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Abstract 

Background: Wireless capsule endoscopy (WCE) is a patient-friendly and non-invasive 
technology that scans the whole of the gastrointestinal tract, including difficult-to-
access regions like the small bowel. Major drawback of this technology is that the 
visual inspection of a large number of video frames produced during each examination 
makes the physician diagnosis process tedious and prone to error. Several computer-
aided diagnosis (CAD) systems, such as deep network models, have been developed 
for the automatic recognition of abnormalities in WCE frames. Nevertheless, most 
of these studies have only focused on spatial information within individual WCE frames, 
missing the crucial temporal data within consecutive frames.

Methods: In this article, an automatic multiclass classification system based 
on a three-dimensional deep convolutional neural network (3D-CNN) is proposed, 
which utilizes the spatiotemporal information to facilitate the WCE diagnosis process. 
The 3D-CNN model fed with a series of sequential WCE frames in contrast to the two-
dimensional (2D) model, which exploits frames as independent ones. Moreover, 
the proposed 3D deep model is compared with some pre-trained networks. The 
proposed models are trained and evaluated with 29 subject WCE videos (14,691 frames 
before augmentation). The performance advantages of 3D-CNN over 2D-CNN and pre-
trained networks are verified in terms of sensitivity, specificity, and accuracy.

Results: 3D-CNN outperforms the 2D technique in all evaluation metrics (sensitiv-
ity: 98.92 vs. 98.05, specificity: 99.50 vs. 86.94, accuracy: 99.20 vs. 92.60). In conclusion, 
a novel 3D-CNN model for lesion detection in WCE frames is proposed in this study.

Conclusion: The results indicate the performance of 3D-CNN over 2D-CNN and some 
well-known pre-trained classifier networks. The proposed 3D-CNN model uses the rich 
temporal information in adjacent frames as well as spatial data to develop an accurate 
and efficient model.
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Background
Wireless capsule endoscopy (WCE) is a non-invasive device that facilitates the exami-
nation of the gastrointestinal (GI) tract, especially those parts that cannot be screened 
by endoscopy and colonoscopy (small bowel). WCE transmits two images per second. 
After 8 h of passing through the digestive system, the data recorder saves approximately 
57,000 frames. Physicians have to review all the frames, which takes up to 2 h [1]. How-
ever, a few of them include lesions. Therefore, an efficient computer-aided diagnosis 
(CAD) system for automatically recognizing abnormalities seems necessary to save time, 
improve detection accuracy, and facilitate the diagnosis.

CAD systems can divide into two groups: traditional methods and deep network mod-
els. The traditional CAD systems base their decisions on the features extracted from 
WCE images. For example, since bleeding occurs in most gastric diseases, color features 
have been recommended as a sensible choice in some research [2–4]. Some others have 
suggested textural features to detect polyps and tumors [5–8]. However, relevant feature 
extraction and appropriate feature selection take time and depend highly on the disease 
type, which is crucial in determining the output model [3]. The second step in traditional 
CAD systems is an automatic machine that makes a decision based on those features. 
Support vector machine (SVM) is one of the most suggested methods as a good classifier 
in literature [5, 6, 9, 10]. Some other studies have used different decision machines, such 
as Naive Bayes and K-mean algorithms [7].

Recently, deep learning models such as convolutional neural network (CNN) algo-
rithms with hierarchy learning structures by building high-level features from low-level 
ones have been considered [11]. Deep neural networks try to figure out the solutions 
in terms of the problem concepts, in a manner that each concept builds on top of the 
others. This hierarchical learning scheme minimizes user intervention [12]. The main 
power of CNN lies in its deep architecture [13]. Using deep neural networks for detect-
ing abnormalities in WCE frames is no exception [14].

Several attempts have been made to develop a reliable CAD system using deep net-
work models to facilitate the WCE diagnostic procedures. For example, Tsuboi et al. have 
used the CNN system for the automatic detection of small bowel angioectasia in capsule 
endoscopy images [13]. Aoki et al., as another example, have used the same strategy as 
Tsuboi for erosions and ulcerations [15]. Rustam et al. have utilized a different architec-
ture of deep neural networks for bleeding detection [16]. Jia et al. have compared deep 
neural network output with handcraft features for bleeding detection in wireless capsule 
endoscopy [14]. Similar work has done by Byren et  al. for polyp detection [17]. Also, 
Caroppo et al. have classified WCE images into two categories (bleeding and non-bleed-
ing) using three types of pre-trained CNN models [12]. Similarly, Kim et al. have used 
the Inception-Resnet-V2 model for the binary classification of frames containing a clini-
cally significant lesion, such as inflamed mucosa, abnormal vascularity, or bleeding [18]. 
Additional file 1: Table S1 provides a comprehensive review of the progress made over 
the years in classifying WCE videos using deep neural networks [19–26].

Because the camera moves randomly in the GI tract, an anomaly may appear in some 
adjacent frames with different brightness, color scheme, texture, and structural form. 
Therefore, in practice, for sufficient assurance in diagnosis, gastroenterologists need 
to inspect a collection of nearby WCE frames collectively. This feature motivates us to 
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propose a framework to imitate this diagnostic approach. We have developed a robust 
CAD system for anomaly detection on WCE videos by considering the fact that gastro-
enterologists do not base their diagnosis solely on one single WCE frame. We proposed 
that a suitable CNN classifier is required that not only keeps the potent two-dimensional 
(2D) features capability, but also incorporates the relationship between temporally adja-
cent frames. This concept is predominantly referred to as “video anomaly detection” in 
the literature.

The domain of “video anomaly detection” has witnessed substantial progress, particu-
larly concerning surveillance videos [27]. Lately, the scope has broadened to encompass 
medical videos, such as endoscopy and colonoscopy, which pose their own distinct chal-
lenges [28]. The intricacy of anomaly detection in videos stems from the diverse appear-
ances of anomalies and the potential for misleading complications. This complexity is 
further heightened when the background scene is dynamic. In “video anomaly detec-
tion”, identifying anomalies against a noisy and dynamic background can often lead to 
false positives, especially when the anomalies are small [29]. This situation is frequently 
encountered in endoscopic videos, introducing an additional layer of complexity to the 
problem compared to conventional surveillance systems. Furthermore, traditional object 
detection algorithms in images operate under the assumption that data are independent 
and identically distributed (i.i.d.). However, this assumption is not valid for videos where 
autocorrelation exists among sequential frames. To tackle these challenges (high false-
positive rates in dynamic backgrounds with small anomalies, and dependency among 
images and features in time series), researchers have proposed spatiotemporal feature 
analysis [29–32]. This method aims to enhance the accuracy and reliability of anomaly 
detection in video data.

Even though 2D-CNNs succeed at capturing spatial features, they cannot capture 
the temporal information contained in three-dimensional (3D) data, such as videos. By 
applying convolution in three dimensions, 3D-CNNs can capture the temporal and spa-
tial features present in the video data. The 3D convolution is attained by applying a 3D 
kernel to the cube created by stacking several consecutive frames together and extract-
ing spatiotemporal information.

In video processing, a three-dimensional convolution technique was used for the first 
time to recognize human actions [33]. It worked effectively and performed better than 
other models that used recurrent neural networks to process data from the video’s tem-
poral dimension. The same approach can be applied to colonoscopy or endoscopy video 
analysis. Some literature has introduced a polyp-detecting algorithm in colonoscopy 
videos using a two-step process, including temporal information [34–36]. Their method 
initially extracts spatial  features such as color, texture,  and shape context to identify 
potential regions. Using independent 2D-CNNs, from each candidate region, the spati-
otemporal pattern of the polyps is generated from three consecutive frames. Later stud-
ies investigated the performance of 3D networks over 2D ones for video datasets [37]. 
Polyps detection in colonoscopy videos using a 3D fully convolutional network (3DFCN) 
was first presented by Yu et al. [38]. In their study, a 3D-CNN was applied along with 
the colonoscopy video to extract the spatiotemporal features. The assessment findings 
demonstrated the superiority of 3D-CNN over 2D-CNN in learning illustrative spati-
otemporal characteristics from colonoscopy videos. In addition, other techniques have 
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been suggested for integrating spatial information with temporal dependencies between 
a series of video frames to offer useful information for detecting polyps [39, 40]. Boers 
et al. [41] have shown that the integration of spatiotemporal data from endoscopic vid-
eos improves and strengthens decision-making for the identification of esophageal can-
cer. They used Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 
frameworks. Ghatwary et  al. [42] have also demonstrated that 3D-CNN frameworks 
outperform 2D-CNN for learning spatiotemporal features for detecting esophageal 
abnormalities in endoscopic videos.

In addition, the efficacy of 3D-CNN for learning from spatiotemporal features in dif-
ferent types of videos has been confirmed. The 3D-CNN can successfully recognize 
human actions and moving objects in videos [33, 43]. Tran et al. [44] have demonstrated 
that employing 3D-CNNs to simulate the apparent motion in videos is more appropriate 
than learning spatial features simply by using 2D ConvNets. Moreover, Colleoni et  al. 
[45] have proved the superiority of 3D-CNN frameworks over the 2D-CNN for detecting 
surgical-instrument and joint-connection from videos by using spatiotemporal features.

Furthermore, because the physician is the one who makes the final decision on a 
patient’s condition, even if a very accurate CAD system for abnormality detection exists, 
the physician must double-check those frames that the CAD system has classified as 
normal. However, the physician pays less attention to frames labeled as “normal” by the 
CAD system. Accordingly, a well-designed CAD system is the most sensitive one, and 
the reduction of specificity is not a crucial issue here. These features also motivate us 
to divide non-lesion frames into two distinct classes to increase the effectiveness of the 
proposed CAD system. To implement this proposed idea, a new class named “poor” is 
suggested for the multiclass classification approach.

Air bubbles, strong shadows, and other artifacts like mucus, bile, excrement, food, and 
dark fluids can obscure some WCE frames (to variable degrees). These frames contain 
patterns that differ from normal or lesion frames. This class includes those frames with 
not enough classification confidence to be labeled as normal. However, due to possible 
hidden lesions in the poor-quality images, the physician should scrutinize them. This 
class of frames is named “poor”. By doing this, we believe that the false negative rate is 
considerably reduced at the expense of reducing specificity. As a summary, our contri-
bution in this article is to categorize WCE frames into three groups to improve overall 
sensitivity, whereas, to the best of our knowledge, prior CNN-based approaches have 
attempted to divide frames into two categories: “normal” and “abnormal” (abnormal 
class may include several cases such as ulcer, bleeding, polyp, cancer, and others).

To the best of our knowledge, no literature has been published that classifies WCE 
frames by learning spatiotemporal features from the 3D-CNN framework. In this paper, 
an efficient method to automatically classify different types of frames from WCE vid-
eos is presented. In a patient dataset, the performance of the proposed deep learning 
method is compared to that of the traditional 2D-CNN method.

Results
The demographic and clinical data of the patients are given in Table  1. The dataset 
included the following lesions: ulcer, bleeding, ectasia, ampullae, aphthous ulcer, ero-
sion, scar, telangiectasia, erythematous, xanthoma, white ulcer, and polyp. Samples of 
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different types of lesions that were included in the dataset are presented in Additional 
file 1: Fig. S1.

To select the appropriate number of epochs, the accuracy of the training and valida-
tion datasets for each epoch was saved and shown in Figs. 1 and 2 for the proposed 
2D and 3D models separately. After 150 cycles, we found that the accuracy reached 

Table 1 Demography and clinical data of patients undergoing capsule endoscopy

No. of cases 29

Age (years, mean and ranges) (53.5, 14_94)

Gender

 Male (%) 66%

Type of disease

 1. Ulcer 7

 2. Bleeding 3

 3. Ectasia 3

 4. Ampullae 2

 5. Aphthous ulcer 2

 6. Erosion 3

 7. Scar 1

 8. Telangiectasia 1

 9. Erythematous 2

 10. Xanthoma 2

 11. White ulcer 1

 12. Polyp 2

Fig. 1 Accuracy of the proposed 2D-CNN model along different epochs

Fig. 2 Accuracy of the proposed 3D-CNN model along different epochs
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a plateau just before 150 epochs. In our study, the epoch number was chosen as 150, 
and the training took place for about 12 h for both 2D and 3D CNN models.

The results are provided on the test dataset for two evaluation scenarios: frame-based 
and disease-based approaches. Table 1 presents the confusion matrices for the proposed 
2D and 3D CNN models, considering the frame-based scheme. The evaluation metrics 
extracted from Table 2 are listed in Table 3. All the evaluation metrics exhibit that the 
3D deep neural network outperforms the 2D technique.

Nine patients with 11 various lesion sites within WCE videos were enrolled in the 
disease-based detection approach. The 2D network missed one of the 11 lesion sites, 
but the proposed 3D network discovered at least one frame from each disease site. The 
result reveals that the 3D-CNN has 100% sensitivity in the disease-based approach in 
this dataset.

Moreover, the proposed 3D and 2D CNN models were compared to five pre-trained 
models in classifying WCE images using our datasets. As shown in Table 3, pre-trained 
networks outperformed the 2D model, while the proposed 3D model had the highest 
accuracy. DenseNet had the best accuracy (97.10%) among the tested pre-trained net-
works, whereas AlexNet had the lowest (94.81%). The accuracy rankings of these pre-
trained networks match those of previous studies on a different dataset [46].

Additionally, evaluation metrics for multiclass classification are presented in Table 4. 
According to the findings, the networks are more effective at recognizing poor frames 
than the other two classes. Furthermore, as expected, detecting lesion-containing frames 
is less sensitive than identifying normal frames.

The performance of the proposed 3D-CNN, as applied to the Kvasir-Capsule data-
set [47], was evaluated and compared with the results of other studies. Table 5 presents 

Table 2 Confusion matrices for the 2D and 3D proposed deep neural networks: frame-based 
scheme

CNN Label

Lesion frames Normal frames Poor frames

3D Net.–2D Net 3D Net.–2D Net 3D Net.–2D 
Net

Physician label Lesion frames 586–570 26–44 8–6

Normal frames 9–304 2567–2243 4–33

Poor frames 2–15 3–8 2070—2052

Table 3 Evaluation metrics of binary classification for different deep neural network models: frame-
based scheme

3D 2D AlexNet Inception-V3 ResNet-18 SqueezeNet DenseNet-201

Sensitivity (%) 98.92 98.05 79.03 77.74 77.58 81.12 85.48

Specificity (%) 99.50 86.94 98.62 98.22 98.74 98.70 99.22

PPV (%) 99.51 88.61 98.69 8546 89.23 89.34 93.63

NPV (%) 98.92 97.73 97.19 97.05 97.04 95.50 98.07

F1 score 99.21 92.95 97.93 90.89 92.97 92.32 95.80

Accuracy (%) 99.20 92.60 94.81 95.65 96.12 96.26 97.10
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these findings, juxtaposed with the results obtained from the same dataset in a study 
by Jain et  al. [48]. In the referenced study, seven state-of-the-art deep networks were 
modeled and trained using the Kvasir-Capsule dataset, with their performance metrics 
also detailed in Table 5. Upon examination, it is evident that the proposed 3D-CNN net-
work exhibits the highest performance metrics on average for the detection of various 
anomalies.

Discussion
Fast and accurate GI disease detection can be attained using deep learning techniques 
on WCE videos as efficient building blocks. State-of-the-art architecture and models can 
be used to extend them. Deep learning techniques, however, should not be viewed as a 
comprehensive approach, because they also have some disadvantages when compared 

Table 4 Evaluation metrics of multiclass classification for different deep neural network models: 
frame-based scheme

3D 2D AlexNet Inception-V3 ResNet-18 SqueezeNet DenseNet-201

Sensitivity (%) Lesion 94.52 91.94 75.38 77.74 77.58 81.13 85.48

Normal 99.50 86.94 97.72 96.89 97.74 97.78 99.10

Poor 99.76 98.89 98.51 98.78 98.63 98.93 98.10

Specificity (%) Lesion 99.76 93.15 98.62 98.23 98.75 98.70 99.22

Normal 98.92 98.07 94.20 95.51 95.06 95.85 95.85

Poor 99.62 98.78 99.14 98.71 98.90 99.22 99.84

PPV (%) Lesion 98.16 64.12 88.61 85.46 89.24 89.34 93.64

Normal 98.88 97.73 93.92 95.40 95.01 95.77 95.82

Poor 99.42 98.13 98.70 98.02 98.30 98.78 99.75

NPV (%) Lesion 99.27 98.86 96.57 97.05 97.05 97.50 98.07

Normal 99.51 88.69 97.83 96.96 97.77 97.82 99.11

Poor 99.84 99.28 99.02 99.21 99.12 99.31 98.79

F1 score Lesion 98.71 77.79 92.42 90.89 92.98 93.24 95.81

Normal 99.19 92.99 95.83 96.18 96.37 96.79 97.44

Poor 99.63 98.70 98.86 98.61 98.71 99.05 99.27

Accuracy (%) Lesion 99.15 93.00 95.73 95.81 96.24 96.62 97.60

Normal 99.20 92.63 95.88 96.19 96.38 96.80 97.44

Poor 99.68 98.82 98.89 98.74 98.80 99.10 99.16

Table 5 Evaluating the proposed network in comparison with the state-of-the-art models tested by 
Jain et al. [48] for the detection of anomalies in the Kvasir-Capsule dataset

* The evaluation metrics are reproduced from the original study of Jain et al. [48]

Model 
architecture

3D-
CNN

2D-
CNN

Simple 
2D-CNN*

Weakly supervised 
CNN + iterative 
cluster 
unification*

VGG19 + InceptionV3  
+ ResNet50*

Dilated CNN* Meta-
feature 
parallel 
CNN*

Proposed by This 
study

This 
study

Jia et al. 
[14]

Iakovidis et al. [49] Caroppo et al. [12] Goel et al. 
[50]

Hybrid 
CNN [48]

Sensitivity (%) 97 92 92 91 93 93 97

PPV (%) 98 89 87 89 96 93 97

F1 score 98 92 89 90 95 93 97

Accuracy (%) 98 93 90 91 95 93 97
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to more straightforward models. These include an increase in computational complexity 
and its dependence on the image quality of the training set, which results in a reduction 
of model generalizability. As an example, it has been demonstrated that when a well-
trained deep neural network is exposed to unobserved external WCE data, its accuracy 
drops by around 10% [18].

Our results have demonstrated that the 3D deep neural network outperformed the 2D 
model in both the frame-based and disease-based schemes. The performance advan-
tages of 3D-CNN could be attributed to various factors. First of all, 3D-CNN enables 
the inclusion of potentially relevant spatial (3D) context around the centering frame 
during training. During inference, based on various view angles and the brightness of a 
particular scene throughout succeeding frames, this model makes its own decisions. In 
contrast, 2D-CNN models are unable to use this additional information in the training 
phase, whereas during inference, they classify a single frame simply by taking the context 
of a WCE frame into account. Second, the slight differences in the model kernels and 
hyperparameters between 2 and 3D-CNN models may have contributed to the observed 
performance differences. It is crucial to understand how the time and space complex-
ity trades off against the performance increase, which may or may not be clinically or 
statistically meaningful. In the models we applied, the 2D-CNN model, which is less 
complex, consist of approximately 8 million trainable parameters. This is significantly 
less compared to the 50 million parameters in the more complex 3D-CNN model. The 
reduced complexity of the 2D-CNN models offers several advantages. They are compu-
tationally more efficient, requiring fewer resources for training and prediction. They are 
also less likely to overfit the training data, leading to better generalization on unseen 
data. Furthermore, they are more data-efficient, requiring less data for effective training. 
However, the 3D-CNN may be advantageous in detecting GI diseases using WCE videos 
based on the findings. Additionally, in this study, a multiclass approach has been utilized 
to maximize the classification strengths of both 2D and 3D-CNN. Since classification 
algorithms frequently fail to correctly classify WCE frames that are masked by strong 
shadows, air bubbles, and other artifacts, we have considered creating a separate class 
for them.

Figure 3 shows a few instances of frames where the proposed 2D model misclassified 
them while the proposed 3D model correctly classified them. As is shown in the center 
of the first row in Fig. 3, on the left side of the image, a pattern similar to an ulcer incor-
rectly has appeared because the camera lighting has enhanced the color of the super-
ficial vessels there. However, this pattern has vanished in the adjacent frames. While 
the 2D-CNN was unable to recognize that this pattern is unrelated to ulcer lesions, the 
3D-CNN did.

In Fig. 3, there is an erosion lesion instance in the WCE frame in the center frame of 
the second row. However, the lesion has been concealed by the wrinkle patterns of the 
GI tract. Although the CNN system might be able to detect this lesion in the adjacent 
frames, it is challenging to detect it in this particular frame. In this sample, the 3D-CNN 
detected the presence of a lesion in this GI site, but the 2D-CNN did not.

Other findings show that the pre-trained networks outperform a 2D simple CNN model 
for WCE image classification. This benefit could be associated with either their structure or 
pre-trained weights. To discover the source of their advantages, we also trained those five 
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models from scratch (the results of this part are not presented due to space constraints). 
We found that the classification accuracy would be low if those structures were trained 
from scratch with our dataset. Also, it was anticipated that Inception-V3 would outperform 
ResNet-18 and SqueezeNet; nevertheless, because those two latter architectures are made 
to be effective with fewer parameters, they show higher performance with the sparse data 
in this study. The conclusion is that maybe larger datasets were required to accurately train 
too deep network structures to converge. Consequently, we reasoned that rather than their 
deep architectures, their advantages over ordinary 2D-CNN on our dataset came from 
their pre-trained weights.

Several publicly available datasets exist, such as “Kvasir-Capsule” [47], “KID Project” 
[22], “EndoSLAM” [51], and “Bleeding Dataset” [52]. Those datasets that include videos, 
which are beneficial for this project, are limited to approximately 40 cases. Consequently, 
at the start of the study, we chose to build and train our models using our in-house data-
set, which consists of WCE videos from 29 patients. For a thorough comparison with state-
of-the-art deep network models, we trained and evaluated our proposed models using the 
Kvasir-Capsule dataset. The results, presented in Table 5, demonstrate the superiority of the 
3D-CNN model in utilizing spatiotemporal features. This approach outperforms previously 
reported state-of-the-art deep network models in classifying frames from Kvasir-Capsule 
videos. Howbeit, we recommend that future research could consider testing the 3D-CNN 
models with others publicly available WCE video datasets.

Fig. 3 Two examples of frames (second column) that the 2D-CNN misclassified when the 3D-CNN correctly 
classified them. First row: normal frame incorrectly classified as lesion frame. Second row: lesion frame 
incorrectly classified as normal
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Limitations
There are some limitations of this study. First, the ground truth for this study was estab-
lished by one physician reviewing the WCE videos. Considering how challenging it is 
for a gastroenterologist to interpret a large number of WCE images for lesion detection, 
there may be some errors with the interpretation results; however, the errors and their 
impact on the results should be very modest, and they should not change our conclu-
sion. Second, the three-class strategy that was developed might not be the best approach 
to the WCE frames classification issue. As we previously stated, we focus on clarify-
ing the performance differences between 3D-CNN and 2D-CNN in classification, not 
on creating classification models. Therefore, we did not perform an in-depth compari-
son with other CNN architectures that were readily available. However, our developed 
2D-CNN models showed comparable results to other methods [16, 46, 53], and the 
3D-CNN exhibits a promising classification performance. Third, it is possible that the 
CNN model’s hyperparameters are not sufficiently tuned for this specific classification 
purpose. Several variables, including batch size, optimizer selection, learning rate, and 
kernel numbers, are used in the training of a CNN model. The model’s performance may 
be altered by changing these settings. Fourth, since there were fewer lesion frames com-
pared to the other two groups, the dataset was imbalanced. To counteract this issue, we 
used a weighted objective function. However, there is an additional imbalanced data-
set dealing with solutions that may be explored, including employing a large multicenter 
dataset including different lesion types.

The fifth limitation relates to optimizing hyperparameters and evaluating network 
performance. The network training was performed on over 146,000 instances after the 
augmentation phase. We also had to tune the hyperparameters of the two proposed 
CNN models (2D-CNN and 3D-CNN). To comprehensively estimate the performance 
of proposed methods and improve model tuning, robust approaches such as bootstrap 
and cross-validation techniques could be utilized. However, these techniques are highly 
computationally intensive, and due to limitations in system memory and processing 
power (using Google Colab GPU), we were unable to use it. Nonetheless, it has been 
demonstrated that on colossal datasets, cross-validation techniques may not signifi-
cantly improve classification evaluation. For instance, using k-fold cross-validation on 
different colossal datasets has improved the accuracy of classification systems by less 
than 1% in various literature [54].

However, cross-validation can help reduce the bias and variance of estimated perfor-
mance compared to simply splitting the dataset into training, validation and testing sets. 
When splitting the dataset into training, and testing sets, there is a risk of overfitting and 
underestimating the performance on the testing set, which can lead to high variance in 
the estimated performance. However, in the above examples, it has been shown that on 
colossal datasets, the underestimation is less than 1%. On the other hand, if the split is 
not representative of the underlying data distribution, the estimated performance may 
be biased. To reduce this drawback, we split the datasets based on the patients’ WCE 
videos instead of frames. In this way, the testing dataset is somehow individual from the 
training and validation sets, and can lessen the computed performance’s bias toward the 
optimal system performance.
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Besides the limitations, there are some other suggestions for further work. To the best 
of our knowledge, no existing literature classifies WCE frames using the 3D-CNN frame-
work to learn spatiotemporal features. As this is the first application of 3D-CNN in this 
field, we chose the basic model of 3D-CNN to highlight the advantage of spatiotemporal 
analysis over spatial features. However, there are innovative 3D deep network architec-
tures such as R(2 + 1)D [55], SlowFast [56], 2D-3D CNN [57], late temporal 3D-CNN 
[58], that might outperform the basic 3D-CNN model in certain aspects. Despite this, 
enhancing the 3D-CNN model architecture could potentially skew the system’s perfor-
mance from our proposed hypothesis (the benefits of spatiotemporal features) toward 
the novelty of the architecture itself. Therefore, we recommend assessing the perfor-
mance of various novel 3D-CNN models compared to the basic architecture in future 
work.

Conclusions
We developed a CNN framework to perform the multiclass classification of frames 
(lesion frame, normal, and poor images) depicted on WCE videos. The novel 3D-CNN 
proposed in this article classifies a frame by using a series of consecutive frames from 
WCE videos. This concept develops a more efficient CNN model that uses temporal 
in addition to spatial information, as opposed to 2D-CNN models that only use spa-
tial information. We implemented the 2D and 3D versions of this framework to clarify 
whether and to what extent a 3D-CNN outperforms its 2D counterpart. Our results on 
a relatively large and diverse dataset showed that the proposed 2D-CNN and 3D-CNN 
models gain high sensitivity to detect those frames’ content GI lesion, albeit the latter 
one yielded much better performance (7% improvement in accuracy). We believe the 
existing 2D-CNN architectures may not fully utilize the rich information in succeeding 
frames. Additional investigative efforts may be needed to develop sophisticated CNN 
models to maximize the rich information in adjacent frames instead of exploiting them 
as independent frames.

Materials and methods
Datasets

The dataset was collected retrospectively from the gastroenterology ward at Namazi 
Hospital, Shiraz, Iran. It contains WCE videos from 29 individuals. All metadata have 
been eliminated and the files have been renamed using a randomly generated code. 
Consequently, the dataset is fully anonymized, as sanctioned by the Privacy Data Pro-
tection Authority and in compliance with the pertinent guidelines and regulations of 
the Regional Research Committee of the Shiraz University of Medical Sciences. The 
Regional Research Committee of the Shiraz University of Medical Sciences has granted 
approval to analyze anonymous images for this project without requiring consent from 
participants. This project was exempted from further approval by the Iran National 
Committee for Ethics in Biomedical Research.

Videos have been captured with the PillCam™ SB3 (Medtronic Japan) capsule at a rate 
of two frames per second. We have extracted 14,691 frames (7779 as normal frames, 
1906 as lesion frames, and 5006 as poor frames) in total. Figure 4 shows some dataset 
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sample frames (more samples of different types of lesion frames are shown in Additional 
file 1: Fig. S1). An expert physician has examined and labeled all of the data.

The dataset underwent four steps of preprocessing steps prior to being input into 
the convolutional neural network (CNN). Initially, intensity normalization was per-
formed on the entire dataset by rescaling the intensity values by their standard devia-
tion, ensuring that the target values have a mean of 0 and a standard deviation of 
1. Subsequently, all images were cropped to their smallest square form to confine 
the image matrix to the active circular region, thereby minimizing the surrounding 
black background. The intensity values of this black background, which contains no 
information, were maintained at zero following the rescaling phase. This ensured that 
their kernel values remained inactive during network implementation. However, the 
reduction of the black background contributed to decreased memory and CPU usage. 
Furthermore, all images resized to a dimension of 224 × 224 to optimize memory 
usage. The resulting image dimension was 224 × 224 × 3, with the third dimension 
representing the RGB color space. The cubic B-spline method was utilized for image 
resizing. Finally, during the data augmentation phase, it was imperative to utilize 
techniques that guaranteed the generated images were representative of those that 
could be obtained from wireless capsule endoscopy (WCE) systems. This involved the 
application of rotation (limited to 15 degrees), horizontal and vertical flipping, as well 

Fig. 4 Representations of some sample data. a Normal frames. b Abnormal frames. c Poor frames
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as brightness adjustments (limited to 20%) in this study. Figure 5 shows an example 
of data augmentation. Twenty patients (75%) were randomly selected for training, 
and nine remaining patients (25%) were considered as the test dataset. In the training 
dataset, 25 percent of frames (randomly selected) were used for network validation.

In order to facilitate a comprehensive comparison of the performance of the 
3D-CNN model proposed in this study with the findings reported in other schol-
arly articles, we have conducted an analysis of our two basic networks (2D-CNN and 
3D-CNN) using images derived from the Kvasir-Capsule publicity available dataset 
[47] . The dataset under discussion comprises 43 WCE videos. In total, these vid-
eos include 3491 lesion frames (spanning 42 unique lesion timepoints), 34,338 nor-
mal frames, and 2906 poor frames (categorized as “Reduced Mucosal View” within 
the dataset). The lesion frames contain eight distinct classes of anomalies, each 
labeled accordingly: ‘Angiectasia’ (appearing 9 times), ‘Blood–fresh’ (appearing 3 
times), ‘Blood–hematin’ (appearing once), ‘Erosion’ (appearing 11 times), ‘Erythema’ 
(appearing 5 times), ‘Lymphangiectasia’ (appearing 4 times), ‘Polyp’ (appearing once), 
and ‘Ulcer’ (appearing 5 times). The preprocessing phase includes normalization and 
resizing of the images. Consistent with the previous section, the final image is resized 
to dimensions of 224 × 224 × 3, where the third dimension represents the RGB color 
space. For the 3D-CNN models, 16 consecutive frames are inputted together. The net-
works’ weights trained with the in-house dataset are mapped onto the network used 
in this section. During the fine-tuning of the Kvasir dataset, all weights, except those 
belonging to the dense layers, were frozen. For the training of the networks, frames 
from 30 randomly selected videos were used, while frames from the remaining 13 vid-
eos were used for validation.

Fig. 5 An example of data augmentation
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3D-CNN versus 2D-CNN framework

The input layer of a 2D convolution operator can have multiple channels, such as RGB 
color images or intermediate layers in a deep network. In this case, multiple kernels can be 
applied to each channel separately. The value after such a convolution layer can be written 
as [59]:

where max(.) is an elementwise rectified linear unit (ReLU) activation function, and (*) 
represents the convolution operator. ci represents the ith channel number, and (x, y) rep-
resents the pixel position. K is a 3D array kernel that distributes weights between an 
input value in channel ith to its corresponding channel in (x, y) position.

As Eq.  (1) describes, the output of a 2D-convolutional layer for multi-channel 
input data will be the sum of all input channels multiplied by corresponding kernel 
weights. Therefore, a 2D convolution operation cannot extract any hidden relation-
ships between different channels since it moves only in two directions represented by 
(x, y). It causes the neural network to lose information in the depth direction, whereas 
in video data, this relates to temporal information (see Fig. 6a). For the 2D color input 
images, it is not a problem since the neural network works with 2D data. However, 
when the issue contains video input data, it is better to consider it as 3D data, and 
thus, it should be described and approximated in three directions. To make this pos-
sible, 3D convolution operation can be used.

In contrast to the 2D convolution, the depth of the kernel size in the 3D convo-
lutional operation is smaller than the input data depth. Therefore, the sliding win-
dow kernel extracts entangled information from all three directions as a cube (see 
Fig. 6b). Formally, 3D convolution in a position x, y, t at the  ith channel can rewrite 
from Eq. (1) as [35].

(1)VCi

(

x, y
)

= max
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0,
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(
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)
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)

)

,
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(
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)

= max

(
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i=1
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)
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(
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)

)

,

Fig. 6 The difference between 2 and 3D convolution. a How 2D convolution performs on 3D data. b How 3D 
convolution applies cubic kernel to the 3D data
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where x, y, and t are the coordinates of the three-dimensional kernel of convolution 
operation; K is the kernel; I is 3D data on the ith channel. The behavior of a 3D convo-
lution looks like a 2D convolution operation, and for proper architectural design, the 
same concepts for the input data should be considered, such as shared weights and local 
receptive fields. In summary, the only difference is that the 3D convolution operation 
is applied to the cube and uses a smaller cube as a kernel; meanwhile, the 2D convolu-
tion operation just sums up all the values in the third dimension. The visual differences 
between them are shown in Fig. 6.

2D-CNN network architecture

The proposed CNN was developed in Python v3.7 environment and Pytorch 
1.12.1 + cu113 using Google Colab GPU (Tesla K80 12  GB GDDR5 VRAM). After 
exploring various architectures, a CNN network model with five convolutional layers 
was heuristically proposed. Since the lesion structures may be differentiated in a small 
size within the 224 × 224 image size, a 3 × 3 convolutional kernel with one-pixel padding 
was utilized throughout all layers. Features were extracted using 32 kernels in the first 
layer, while the remaining levels used 64, 128, 256, and 512 kernels, respectively.

We empirically found that the skipped connections between layers did not increase 
overall system performance. It can be explained by the two following reasons. First, the 
low-level features of the three classes of images (normal, lesion, and poor frames) are 
nearly identical, while lesions are more distinguishable with high abstract features. Sec-
ond, in this study, we are only searching for the appearance of a lesion in the frames, not 
its location.

Batch normalization was connected to each convolutional layer, and a ReLU was used 
as an activation function. The ReLU function performs nonlinear decision-making with 
a good performance and a fast-learning rate. A max-pooling layer with 2 × 2 kernel size 
and two pixels striding was located after each CNN layer. Pooling layers make the net-
work robust to spatial invariance while significantly lowering the computation cost. The 
Softmax layer was placed at the final layer to act as the multinomial logistic regression 
decision-making machine. Softmax is always placed after the dense layer since it reflects 
a probability distribution from a large number of features. Softmax itself is a dense layer 
with the same number of output nodes as classes. This layer maps the given neural 
network features n(x) : extracted from input x to the softmax output probability value 
σ(n(x)) : RN

→ RM , where N is the number of extracted features at the last fully con-
nected layer, and M is the number of classes, which is three in this project. It is defined 
as:

where y represents the class label. Figure  7 presents the architecture of the employed 
2D-CNN in the current study.

(3)σ(n(x))y =
exp

(

n(x)y
)

∑M
y′ exp

(

n(x)y′
) ,
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2D-CNN network implementation details

The 2D-CNN was trained with 146,628 frames (after augmentation) of WCE with 
224 × 224 × 3 image size. Batch size 32 was used, and the following implementation set-
tings were selected: learning rate = 0.0001, sample per volume = 1, optimizer = Adam, 
loss function = cross-entropy, and decay rate = 0.0001. Dropout rate of 0.4 has been 
employed to make the model more robust. The dropout also gets the network rid of sim-
ple dependencies between the neurons. Since the number of lesion frames was much 
smaller than for the other two groups, an appropriate weighting factor for lesion frames 
was used in the cost function to deal with the imbalanced dataset. Accordingly, the 
weighted cross-entropy loss function for a Softmax output can be written as below for 
imbalanced input data:

where wi and yi represent the arbitrary weight and class label for ith class, respectively. 
To minimize the loss function in the backpropagation phase with the gradient descent 
method, the gradient of the loss function was expressed as below:

Within Additional file 1: Table S2 offers a summary of the proposed characteristics 
of the proposed 2D-CNN.

(4)L = −

∑M

i=1
wi × yi × log

(

exp
(

n(x)yi
)

∑M
y′ exp

(

n(x)y′
)

)

,

(5)
∂(L)

∂(X)
=

∑M

i=1
σ(n(x))yi .

Fig. 7 The architecture of the employed 2D-CNN

Fig. 8 The architecture of the employed 3D-CNN
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3D-CNN network architecture and implementation details

The 3D-CNN network had the same layer depth as the 2D-CNN network. Although, 
the input layer consisted of 16 adjacent color images. The 3D-CNN had the same 
number of kernels in each layer, batch normalization, activation function, and 
striding as the 2D-CNN. The convolutional kernel size was 3 × 3 × 3 voxels in the 
3D-CNN. After the first convolutional layer, a max-pooling layer with a kernel size 
of 2 × 2 × 1 protected the temporal information at low-level features. Four later con-
volutional layers were followed by a 2 × 2 × 2 pooling layer. Every other detail of the 
3D-CNN implementation was identical to the 2D-CNN. Figure 8 presents the archi-
tecture of the employed 3D-CNN in the current study. Additional file  1: Table  S3 
provides an overview of the characteristics of the proposed 3D-CNN.

Pre-trained networks

To better illustrate the superior performance of our proposed 3D-CNN network (which 
utilizes spatiotemporal features) over 2D networks (that solely use spatial features), we 
have compared it with several of the most commonly used deep neural network clas-
sifiers. The integration of 3D structures, which utilize spatiotemporal features, can be 
incorporated into numerous state-of-the-art models to enhance their performance. 
Given the impracticality of testing the hypothesis on various novel models, we chose to 
demonstrate the benefits of the basic CNN spatiotemporal system using the most con-
ventional deep network classifier. These networks have been previously employed in the 
classification of wireless capsule endoscopy (WCE) [12, 19, 24, 46, 60, 61] and various 
other benchmark image classification datasets [62–65]. This comparative study aims to 
provide a comprehensive understanding of the effectiveness of incorporating spatiotem-
poral features in image classification tasks.

We have implemented five different types of pre-trained networks called AlexNet, 
Inception-V3, ResNet-18, SqueezeNet, and DensNet. While each architecture has its 
unique specifications, they share many commonalities in their approach to image clas-
sification, including the use of CNNs, deep layer stacking, preprocessing, ReLU activa-
tion functions, and regularization techniques. Additionally, the different architectures 
often build upon and improve upon the methods used in previous architectures. Trans-
fer learning was used to fine-tune the pre-trained deep neural networks on the training 
dataset. During the fine-tuning, all weights except those belonging to the dense layers 
were frozen. These networks were also trained with 150 epochs. In the following, we will 
briefly explain the characteristics of these networks and articulate the unique specifica-
tion of each.

AlexNet

The first architecture designed for image classification that used successive convolu-
tional layers was AlexNet. It contains eight layers (5 convolutional layers and three fully 
connected layers) [66]. It won the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) 2012. AlexNet achieved a top-5 error rate of 15.3% on the ImageNet dataset. 
Except for the last layer, where a Softmax with a distribution over the three class labels 
was applied, ReLU activation was performed at the end of each layer. In the first two 
completely linked layers, dropout was employed. Max-pooling was used after the first, 
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second, and fifth convolutional layers. The neurons in the fully connected layers were 
connected to all neurons in the previous layer.

Inception-V3

The data may overfit when numerous deep convolutional layers are used in a model. The 
inception model makes use of the concept of having multiple kernels of various sizes on 
the same level to prevent this [67]. Therefore, in the inception models, there are paral-
lel layers rather than deep layers, which makes the model broader rather than deeper. 
Inception-V3 achieved a top-5 error rate of 3.5% on the ImageNet dataset. In this work, 
Inception-V3 contained 22 layers (nine convolution layers, four max-pooling layers, and 
nine linearly stacked inception modules). At the end of the previous inception module, 
the average pooling was implemented. Since 3 × 3 and 5 × 5 kernel sizes create complex-
ity and expense, the 1 × 1 kernel was employed at the first layer. The number of param-
eters in the Inception-V3 model was double that of the AlexNet model.

ResNet-18

Convolutional neural networks are the foundation of the ResNet-18 model, enabling a 
smooth gradient flow. The ResNet-18 model skips one or more layers when using the 
identity shortcut link. Enabling a skipped connection to the network’s initial layers 
will make gradient updates considerably more straightforward for those layers [68]. It 
achieved state-of-the-art performance on the ImageNet dataset when it was introduced. 
ResNet-18 achieved a top-5 error rate of 5.6% on the ImageNet dataset. One fully con-
nected layer and 17 convolutional layers make up the ResNet model.

SqueezeNet

SqueezeNet provides a comparable result using more compact CNN architectures [69]. 
SqueezeNet is designed to be lightweight and efficient, with fewer parameters than other 
architectures. It achieved a top-5 error rate of 4.8% on the ImageNet dataset, with only 
4.8 million parameters. It comprises a single convolution layer first (called conv1), then 
eight fire modules (called fire8), and a final convolution layer (called conv10). A squeeze 
convolution layer, which only contains a 1 × 1 kernel, feeds into an expand layer within a 
fire module. The expand layer includes a combination of 1 × 1 and 3 × 3 convolution ker-
nels. From the beginning to the end of the model, the number of kernels per fire module 
is steadily raised. Max-pooling with a stride of 2 is typically applied after layers conv1, 
fire4, fire8, and conv10. More comprehensive information about the specific architecture 
of this network and the unique characteristics of its modules can be found in [69].

DenseNet-201

DenseNet is a considerably deeper network with several appealing benefits: it over-
comes the vanishing-gradient problem, improves feature dispersion, promotes feature 
reuse, and significantly reduces the number of parameters [70]. The name densely con-
nected convolutional network refers to its architecture, in which each layer is directly 
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connected to every other layer. The skipped connection in DenseNet does not sum the 
layer’s output feature maps with the incoming feature maps as ResNet does, but instead 
concatenates them. DenseNet-201 achieved a top-5 error rate of 3.6% on the ImageNet 
dataset. DensNet-201 consists of four dense blocks with 6, 12, 48, and 32 convolution 
layers, respectively. Other hyperparameters, which have utilized in this paper, have been 
set in accordance with reference [71].

In summary, among these well-known classifier deep network models, AlexNet was a 
pioneering architecture that introduced several innovations, but has been surpassed by 
more recent architectures performance. Inception-V3 and DenseNet-201 have achieved 
state-of-the-art performance on image classification benchmarks with the lowest top-5 
error rates on the ImageNet dataset. ResNet-18 and SqueezeNet have fewer parameters 
than other architectures and are intended to be lightweight and reliable.

Evaluation metrics

The performance of the proposed deep neural network classifiers was measured on the 
test dataset using a confusion matrix. From confusion matrices, sensitivity, specific-
ity, positive predictive value (PPV), negative predictive value (NPV), F1 score, and total 
accuracy were computed. These parameters are expressed as shown below:

where TP is the number of cases in which both the physician’s label and model’s predic-
tion are as the lesion or poor; TN is the number of cases in which the model correctly 
assigns the label of “normal”; FP is the number of cases in which the model predicts a 
lesion or poor, but the physician’s label is normal; FN is the number of cases in which the 
model predicts as normal, but the physician’s label is lesion or poor.

The proposed idea was assessed with two evaluation scenarios: frame-based and dis-
ease-based approaches. In the frame-based approach, the strength of models in classify-
ing each frame as independent inputs were evaluated. The mentioned evaluation metrics 
were computed for this approach.

(6)Sensitivity =
TP

TP+ FN
,

(7)Specificity =
TN

TN+ FP
,

(8)PPV =
TP

TP+ FP
,

(9)NPV =
TN

TN+ FN
,

(10)F1score = 2×
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PPV+NPV
,
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TP+ TN

TP+ TN+ FP+ FN
,
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However, the main objective of a CAD system is to locate the site of any potential dis-
ease within a patient’s WCE video. Any disease would usually manifest itself by some 
lesions in more than ten consecutive frames. The diseased region within the WCE video 
is identified if the CAD system finds at least one frame within the adjacent lesion frames. 
Consequently, we defined a disease-based strategy to see whether the competing models 
can detect the site of the lesions that appear within the WCE video. To do so, the physi-
cian labeled 11 distinct disease appearance time points among nine patients in the test 
dataset. If the CNN model recognizes even one frame that belongs to the diseased site, 
the disease site has been identified.
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