma)+title (artificial intelligence)
title (glaucoma)+title (deep learning)

(= title (glaucoma)+title (machine learning)
o X 3 . ?
= title (glaucoma)+title (supervised learning)
8 title (glaucoma)+title (unsupervised learning)
= title (glaucoma)+title (neural network)
=
3 l
12)
N=986
--PubMed: 211
--Embase: 353
--Scopus: 422
Exclude conference abstract,
duplicates and irrelevant references
by screening the title and abstract
8 with Rayyan
=
()]
o Related references
(5} =
1] (N=430)
Exclude review articles, commentary articles, the articles
which the title and content are not consistent, the article
topics are irrelevant, and full articles which are not in
=5 English or cannot be obtained
(]
5
5 Full articles included in the final analysis
£ (N=291)

Fig. 4 Proposed review methodology for sample collection and analysis

Methods

We searched PubMed, Scopus, and Embase databases for the Al-related studies in
glaucoma conducted through 2022. Figure 4 shows the methodology utilized in this
review. We first used “glaucoma’, “machine learning’, “deep learning’, “artificial intel-
ligence’, and “neural network” keywords and searched through the title of papers in
these three databases to identify related papers. Our initial search identified 986 arti-
cles. We then screened the collected articles for duplicates and irrelevant topics and
included 430 relevant and unique papers. Finally, we went through the remaining arti-
cles and excluded 139 articles that were review papers, or the contents were irrele-
vant, or essential information (number of samples) was missed, the full texts were not
in English or the full text cannot be obtained. The final study included 291 full-text
articles discussing various applications of Al in glaucoma.
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