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Abstract 

Background: Prediction of non-perfusion volume ratio (NPVR) is critical in selecting 
patients with uterine fibroids who will potentially benefit from ultrasound-guided 
high-intensity focused ultrasound (HIFU) treatment, as it reduces the risk of treatment 
failure. The purpose of this study is to construct an optimal model for predicting NPVR 
based on T2-weighted magnetic resonance imaging (T2MRI) radiomics features com-
bined with clinical parameters by machine learning.

Materials and methods: This retrospective study was conducted among 223 patients 
diagnosed with uterine fibroids from two centers. The patients from one center were 
allocated to a training cohort (n = 122) and an internal test cohort (n = 46), and the data 
from the other center (n = 55) was used as an external test cohort. The least absolute 
shrinkage and selection operator (LASSO) algorithm was employed for feature selec-
tion in the training cohort. The support vector machine (SVM) was adopted to con-
struct a radiomics model, a clinical model, and a radiomics–clinical model for NPVR 
prediction, respectively. The area under the curve (AUC) and the decision curve analysis 
(DCA) were performed to evaluate the predictive validity and the clinical usefulness 
of the model, respectively.

Results: A total of 851 radiomic features were extracted from T2MRI, of which seven 
radiomics features were screened for NPVR prediction-related radiomics features. 
The radiomics–clinical model combining radiomics features and clinical parameters 
showed the best predictive performance in both the internal (AUC = 0.824, 95% CI 
0.693–0.954) and external (AUC = 0.773, 95% CI 0.647–0.902) test cohorts, and the DCA 
also suggested the radiomics–clinical model had the highest net benefit.

Conclusions: The radiomics–clinical model could be applied to the NPVR prediction 
of patients with uterine fibroids treated by HIFU to provide an objective and effective 
method for selecting potential patients who would benefit from the treatment mostly.
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Introduction
Ultrasound-guided high-intensity focused ultrasound (HIFU) is a noninvasive ablation 
option for patients with uterine fibroids with the advantages of fast recovery, low com-
plication occurrence, and uterus preservation, and therefore, it has been increasingly 
applied worldwide [1, 2]. As an ablation technique, the efficacy of HIFU is closely related 
to the immediate postoperative non-perfused volume ratio (NPVR). A higher NPVR 
heralds a significant improvement in the patient’s symptoms, and an NPVR of over 80% 
is considered as an indicator of therapeutic success in recent studies [3, 4]. However, not 
all patients can benefit from this treatment because of several limitations, such as high 
cellularity and high vascularity in the fibroids, which will hinder the deposition of ultra-
sonic energy and make ablation outcomes unsatisfactory. How to determine suitable 
patients for HIFU treatment has become one of the major challenges in its clinical appli-
cation [5, 6]. In clinical practice, the Funaki classification base on T2-weighted magnetic 
resonance imaging (T2MRI) is widely used to determine whether a patient is suitable for 
HIFU treatment. The hyper-intensity (type III in Funaki classification: the signal inten-
sity of fibroids is equal to or greater than that of the myometrium) usually indicates poor 
treatment response because of greater cellularity and vascularity of fibroids, making 
propagation of acoustic energy difficult. While those hypointense (Funaki I) and isoin-
tense (Funaki II) fibroids with signal intensity is lower than the muscle layer or skeletal 
muscle on T2MRI have a significantly higher nonperfused volume (NPV) after ablation 
[7, 8]. Current the qualitative assessment based on T2MRI, however, can only provide 
limited guidance for personalized clinical treatment decisions, since adequate quanti-
fication of fibroid heterogeneity is lacking. In addition, some other factors, such as the 
location and diameter of the fibroids, will also affect the results of the ablation. There-
fore, traditional classification based solely on T2MRI signal intensity may not be able to 
accurately predict treatment outcome [4, 9].

Some studies are devoted to obtaining more accurate NPVR predictors from clinical 
parameters and quantitative perfusion parameters. Suomi [10] established a prediction 
model through support vector machine (SVM) based on clinical parameters—includ-
ing subcutaneous fat thickness, fibroids size, and distance from the fibroids to the skin 
to predict the NPVR value (> 80%), and the maximum F1-micro classification score 
was 0.63, which indicates that that model based on clinical parameters alone has poor 
prediction performance, the possible reason is that the influence of blood perfusion 
is ignored. The quantitative perfusion parameter Ktrans can illustrate the vascular per-
meability and is negatively correlated with NPVR, was consequently considered as an 
important prediction indicator in poor therapeutic response [11]. Wei [12] and Li [13] 
predicted the NPVR (> 70% and > 60%) using Ktrans value, with AUC values of 0.803 and 
0.817, respectively. Keserci [14] further combined clinical parameters with semi-quanti-
tative perfusion parameters to predict NPVR (> 90%), and its AUC was 0.948. Blood per-
fusion parameters have shown potential in accurately predicting the NPV ratio; however, 
dynamic-enhanced magnetic resonance imaging (DCE–MRI) has high requirements for 
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image acquisition and post-processing expertise and is, therefore, not routinely used in 
clinical practice [13, 15]. A personalized prediction method that is quantitative, objec-
tive and easy to clinically implement is an urgent need for HIFU clinical practice.

Radiomics has been applied to various therapeutic response predictions for tumors, 
such as non-small cell lung cancer, pancreatic cancer, and rectal cancer [16–18]. Such 
applications arise from the ability of radiomics to transform medical images into high-
dimensional quantitative information, so as to quantify the heterogeneity of tumors, 
capturing subtle structural differences that cannot be detected by human vision [19]. 
A recent study employed a radiomics model based on T2-weighted imaging (T2WI) to 
predict the prognosis of uterine fibroids treated with HIFU [20]. The results suggest that 
radiomics is a potential approach for predicting the efficacy of HIFU. Compared with 
subjective evaluation, radiomic analysis is more stable and objective. However, there is 
still a lack of reports on the use of radiomics to predict the NPVR in the HIFU treatment 
of uterine fibroids.

Here we established a prediction model based on T2MRI radiomics features along 
with clinical parameters through machine learning, aiming to provide an approach for 
predicting the NPVR of uterine fibroids treated by HIFU.

Results
Patients

The patient screening process is shown in Fig. 1. Among all 605 patients, 223 patients 
were selected for this study, the most frequent reason (67.5%) for the exclusion of partic-
ipants was that the fibroids were not located on the anterior wall. There was no instance 
involving the cancellation of HIFU treatment because of technical failure.

Fig. 1 Process of patient inclusion and exclusion. Center A: First Affiliated Hospital of Chongqing Medical 
University. Center B: Chongqing Haifu Hospital
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The baseline characteristics of the patients are listed in Table 1. The signal intensity on 
T2MRI was significantly different between H and L groups (P < 0.05) in the training and 
internal test cohorts, and no significant differences were found in other characteristics. 
The mean NPVR of patients in the training cohort was 75.6% (Group H: 89.2%, Group L: 
61.2%), 76.9% in the internal test cohort (Group H: 90.3%, Group L: 63.2%), and 78.1% in 
the external test cohort (Group H: 89.5%, Group L: 62.6%).

Table 1 Baseline characteristics of the study population

Group H: NPVR ≥ 80%; Group L: NPVR < 80%

UFs uterine fibroids

*Significance indicated by P < 0.05
a Distance: Distance from the back end of the fibroids to the skin surface
b SI: signal intensity; Type 1: hypointense; Type 2: isointense; Type 3: homogeneous-type hyperintense; Type 4: 
heterogeneous-type hyperintense
c CDFI: Color Doppler Flow Imaging; Grade 1: a small amount of blood flow in the fibroids, 1–2 punctate blood flows can 
be seen; Grade 2: moderate blood flow in fibroids, 1 main blood vessel can be seen, whose length exceeds the radius of the 
fibroids or 2–3 small blood vessels can be seen

Characteristics Training (n = 122) P value Internal validation 
(n = 46)

P value External validation 
(n = 55)

P 
value

Group H 
(n = 60)

Group L 
(n = 62)

Group H 
(n = 22)

Group L 
(n = 24)

Group H 
(n = 30)

Group L 
(n = 25)

Age, years 41.0 ± 6.4 39.1 ± 6.5 0.121 39.6 ± 5.1 37.7 ± 6.1 0.793 39.1 ± 6.2 38.1 ± 8.6 0.196

Subcutaneous 
fat thickness 
(mm)

15.5 ± 5.5 17.1 ± 5.3 0.112 15.6 ± 5.1 16.2 ± 5.2 0.882 16.0 ± 3.7 17.2 ± 4.7 0.398

Thickness of 
the rectus 
abdominis 
(mm)

8.8 ± 2.4 8.1 ± 2.9 0.619 8.5 ± 3.6 8.1 ± 2.8 0.681 10.2 ± 2.7 10.6 ± 2.7 0.268

Diameter of 
UFs (cm)

5.3 ± 1.4 5.8 ± 1.4 0.062 5.7 ± 1.9 6.2 ± 2.2 0.361 5.3 ± 1.2 5.9 ± 1.5 0.152

Volume of UFs 
 (cm3)

93.1 ± 75.7 117.7 ± 90.7 0.155 104.3 ± 117.8 139.1 ± 118.9 0.162 110.3 ± 82.2 132.6 ± 92.1 0.302

Distance 
(mm)a

92.4 ± 16.8 97.9 ± 15.6 0.062 91.1 ± 17.4 99.7 ± 13.8 0.069 93.1 ± 13.1 100.5 ± 11.7 0.095

Number of 
fibroids (total)

0.909 0.887 0.702

 1 45 (75.0%) 49 (79.1%) 16 (78.6%) 17 (72.4%) 21 (72.4%) 20 (76.9%)

 2–5 15 (25.0%) 13 (20.9%) 6 (21.4%) 7 (27.6%) 8 (27.6%) 6 21.1%)

SI on  T2MRIb 0.000* 0.039* 0.016*

 Type 1 27 (45.0%) 17 (27.4%) 10 (45.5%) 6 (25.0%) 12 (40.0%) 7 (28.0%)

 Type 2 27 (45.0%) 20 (32.3%) 8 (36.4%) 4 (16.6%) 12 (40.0%) 3 (12.0%)

 Type 3 2 (3.3%) 19 (30.7%) 3 (13.6%) 7 (29.2%) 4 (13.3%) 11 (44.0%)

 Type 4 4 (6.7%) 6 (9.7%) 1 (4.5%) 7 (29.2%) 2 (6.7%) 4 (16.0%)

CDFI  gradec 0.297 0.821 0.761

 Grade 1 21(35.0%) 16 (25.8%) 4 (18.2%) 5 (20.8%) 12 (40.0%) 9 (36.0%)

 Grade 2 39 (65.0%) 46 (74.2%) 18 (81.8%) 19 (79.2%) 18 (60.0%) 16 (64.0%)

Fibroid types 0.209 0.659 0.561

 Intramural 38 (63.3%) 48 (77.4%) 16 (72.7%) 20 (83.3%) 19 (63.4%) 13 (52.0%)

 Subserosal 8 (13.4%) 4 (6.5%) 2 (9.1%) 1 (4.2%) 4 (13.3%) 6 (24.0%)

 Submu-
cosal

14 (23.3%) 10 (16.1%) 4 (18.2%) 3 (12.5%) 7 (23.3%) 6 (24.0%)
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Radiomics feature selection and Rad‑score calculation

Of the 851 extracted radiomic features, 691 (81.2%) showed good interobserver agree-
ment, with ICCs > 0.8. Among which 7 features with nonzero coefficients were selected 
using LASSO, namely, original_firstorder_10Percentile, original_glrlm_ShortRun-
HighGrayLevelEmphasis, original_gldm_DependenceVariance, wavelet-HLL_
glcm_MaximumProbability, wavelet-HLH_glszm_HighGrayLevelZoneEmphasis, 
wavelet-HHL_firstorder_Kurtosis and wavelet-LLL_firstorder_Median. Figure 2 presents 
the LASSO feature selection process and the selected features as well as their coefficients.

Rad-score of each patient was calculated according to the selected features and their 
corresponding coefficients.

Figure 3a–c shows that the Rad-score of patients with NPVR ≥ 80% was significantly 
lower than that of patients with NPVR < 80% (training cohort), which was subsequently 
confirmed in the 2 test cohorts. In the training cohort, the optimal radiomics cutoff 
value of 0.522 was determined based on the maximum Youden index in the NPVR ≥ 80% 
group. Figure  3d–f represents the Rad-score distribution consisting of the Rad-score 
value of each patient in both training and the 2 test cohorts, which clearly revealed that 
almost all the patients’ NPVR could be predicted by the cutoff value of their radiom-
ics features. The formula and statistical analysis of Rad-scores are present in Additional 
file 1: Equation S1 and Table S4.

Fig. 2 Radiomics feature selection. a Selection of the tuning parameter λ in the LASSO model via mean 
square error on each fold in tenfold cross-test method, dotted vertical lines show the optimal values using 
the minimum criteria. b LASSO coefficient profiles of the 851 radiomics features, resulting in 8 nonzero 
coefficient features. c The most predictive feature subsets selected by LASSO and their correlation coefficients
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Model evaluation

The linear kernel function was chosen as the most suitable kernel function for all analy-
ses in this study after tenfold cross-validation and grid search processing. The predic-
tion performance of radiomics model, clinical model, and radiomics–clinical model are 
shown in Table 2. The radiomics–clinical combination model demonstrated the greatest 
predictive validity (Fig. 4).

The radiomics model based on the 7 radiomics features of T2MRI showed high per-
formance in predicting NPVR, with an AUC of 0.806 (95% CI 0.672–0.939) and 0.765 
(95% CI 0.633–0.897) in the internal and external test cohorts, respectively. The clini-
cal model established on the 5 clinical parameters of subcutaneous fat thickness, dis-
tance from the posterior surface of fibroids to the skin surface, fibroids diameter, fibroids 

Fig. 3 Radiomics score (Rad-score) boxplots of the 3 cohorts, each black dot representing the Rad-score of 
an individual in a the training cohort, b the internal cohort, and c the external cohort; d–f the distribution of 
Rad-scores in each cohort, with red bars representing patients with NPVR ≥ 80%, blue bars NPVR < 80%. The 
cutoff value of the radiomics score was 0.522

Table 2 Predictive performance of radiomics model, clinical model, and radiomics–clinical model

Model Training (N = 122) Internal test (N = 46) External test (N = 55)

Radiomics Clinical Combination Radiomics Clinical Combination Radiomics Clinical Combination

AUC 
(95% 
CI)

0.835 (0.76, 
0.90)

0.705 
(0.61, 
0.79)

0.865 (0.79, 
0.92)

0.806 (0.67, 
0.93)

0.714 
(0.56, 
0.86)

0.824 (0.69 
0.95)

0.765 (0.63, 
0.89)

0.699 
(0.55, 
0.84)

0.773 (0.64, 
0.90)

Sensi-
tivity

71.2% 66.1% 76.6% 76.2% 66.7% 80.0% 72.4% 73.1% 75.0%

Speci-
ficity

76.8% 68.3% 81.3% 76.0% 64.3% 76.9% 61.5% 62.1% 66.7%

Accu-
racy

73.8% 67.2% 78.7% 76.1% 65.2% 78.3% 67.3% 67.3% 70.9%
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volume, and T2 signal intensity had a limited predictive capability, showing an AUC of 
0.714 (95% CI 0.545–0.852) and 0.699 (95% CI 0.565–0.851) in the internal and external 
test cohorts. The patient’s clinical parameters were added to the radiomics features data 
set, and the radiomics–clinical combined model was obtained through SVM training. 
The combined model improved the AUC to 0.824 (95% CI 0.693–0.954) and 0.773 (95% 
CI 0.647–0.902), respectively, in the 2 test cohorts.

Clinical application

Decision curve analysis is a method of describing clinical impact in terms of net benefits, 
the “treat all” or “treat none” strategy is interpreted here as the net benefit achieved by all 
patients receiving or not receiving HIFU treatment. DCA analysis results show that the 
combined model achieves more net benefit across the majority of the range of threshold 
probabilities compared with the radiomics model, clinical model, treat-all strategy, and 
treat-none strategy (Fig. 5).

Fig. 4 ROC curves of a radiomics model, b clinical model, and c radiomics–clinical model. The red, green, 
and blue curves representing the training cohort, internal test cohort, and external test cohort, respectively
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Discussion
Here we developed a radiomics–clinical prediction model through SVM algorithm 
based on 7 radiomics features and 5 clinical parameters to predict the NPVR of uter-
ine fibroids treated by HIFU. This model was evaluated in the internal and external test 
cohorts, demonstrating excellent prediction performance (AUC = 0.824, 0.773, respec-
tively). The decision curve analysis also showed this model had the highest overall net 
benefit among the 3 models established in this study, which means that the model will 
contribute to clinical decision making.

The signal intensity can reflect proliferative activity and histological characteristics, 
such as cellularity, vascularity, perfusion, necrosis, and calcification [21, 22]. Therefore, 
the Funaki classification base on T2 signal intensity is a well-known predictor of the 
immediate therapeutic responses to MR-guided HIFU ablation therapy. A recent study 
results utilizing ultrasound-guided HIFU demonstrated a similar influence of Funaki 
type on NPVR as reported for MRgHIFU: the NPVR of Funaki type 1 and 2 was signifi-
cantly higher than that of Funaki type 3 [23]. Funaki type 3 fibroids tend to display high 
cellularity related to their fiber content, edema or degeneration, making heat accumula-
tion difficult [24]. In this study, a clinical model was established by combining the T2 
signal intensity with some meaningful clinical features that predict NPVR (including fat 
thickness, fibroids volume, fibroid diameter and distance from fibroids to the skin sur-
face [25, 26]). The AUC values of this model were 0.714 and 0.699, respectively, in the 
internal and external test cohorts. The reason for the higher predictive performance than 
previous studies [10] may be related to our inclusion criteria, because only the fibroids 

Fig. 5 DCA curve of clinical application assessment for a the training cohort, b the internal test cohort, and c 
the external test cohort. The x-axis shows the threshold probability, and the y-axis measures the net benefit. 
The gray line and the black line indicate that all patients receive the “all treatment” or “no treatment” strategy, 
respectively. The red line indicating the radiomics model; the blue line the clinical model; the green line the 
radiomics–clinical
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located in the anterior wall with grade 1 or 2 blood supply were enrolled. The patients 
with anterior fibroids have shorter acoustic pathways, so the ultrasound attenuation is 
less as penetrating fewer tissue layers [27]. Allowing for the difficulties with obtaining 
the quantitative parameters of the blood perfusion, the influence of blood perfusion was 
not considered in this study, and only the fibroids with the blood supply of grade 1 or 
2 were selected, which have potentially better therapeutic outcomes [28]. This strategy 
helps us exclude fibroids that are rich in the blood supply. Despite its better performance 
than previous reports, the limitations of the clinical model were still observed in our 
study, possibly due to the fact that the inherent heterogeneity of fibroids was ignored.

Some studies have pointed out that the subjective nature of T2WI interpretation and 
difficulty of differentiating the actual tissue or condition causing the relative signal inten-
sity variations are limitations of the Funaki classification, and due to the relatively weak 
correlations and large overlap in NPV ratios between groups, T2-based images may not 
be the optimal predictor of treatment outcome [29, 30]. Radiomics provides accurate 
quantitative information for characterizing the heterogeneity of fibroids by quantifying 
the small structural differences in images caused by different histopathologies of tumors 
[31–33]. Su [34] thought that the texture features of T2MRI could demonstrate the cellu-
lar structure of uterine fibroids and could be used to predict immediate NPVR. Arnaud 
[35] multivariate analysis results also revealed that quantitative analysis of texture 
showed a higher significant correlation with treatment success than qualitative classifi-
cation, which may interpret why the predictive validity of our radiomics model is supe-
rior to the clinical model based on Funaki classification. The radiomics–clinical model 
established on combining clinical parameters with radiomics features demonstrates the 
strongest predictive ability in both the internal and the external test cohorts. This result 
indicates that the analysis of the combination of radiomics and clinical parameters is 
valuable and necessary for the prediction of NPVR, and the DCA also showed that the 
combined model would allow more patients to benefit from accurately predicting NPVR 
compared with the radiomics or the clinical model alone across the majority of the range 
of reasonable threshold probabilities. This is consistent with the results of a previous 
study on the prognosis of uterine fibroids [20].

An important goal of radiomics is to construct prediction models of therapeutic 
response based on tumor phenotypic characteristics from medical images, our research 
results indicate that it is promising to predict the NPVR of HIFU in the treatment of 
uterine fibroids using radiomics features, this is an objective quantitative measurement 
method that is closely related to NPVR, and shows better predictive ability than Funaki 
classification. In addition, we included patients from different institutions and MRI 
facilities, multicenter external validation is essential to obtain high-level evidence for 
future clinical applications, but a major problem faced by multicenter validation is that 
MRI intensities are non-standardized and are highly dependent on the manufacturer, 
sequence type and acquisition parameters. Consequently, a large variability in image 
intensities among inter-patient and intra-patient acquisitions, which may compromise 
the robustness of the radiomics features [36, 37]. To solve this problem, we performed 
image preprocessing such as resampling and intensity normalization to mitigate the 
effects that may occur due to heterogeneity of these MRI acquisitions. We believe that 
our results showed the potential of radiomics for NPVR prediction even using MRI with 
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heterogeneous protocols. Therefore, our model is more beneficial to generalize in future 
clinical application and support the clinical transfer in different hospitals.

Our study had some limitations. First, this was a retrospective study, so inherent 
biases and variations were inevitable, and a prospective study may be conducted in the 
future for further verification. Second, only radiomics features from T2MRI were used 
in this study, while the application of multimodal studies such as T1-weight images and 
DWI sequences may improve the predictive performance. Third, we did not try to use 
other NPVR values as prediction dividing lines for treatment success, only NPVR ≥ 80% 
was used in this study. Because measures to achieve 80% NPVR is technically feasible 
and have been proven to be highly associated with a clinical treatment success [3, 4, 38]. 
Finally, while patients at both institutions were treated with the same HIFU system, a 
potential biased limitation is that the treatment was performed by different doctors, 
which could influenced dosage delivery or the termination of treatment. In addition, our 
screening parameters only include clinical and radiomics features. Future studies must 
also include HIFU treatment parameters, including irradiation mode, irradiation time, 
sound power, cooling time between each sonication, etc.

Conclusion
The research results show that the combination model has the best prediction perfor-
mance and the potential to conduct multicentre studies. In future studies, the model 
would benefit from more detailed and accurate division and modelling of uterine fibroids 
to reduce the factors influencing NPVR prediction and improve predictive accuracy.

Materials and methods
Patients

This retrospective study was approved by the Ethics Committees of the First Affiliated 
Hospital of Chongqing Medical University and Chongqing Haifu Hospital and con-
ducted in accordance with the Declaration of Helsinki. Patients diagnosed with uterine 
fibroids by MRI and clinical examination from February 2012 to July 2020 were enrolled 
in this two-center retrospective study. The inclusion criteria for this study were as fol-
lows: (1) age of 18  years or older with clinical symptoms; (2) fibroids with the blood 
supply of grade 1 or grade 2 by the Adler classification using color doppler ultrasound 
examinations [39]; (3) no history of HIFU treatment or surgical resection. (4) safe and 
clear acoustic pathway with no scar tissue in the abdomen; (5) no more than two fibroids 
in each patient, determined by MRI. The exclusion criteria were as follows: (1) patients 
have contraindications for MRI examination and contrast injection; (2) fibroids are not 
located on the anterior wall of the uterus. (3) Missing preoperative and postoperative 
MR images, or image has artifacts.

The patients had from 1 to 2 uterine fibroid tumors; however, only the largest fibroids 
treated were selected for this study. A total of 223 patients included in this retrospective 
analysis. 168 patients from the First Affiliated Hospital of Chongqing Medical Univer-
sity were randomly assigned to the training cohort (n = 122) and the internal test cohort 
(n = 46), and 55 patients from Chongqing Haifu Hospital were selected as external test-
ing cohort. All the patients were divided into 2 groups according to their immediate 
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postoperative NPVR value in this study, among whom patients with NPVR ≥ 80% were 
assigned to group H, while those with NPVR < 80% were entered into group L.

HIFU ablation

HIFU ablation was performed by HIFU-licensed physicians with at least 3 years of HIFU 
clinical experience, and the ultrasound-guided HIFU system (Model-JC200 Focused 
Ultrasound Tumor Therapeutic System, Chongqing Haifu Medical Technology Co., Ltd, 
Chongqing, China) was employed in both centers. Colour Doppler ultrasonography was 
performed with a My-Lab 70 ultrasound imaging device (Esaote, Genoa, Italy), which is 
located at the center of the high-intensity focused ultrasound transducer. The frequency 
of the transabdominal ultrasound probe was 3.5 MHz, the depth range 15 cm, the sam-
pling volume 2–3 mm, and the angle between the sound beam and the blood flow less 
than 60 degrees. Before the treatment the patients were positioned prone on the HIFU 
table with the anterior abdominal wall placed in contact with the degassed water, a uri-
nary catheter was inserted into the bladder, and normal saline was used to regulate the 
bladder volume to get a safe acoustic pathway. Treatment began from the deeper part 
of the fibroid to the shallower part with the focus at least 1 cm away from the boundary 
of the fibroid, and the therapeutic energy was adjusted based on the feedback from the 
patient and changes in grayscale on ultrasonographic imaging. The treatment was termi-
nated when the increased grayscale covered the fibroid or there was an absence of blood 
supply as assessed by contrast-enhanced ultrasound immediately after HIFU ablation.

Data collection

All patient’s data were evaluated by at least two experienced abdominal radiologists, 
such as subcutaneous fat thickness (mm), distance from fibroids to the skin surface 
(mm), fibroids volume  (mm3) and T2 signal intensity. The T2 signal intensity of uterine 
fibroids was classified according to relevant studies into four types [7, 8]: (i) hypointense; 
(ii) isointense; (iii) heterogeneous hyper-intense; and (iv) homogenous hyper-intense. 
MRI was performed to assess the therapeutic outcomes within 1 days after HIFU treat-
ment, the three-dimensional diameter of the volume of fibroids and non-perfused vol-
ume (NPV) were measured by enhanced T1-weighted image (T1WI) after treatment: 
longitudinal (D1), anteroposterior (D2), and transverse (D3). Fibroid volume and NPV 

Table 3 T2-weighted imaging parameters used by different scanners at the two participating 
centers

Variable The First Affiliated Hospital of Chongqing 
Medical University

Chongqing 
Haifu 
Hospital

Repetition time (ms) 3400–5100 3200–4200

Echo time (ms) 110 79

Field of view (cm × cm) 36 × 36 22 × 22

Matrix size (mm × mm) 512 × 512 320 × 320

Slice thickness (mm) 6 5

Slice gap (mm) 1.5 1.0
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were calculated according to the following equation: V = 0.5233 × D1 × D2 × D3, and the 
NPVR was defined as NPV/Vfibroids × 100%.

MRI acquisition and segmentation

A series of standard T1 weighted images (T1WI) and T2 weighted images (T2WI) and 
contrast-enhanced T1WI scan were performed on all patients 1 day before and 1 day 
after the treatment. Dynamic enhancement was performed 20  s after an intravenous 
injection of gadolinium. Sagittal T2WI was selected as the object of radiomics analysis. 
In the First Affiliated Hospital of Chongqing Medical University, MRI was performed 
using 3.0-T scanners (Signa HDxT, GE healthcare), and MRI was performed using a 
1.5-T scanner (uMR 570, United Imaging Company) at Chongqing Haifu Hospital. The 
T2 imaging parameters of the two participating centers are shown in Table 3.

An abdominal radiologist (reader 1) with 5 years of experience in pelvic radiological 
imaging was responsible for delimiting the region of interest (ROI) slice by slice along 
the fibroid edge on the T2MRI for each patient using open source software (ITK-SNAP 

Fig. 6 Example of T2-weighted magnetic resonance images (left) and tumor segmentation (right) of uterine 
fibroids obtained before treatment. a Hypo-intense fibroid; b heterogeneous hyper-intense fibroid
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v3.8.0, www. itksn ap. org), as shown in Fig. 6. Each labeled segmentation was validated by 
another senior radiologist (reader 2) with a 14-year career in pelvic radiological imaging.

Image preprocessing and feature extraction

Image processing was performed prior to feature extraction to minimize the variance 
induced by different scanners, scanning scheme as well as acquisition artifacts. First, the 
N4ITK bias field correction algorithm was applied to all images to reduce image artifacts 
and improve the inhomogeneity of grayscale distribution [40]. Next, all images were nor-
malized using z-score normalization to obtain a standard normal distribution of image 
intensity. Finally, B-spline interpolation was adopted to set the voxel size at 1 × 1 × 1 
 mm3 for resampling. More details of image processing are shown in Additional file 1: 
Table S1.

Radiomics features of each ROI were extracted from T2WI with Pyradiomics v.3.0 
package, and feature extraction followed the Image Biomarker Standardization Initia-
tive (IBSI) guideline in this study [41]. The extracted features include shape (3D), first-
order statistics, gray-level co-occurrence matrix (GLCM), gray-level size zone matrix 
(GLSZM), gray-level run length matrix (GLRLM), neighboring gray-tone difference 
matrix (NGTDM), gray-level dependence matrix (GLDM), and wavelet features. The 
details are shown in Additional file 1: Table S2.

Reproducibility analysis and feature selection

To assess the reproducibility of radiomics features, thirty images were randomly selected 
for ROI segmentation by two radiologists (reader1 and reader 2). Intraclass correlation 
coefficients (ICCs) were calculated to assess the reproducibility of the radiomics features 
extracted from all the ROI drawn by the two radiologists, and features with an ICC ≥ 0.8 
were considered reliable.

All radiomics features were standardized by the z-score method. The least absolute 
shrinkage and selection operator (LASSO) regression was applied to identify and select 
the optimal radiomics features in the training cohort. Tenfold cross-test method was 
used to determine the best value of parameter λ. According to the non-zero coefficient 
features selected by LASSO, the individual radiomics score (Rad-score) was calculated 
by a linear combination of each feature weighted by its respective coefficients.

Model construction and evaluation

The clinical model, the radiomics model, and the radiomics–clinical model were estab-
lished according to clinical parameters, radiomics features, and radiomics features 
together with clinical parameters, respectively. Support Vector Machines (SVM) was 
adopted to construct the model (Python scikit-learn environment, version 0.21.3). In the 
training cohort, these classification models were trained using tenfold cross-validation, 
and grid search was used for hyperparameter tuning, including “gamma”, “C” and ker-
nel function. Additional file 1: Table S3 documents the hyperparameters of the different 
models.

The model was validated in both the internal and external test cohort, and the predic-
tive performance of the model was assessed in different cohorts using the area under the 
curve (AUC) analysis, A nonparametric bootstrap method was used to calculate the 95% 

http://www.itksnap.org
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confidence interval (CI) by the repeated 2000 times sampling in three cohorts. Decision 
curve analysis (DCA) was also performed to evaluate whether the prediction model con-
tributes to clinical treatment strategies by calculating the net benefits of the model at 
different threshold probabilities in the 3 cohorts (training, internal, and external test).

Statistical analysis

All statistical analyses were performed with SPSS 19.0 (IBM, Armonk, NY), and the data 
distribution was tested using Kolmogorov–Smirnov analysis. Frequencies and percent-
ages were expressed as categorical variables, while the mean and standard deviation as 
continuous variables. Continuous variables were compared by the independent samples 
t test or the Mann–Whitney U test, and the categorical variables by Chi-square test. The 
level of statistically significant difference was set at P < 0.05.
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