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Abstract 

Background: In-hospital cardiac arrest (IHCA) is an acute disease with a high fatality 
rate that burdens individuals, society, and the economy. This study aimed to develop 
a machine learning (ML) model using routine laboratory parameters to predict the risk 
of IHCA in rescue-treated patients.

Methods: This retrospective cohort study examined all rescue-treated patients 
hospitalized at the First Medical Center of the PLA General Hospital in Beijing, China, 
from January 2016 to December 2020. Five machine learning algorithms, includ-
ing support vector machine, random forest, extra trees classifier (ETC), decision tree, 
and logistic regression algorithms, were trained to develop models for predicting 
IHCA. We included blood counts, biochemical markers, and coagulation markers 
in the model development. We validated model performance using fivefold cross-vali-
dation and used the SHapley Additive exPlanation (SHAP) for model interpretation.

Results: A total of 11,308 participants were included in the study, of which 7779 
patients remained. Among these patients, 1796 (23.09%) cases of IHCA occurred. 
Among five machine learning models for predicting IHCA, the ETC algorithm exhibited 
better performance, with an AUC of 0.920, compared with the other four machine 
learning models in the fivefold cross-validation. The SHAP showed that the top ten 
factors accounting for cardiac arrest in rescue-treated patients are prothrombin 
activity, platelets, hemoglobin, N-terminal pro-brain natriuretic peptide, neutrophils, 
prothrombin time, serum albumin, sodium, activated partial thromboplastin time, 
and potassium.

Conclusions: We developed a reliable machine learning-derived model that inte-
grates readily available laboratory parameters to predict IHCA in patients treated 
with rescue therapy.
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Background
In-hospital cardiac arrest (IHCA) is an acute disease with a high fatality rate that bur-
dens individuals, society, and the economy [1, 2]. There are approximately 290,000 cases 
of IHCA in the United States annually, with only 25% of such cases surviving and being 
discharged from the hospital [3]. A study [4] of IHCA in China observed that the inci-
dence of IHCA was 17.5 per 1000 admissions, and the rates of return of spontaneous 
circulation and survival to hospital discharge were 35.5% and 9.1%, respectively. Thus, 
the current situation of IHCA in China is still concerning. Although technologies, such 
as mild hypothermia and extracorporeal membrane oxygenation, are increasingly used 
in cardiac arrest therapy [5, 6], patient prognosis remains poor. Therefore, identifying 
patients with high risk of IHCA is crucial for early intervention.

Machine learning has been demonstrated as a powerful tool that could detect unno-
ticed data trends and patterns in the use of conventional statistical models [7]. Recently, 
machine learning methods are increasingly applied to predict IHCA in hospitalized 
patients, emergency department patients, and intensive care unit patients [8–11]. How-
ever, to the best of our knowledge, a few studies explored approaches for predicting 
IHCA in patients treated with rescue therapy. Compared with previous study patients, 
patients treated with rescue therapy are in worse condition and need more efficient 
risk assessment. Furthermore, laboratory parameter are subject to strict quality control 
and have been identified as independent risk factors of poor patient outcomes [12, 13]. 
However, previous studies mainly focused on the performance of the model, with lim-
ited emphasis on the predictive factors [14–16]. Moreover, most previous studies only 
included blood cell counts and biochemical markers but overlooked the predictive value 
of coagulation markers [9, 11, 17, 18]. A study conducted by Deng et al. reported that 
D-dimer was associated with immediate mortality in patients with IHCA, while other 
markers related to coagulation were not analyzed [19]. Meanwhile, a number of former 
studies included subjective and unstructured variables in prediction modeling, which 
need manual discrimination or data conversion that might not be applicable to a rescue 
setting [8, 11, 20–23]. Laboratory results are objective and readily available; however, no 
previous studies have used machine learning to predict cardiac arrest solely based on 
routine laboratory parameters.

Therefore, we aimed to develop an appreciable model solely using routine laboratory 
data obtained from hospital information system (including blood counts, biochemical 
markers, and coagulation markers) to predict incident IHCA in patients requiring res-
cue therapy.

Results
Population characteristics

A total of 11,308 hospitalized patients receiving rescue therapy were included in this 
study, and 3529 patients were excluded according to the exclusion criteria. Among 7779 
patients included in the present analysis, 1796 patients experienced IHCA (positive sam-
ples) and 5983 patients did not experience IHCA (negative samples) (Fig. 1). The inci-
dence rate of IHCA did not differ by sex (63.73% vs 64.70%, P = 0.453). Patients with 
IHCA were older (80 years old vs 63 years old, P < 0.001) and had a higher proportion of 
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comorbidities, such as hypertension (48.55% vs 38.84%, P < 0.001) and diabetes (25.84% 
vs 21.16%, P < 0.001), compared with those without IHCA (Table 1).

After undersampling, 1796 patients with IHCA and 1796 patients without IHCA 
were included in the model development. Basic characteristics are shown in Additional 
file 2: Table S1. After randomly grouping at a ratio of 8:2, the training set included 2873 
patients and the testing set included 719 patients. The basic characteristics of the train-
ing set and testing set are listed in Table 2. There was no statistically significant differ-
ence between training set and testing set.

Model development and validation

We used a heatmap to present the correlation coefficient between all variables (Fig. 2), 
and the results showed that hemoglobin and red blood cell, direct bilirubin, and total 
bilirubin had high correlation coefficient (> 0.8), respectively. The variable importance 
ranked by extra trees classifier (ETC) algorithm showed that red blood cell and total bili-
rubin had lower variable importance compared with their counterparts. Therefore, we 
discarded red blood cell and total bilirubin in the model development.

ETC, logistic regression, random forest, support vector machine (SVM), and decision 
tree algorithms were used to develop the prediction models of IHCA in patients treated 
with rescue therapy. In the training group, we observed that ETC algorithm showed bet-
ter performance compared with the other four algorithms (area under curve [AUC], 
0.939 in ETC vs. 0.896 in logistic regression, 0.938 in random forest, 0.829 in SVM, and 
0.871 in decision tree; P for comparison < 0.01) (Table 3 and Fig. 3). In the testing group, 
ETC algorithm also showed the best performance among five algorithms (AUC, 0.920 in 
ETC vs. 0.895 in logistic regression, 0.877 in random forest, 0.864 in SVM, and 0.843 in 
decision tree; P for comparison < 0.01) (Table 3 and Fig. 3). After fivefold cross-validation, 

Fig. 1 The screening phase flowchart. OHCA out-of-hospital cardiac arrest, IHCA in-hospital cardiac arrest
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the ETC algorithm generally provided the best overall performance regarding the AUC, 
accuracy, specificity, sensitivity, and F1-score compared with the other four algorithms 
(Table 3 and Fig. 4), indicating the consistency and robustness of our model. After con-
sidering these scores, especially the AUCs, we chose ETC model as the final prediction 
model. The hyperparameters for the ETC model as selected are summarized as follows: 
number of trees (n_estimators) = 100, supported criteria (criterion) = gini, maximum 

Table 1 Baseline characteristics of the non-IHCA cohort and the IHCA cohort

BMI Body Mass Index, PT prothrombin time, PTA prothrombin activity, TT thrombin time, NT-proBNP N‑terminal pro‑BNP, 
APTT activated partial thromboplastin time, CRP C‑reactive protein

Characteristic mean (SD) or N (%) Non-IHCA (n = 5983) IHCA (n = 1796) P value

Age, years 63 (51–73) 80 (65–87.25) < 0.001

Gender = male 3813(63.73) 1162 (64.70) 0.453

BMI, kg/m2 24 (21–27) 22 (19–25) < 0.001

Smoking 1691 (28.26) 416 (23.16) < 0.001

Drinking 1610 (26.91) 342 (19.04) < 0.001

Complications

 Hypertension 2324 (38.84) 872 (48.55) < 0.001

 Diabetes 1266 (21.16) 464 (25.84) < 0.001

Laboratory results

 d-Dimer, ug/ml 1.18 (0.44–2.99) 3.51 (2.03–7.11) < 0.001

Sodium, mmol/l 140.4 (137.6–142.6) 142.2 (136.8–148.8) < 0.001

White blood cell count,  109/l 7.23 (5.41–10.27) 11.9 (7.34–17.71) < 0.001

Direct bilirubin, umol/l 3.9 (2.6–6.62) 10.8 (5–34.4) < 0.001

PT, s 14 (13.2–15.3) 19.1 (16.1–24.4) < 0.001

PTA, % 86 (73–97) 50 (35–67) < 0.001

TT, s 15.9 (15–16.9) 17.1 (15.5–20.55) < 0.001

Phosphorous, mmol/l 1.07 (0.89–1.25) 1.19 (0.83–1.72) < 0.001

Creatinine, umol/l 75.9 (60.9–97.2) 132.2 (75.7–230.3) < 0.001

Lumbar disc herniation, U/l 191.5 (152.78–294.3) 391.35 (250.88–741.48) < 0.001

Alanine aminotransferase, U/l 17.7 (11.1–32.9) 20.65 (9.3–56.98) < 0.001

Potassium, mmol/l 3.92 (3.64–4.23) 4.28 (3.81–4.85) < 0.001

NT-proBNP, pg/ml 414.25 (114.2–1797.75) 5006 (1462.75–12,468.25) < 0.001

Magnesium, mmol/l 0.86 (0.79–0.92) 0.88 (0.75–1) < 0.001

Glucose, mmol/l 6.06 (4.94–8.15) 8.56 (6.47–12.07) < 0.001

Platelets,  109/l 198 (151–255) 92 (40–167) < 0.001

Amylase, U/l 53.6 (37.7–79.18) 71.2 (38.98–136.5) < 0.001

Hemoglobin, g/l 119 (98–136) 87 (73–104) < 0.001

Calcium, mmol/l 2.17 (2.05–2.26) 2.05 (1.88–2.18) < 0.001

APTT, s 37.9 (34.2–42.9) 49.4 (42–62.08) < 0.001

Hematocrit, L/l 0.35 (0.29–0.4) 0.26 (0.22–0.32) < 0.001

Fibrinogen, g/l 3.54 (2.84–4.6) 2.92 (1.9–4.18) < 0.001

Neutrophils 0.72 (0.61–0.86) 0.88 (0.8–0.93) < 0.001

Total protein, g/l 64.4 (58.3–69.5) 57.1 (51.1–63.3) < 0.001

Troponin T, ng/ml) 0.02 (0.01–0.13) 0.11 (0.05–0.28) 0.009

Serum uric acid, umol/l 302.1 (230.6–388.48) 387.9 (249.55–562.35) 0.001

Chloride, mmol/l 103.1 (100.1–105.9) 102.4 (97–108.7) 0.001

Serum albumin, g/l 37 (32.2–40.6) 31 (27.4–34.7) < 0.001

Aspartate aminotransferase, U/l 20.1 (14.4–39) 42.95 (21–125.45) < 0.001

CRP, mg/dl 1.31 (0.21–5.7) 6.77 (3.03–12.13) < 0.001
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tree depth (max_depth) = 12, minimum number of samples leaf (min_samples_leaf ) = 1, 
and minimum number of samples split (min_samples_split) = 2.

Model interpretation

As shown in Fig. 5a, the mean absolute SHapley Additive exPlanation (SHAP) value 
indicates individual feature importance in the ETC model, and the top ten variables 

Table 2 Baseline characteristics of the undersampled training cohort and the testing cohort

BMI Body Mass Index, PT prothrombin time, PTA prothrombin activity, TT thrombin time, NT-proBNP N‑terminal pro‑BNP, 
APTT activated partial thromboplastin time, CRP C‑reactive protein

Characteristic mean (SD) or N (%) Training (n = 2873) Testing (n = 719) P value

Age, years 70 (57–83) 71 (57–83) 0.839

Male 1838 (63.97) 455 (63.28) 0.730

BMI, kg/m2 23 (20–26) 24 (21–26) 0.060

Smoking 759 (26.42) 184 (25.59) 0.652

Drinking 688 (23.95) 157 (21.84) 0.233

Complications

 Hypertension 1268 (44.14) 333 (46.31) 0.293

 Diabetes 677 (23.56) 166 (23.09) 0.787

Laboratory results

 d-Dimer, ug/ml 2.22 (0.83–4.85) 2.3 (0.81–4.6) 0.635

Sodium, mmol/l 140.9 (137.1–144.6) 141.1 (137.8–145.1) 0.601

White blood cell count,  109/l 8.91 (5.95–14.01) 8.81 (5.96–13.25) 0.286

Direct bilirubin, umol/l 5.8 (3.1–14.6) 5.9 (3.1–14.7) 0.011

PT, s 15.2 (13.7–18.7) 15.4 (13.8–19.5) 0.348

PTA, % 74 (52–90) 72 (49–90) 0.203

TT, s 16.2 (15.2–17.8) 16.2 (15–18.1) 0.441

Phosphorous, mmol/l 1.1 (0.86–1.38) 1.13 (0.88–1.47) 0.059

Creatinine, umol/l 88.2 (64.35–163.2) 86.4 (63. 4–155.6) 0.187

Lumbar disc herniation, U/l 259.5 (173.1–483.8) 281 (176.6–520.55) 0.552

Alanine aminotransferase, U/l 18.2 (10.6–40.9) 19.75 (10.38–40.65) 0.203

Potassium, mmol/l 4.04 (3.71–4.51) 4.04 (3.71–4.52) 0.886

NT-proBNP, pg/ml 1762 (379.7–6683.25) 1732 (284.82–7611.5) 0.637

Magnesium, mmol/l 0.86 (0.77–0.95) 0.87 (0.79–0.96) 0.109

Glucose, mmol/l 7.24 (5.36–10.09) 7.18 (5.35–10.41) 0.652

Platelets,  109/l 160 (85–226) 160 (78–225) 0.371

Amylase, U/l 60.3 (38.4–106.4) 62.6 (38.28–110.5) 0.414

Hemoglobin, g/l 102 (82–126) 100 (80–125) 0.835

Calcium, mmol/l 2.11 (1.96–2.24) 2.12 (1.95–2.23) 0.496

APTT, s 40.8 (36.1–50.3) 41.1 (35.5–52.28) 0.326

Hematocrit, L/l 0.31 (0.25–0.37) 0.31 (0.24–0.37) 0.436

Fibrinogen, g/l 3.35 (2.47–4.46) 3.4 (2.51–4.42) 0.807

Neutrophils 0.83 (0.68–0.9) 0.83 (0.69–0.9) 0.640

Total protein, g/l 61 (53.9–67) 61.1 (53.6- 67.5) 0.820

Troponin T, ng/ml) 0.06 (0.02–0.23) 0.08 (0.02–0.23) 0.479

Serum uric acid, umol/l 327.7 (235.25–467.75) 331.7 (234.65–458.1) 0.911

Chloride, mmol/l 102.9 (98.8–106.8) 103.2 (99.1–107.1) 0.940

Serum albumin, g/l 33.7 (29.2–38.3) 34.2 (29.02–38.7) 0.633

Aspartate aminotransferase, U/l 27 (16–74.9) 28.1 (16.2–73.7) 0.264

CRP, mg/dl 3.94 (0.88–9.8) 4.75 (0.84–10.09) 0.277
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Fig. 2 Correlation between variables. WBC white blood cell, PT prothrombin time, PTA prothrombin 
activity, TT thrombin time, LDH lumbar disc herniation, ALT alanine aminotransferase, NT-proBNP N-terminal 
pro-BNP, RBC red blood cells, APTT activated partial thromboplastin time, TnT troponin T, AST aspartate 
aminotransferase, CRP C-reactive protein

Table 3 Summary of model performance of five machine learning algorithms

AUC , area under the curve

Model AUC Accuracy Specificity Sensitivity F1-score

Training set

 Extra trees classifier 0.939 0.858 0.829 0.901 0.863

 Logistic regression 0.896 0.806 0.840 0.753 0.794

 Random forest 0.938 0.853 0.825 0.894 0.858

 Support vector machine 0.829 0.511 0.504 0.987 0.667

 Decision tree 0.871 0.825 0.783 0.896 0.836

Testing set

 Extra trees classifier 0.920 0.834 0.818 0.869 0.843

 Logistic regression 0.895 0.807 0.841 0.766 0.802

 Random forest 0.877 0.784 0.831 0.725 0.774

 Support vector machine 0.864 0.542 0.527 0.995 0.689

 Decision tree 0.843 0.794 0.768 0.856 0.809

Fivefold cross-validation

 Extra trees classifier 0.920 0.841 0.787 0.895 0.849

 Logistic regression 0.894 0.808 0.816 0.798 0.805

 Random forest 0.889 0.803 0.853 0.754 0.792

 Support vector machine 0.867 0.570 0.156 0.985 0.697

 Decision tree 0.848 0.806 0.753 0.858 0.816
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were prothrombin activity (PTA), platelets (PLT), hemoglobin, N-terminal pro-BNP 
(NT-proBNP), neutrophils, prothrombin time (PT), serum albumin, sodium, acti-
vated partial thromboplastin time (APTT), and potassium. According to the sum-
mary plot (Fig.  5b), PTA, PLT, hemoglobin, and serum albumin were negatively 
correlated with IHCA occurrence. For example, a low PTA increases the importance 
of IHCA prediction, whereas a high PTA reduces the importance of IHCA predic-
tion. In contrast, NT-proBNP, neutrophils, PT, sodium, APTT, and potassium were 
positively correlated with IHCA occurrence. The dependence plots of the SHAP 
value of top ten important variables are shown in Additional file 1: Fig. S1. The dif-
ference of abnormalities of top ten important variables between patients with and 
without IHCA is shown in Additional file 2: Table S2 [24–30]

Fig. 3 The ROC curve of different machine learning algorithms predicting IHCA in the training group and 
testing group. ROC receiver-operating characteristic, SVM support vector machine

Fig. 4 The ROC curve of different machine learning algorithms predicting the IHCA in the fivefold 
cross-validation. ROC receiver-operating characteristic, SVM support vector machine
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Discussion
In this study, we developed a machine learning-derived prediction model of IHCA 
in patients treated with rescue therapy. After fivefold cross-validation, the prediction 
model of IHCA based on the ETC algorithm showed the best performance among 
five algorithms used for model development. The SHAP interpreted the output of 
machine learning model and estimated the positive and negative contributions of 
each feature to the model prediction. The top ten important variables included PTA, 
PLT, hemoglobin, NT-proBNP, neutrophils, PT, serum albumin, sodium, APTT, and 
potassium, which are important predictors for IHCA in rescue-treated patients and 

Fig. 5 SHapley Additive exPlanations (SHAP) results. a SHAP feature importance; b SHAP summary plot 
of the top 20 variables. PTA prothrombin activity, NT-proBNP N-terminal pro-BNP, PT prothrombin time, 
APTT activated partial thromboplastin time, CRP C-reactive protein, WBC white blood cell, LDH lumbar disc 
herniation, AST aspartate aminotransferase, TT thrombin time, ALT alanine aminotransferase, TnT troponin T
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provide valuable information for early intervention in rescue-treated patients to pre-
vent IHCA.

ETC algorithm is an ensemble classifier that uses unpruned decision trees from the 
training datasets to construct an extremely randomized or extra tree classifier [31]. In 
this study, the ETC model showed excellent performance and better predictive power 
than the other four machine learning models. Notably, this model could predict the 
occurrence of IHCA in 24 h after testing laboratory parameters, and all variables were 
easy to obtain and under strict laboratory quality control. Therefore, this model is suit-
able for clinical practice in large tertiary hospitals.

Coagulopathy often occurs after resuscitation from cardiac arrest or during cardiac 
arrest [32]. Previous studies [33] have suggested that consumptive coagulopathy played 
a central role in the pathogenesis of cardiac arrest and the activation of the coagulation 
system was persistent during cardiac arrest. Among rescue-treated patients, sepsis-
related coagulation dysfunction is one of the most common causes of death [34–36]. 
Because of the excessive production of plasminogen activator inhibitor-1, sepsis-related 
disseminated intravascular coagulation (DIC) causes excessive inhibition of fibrinoly-
sis and may result in related prothrombotic effects, leading to reduced tissue perfusion, 
organ dysfunction, and poor outcomes [37, 38]. PT, APTT, and PLT are generally used 
to evaluate blood coagulation function, and have a high predictive value for DIC predic-
tion [39]. Moreover, previous studies [40, 41] have indicated that PT prolongation and 
PLT decline are associated with increased mortality in patients with sepsis. Consistently, 
our study showed that coagulation markers are important predictors for IHCA. PT and 
APTT were positively correlated with the occurrence of IHCA, whereas PTA and PLT 
were negatively correlated with the occurrence of IHCA. 16.09% of patients with IHCA 
had abnormally prolonged PT by more than 3 s, and 42.20% of patients with IHCA had 
a PLT < 100 ×  109/L. However, clinicians always ignored coagulation disorders at an early 
stage, because these coagulation parameters were easily affected by multiple diseases 
and the fluctuation range is large [39, 42]. The findings of our study indicated that more 
attention should be paid to the progressive deterioration of coagulation parameters. It is 
necessary to monitor coagulation parameters in patients treated with rescue therapy and 
intervene coagulation disorders as early as possible.

As a commonly used infection index in clinics, neutrophils have been proven as bio-
markers of sepsis [43, 44], which explains the finding that higher neutrophils was posi-
tively correlated with the occurrence of IHCA. Consistently, patients with cardiac arrest 
were frequently accompanied with infection, as shown in Additional file 1: Fig. S1. Albu-
min is the one of the most important components in human plasma, which can reflect 
the nutritional status and maintain osmotic pressure. Hofer et  al. [45] found that the 
plasma albumin level in septic patients was significantly lower than that in non-septic 
patients. Our study found that serum albumin was negatively correlated with incident 
IHCA, which supports the effort of early management on nutritional status to prevent 
the occurrence of IHCA.

Previous studies [3] suggested that cardiovascular problems are the most com-
mon cause of cardiac arrest (50–60%). Higher brain natriuretic peptide is signifi-
cantly associated with more severe cardiac injury and poorer prognosis. Pfister et al. 
[46]showed that NT‐proBNP was associated with both death and cardiovascular 
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composite outcomes in a clinical population of patients with cardiovascular disease 
or chronic kidney disease. Similar to these findings, the SHAP results in our study 
showed that NT-proBNP is a strong predictor of IHCA and those with high NT-
proBNP were more likely to suffer IHCA. In addition, 64.25% of patients with IHCA 
had an NT-proBNP level > 450 pg/mL, as shown in Additional file 2: Table S2.

Electrolyte disorder is one of the potential cause of cardiac arrest, among which 
potassium disorder is closely related to life-threatening arrhythmia [47]. Potassium 
is the main intracellular cation in the human body, which regulates the cardiac func-
tion, bones’ metabolism, and acid–base balance. Abnormality in potassium concen-
tration can lead to serious complications. Patients with hyperkalemia are in extremely 
high risk of life-threatening cardiac arrest. Meanwhile, our study found that the level 
of sodium is positively correlated with the occurrence of IHCA in rescue-treated 
patients. A former study suggested that hypernatremia (> 145 mmol/L) can increase 
the risk of mortality [25]. Coppini et  al. [48] found that the change in intracellular 
calcium homeostasis and the increase of late sodium current promoted arrhythmia. 
Additionally, Wu et al. [11] found that low level of hemoglobin is related to incident 
cardiac arrest. Taken together, these findings explain the importance of electrolyte 
and hemoglobin in the prediction of IHCA and suggest that the blood concentra-
tion of electrolyte and hemoglobin should be monitored frequently in rescue-treated 
patients to better prevent the occurrence of IHCA.

The major strength of our study is that we developed a reliable machine learning 
model to predict IHCA in rescue-treated patients solely using readily available labo-
ratory parameters, which minimums the potential subjective bias that is common in 
self-reported data and medical texts, and enables our model to be more robust and 
applicable. This model promotes accurate prediction for IHCA in rescue-treated 
patients, which may further reduce the burden in frontline healthcare and improve 
the rescue success rate. However, several limitations should be considered. First, the 
major limitation of our study is that we only included patients from a single hospi-
tal, lacking external validation, and due to issues like missing data, we were unable 
to compare our results with the existing models. This may limit the generalizability 
of our model to other hospitals or regions. However, we only used objective labora-
tory test data in model development. The homogeneous nature of laboratory test data 
could help to reduce potential confounding due to region and health care disparities. 
Second, our study was based on a retrospective design, which may cause selection 
bias. Future prospective study and external validation are still warranted to further 
validate the model of our study.

Conclusion
We developed an appreciable ETC model to predict IHCA in rescue-treated patients 
solely using routine laboratory parameters. The model showed that the major risk fac-
tors for IHCA in rescue-treated patients were PTA, PLT, hemoglobin, NT-proBNP, 
neutrophils, PT, serum albumin, sodium, APTT, and potassium. During the hospitali-
zation of rescue-treated patients, physicians should attach great importance to fre-
quently monitoring these parameters to prevent the occurrence of IHCA as possible.
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Methods
Study population

This study was reviewed and approved by the ethics committee of the First Medi-
cal Center of Chinese PLA General Hospital (Ethics approval number: S2023-282-01). 
Rescue-treated patients were retrospectively identified from the hospital information 
system at the First Medical Center of the PLA General Hospital in Beijing, China, 
from January 2016 to December 2020. The inclusion criteria [11, 49, 50] were: (1) 
age ≥ 18 years and (2) length of hospital stay > 24 h; the exclusion criteria [11, 49, 50] 
were: (1) patients who had IHCA before rescue treatment, (2) patients who had his-
tory of out-of-hospital cardiac arrest (OHCA), (3) patients who had IHCA during sur-
gery, and (4) patients with missing data on laboratory test.

Prediction outcome

The primary outcome measure was the incidence of IHCA. This study defined IHCA 
as hospitalized patients whose pulse disappeared and required chest compression or 
defibrillation because of electrical defibrillation/cardioversion events. Only the first 
cardiac arrest that occurred in the hospital was analyzed [3, 49, 51].

Candidate features

We abstracted data of the rescue-treated patients from the hospital information sys-
tem. The following variables were collected: (1) demographic data: sex, age, body 
mass index (BMI), drinking, and smoking history; (2) basic diseases: hypertension and 
diabetes; (3) laboratory results: blood counts, biochemical markers, and coagulation 
markers, and C-reactive protein (CRP). For patients who experienced IHCA (posi-
tive samples), we collected laboratory data that were tested within the 24  h before 
incident IHCA. For patients who did not experienced IHCA (negative samples), we 
collected laboratory data that were tested within the 24 h after admission.

Data processing

Candidate variables with missing values greater than 40% were excluded [52]. We cal-
culated correlation coefficient between all variables and identified those pairs with 
high correlation coefficient (> 0.8). In the pair of variables with high correlation coef-
ficient, the one with lower variable importance would be excluded. We discarded out-
liers of each variable, which were defined as values whose difference with mean was 
greater than threefold standard deviation. Missing values were handled using means 
substitution method [53, 54]. Finally, given that the negative samples are several times 
of positive samples in our study, we conducted undersampling using k-means cluster-
ing algorithm to balance the imbalanced data sets. The k-means algorithm recognizes 
each negative sample as an eigenvector and divides all negative samples into n eigen-
vector datasets with similar features, where n is the same with the number of positive 
samples. For each dataset, the k-means algorithm selects 1 eigenvector, which is the 
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closest to the mean of the eigenvectors in the dataset, as a negative sample, and ulti-
mately forms a dataset with n negative samples to create sample balance [55].

Model development and validation

The dataset used for model development was randomly partitioned into two samples: 
80% of the participants for model training and parameter learning and 20% of the par-
ticipants for model performance evaluation and comparison. We used the ETC, logistic 
regression, random forest, SVM, and decision tree algorithms to develop a model for 
early prediction of IHCA. The performance metrics of the five models were evaluated 
by calculating the AUC of the receiver-operating characteristic curve, accuracy, specific-
ity, sensitivity, and F1-score. Furthermore, we performed fivefold cross-validation to test 
the consistency and robustness of the model. To interpret the final predictive model, we 
used SHAP to explain the output of the model by evaluating the variable importance 
and the impact direction of variables [56]. Model development and validation were con-
ducted using Python Version 3.8 (Python Software Foundation, Wilmington, DE, USA).

Statistical analysis

Continuous variables with a normal distribution were presented as the mean ± standard 
deviation, and t tests were used for comparison between groups. Furthermore, non-nor-
mally distributed continuous variables were presented as median (interquartile range). 
Moreover, the Mann–Whitney U test was used for comparisons between groups. Cate-
gorical variables were presented as percentages (%), and the Chi-square test was used for 
comparisons between groups. To enhance the interpretability of our model, we provided 
the difference of abnormalities of parameters with high feature importance between 
patients with and without IHCA. All statistical analyses were conducted using SPSS sta-
tistical software (version 26.0; IBM Corp., Armonk, NY, USA). P value < 0.05 was consid-
ered statistically significant.
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