
Detecting bulbar amyotrophic lateral 
sclerosis (ALS) using automatic acoustic analysis
Leif E. R. Simmatis1,2,4*, Jessica Robin3, Michael J. Spilka3 and Yana Yunusova1,2,4 

Introduction
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that 
affects volitional motor control, visceral functions, and cognitive abilities. Survival with 
ALS, from disease onset, is estimated to be between 20 and 48  months [6]. Further-
more, ALS frequently causes speech impairment [37] secondary to bulbar motor system 
involvement. This can be devastating for patients and their families and has motivated 
substantial work to better understand patterns of bulbar/speech changes in people with 
ALS.

Abstract 

Automatic speech assessments have the potential to dramatically improve ALS clini-
cal practice and facilitate patient stratification for ALS clinical trials. Acoustic speech 
analysis has demonstrated the ability to capture a variety of relevant speech motor 
impairments, but implementation has been hindered by both the nature of lab-
based assessments (requiring travel and time for patients) and also by the opac-
ity of some acoustic feature analysis methods. These challenges and others have 
obscured the ability to distinguish different ALS disease stages/severities. Validation 
of automated acoustic analysis tools could enable detection of early signs of ALS, 
and these tools could be deployed to screen and monitor patients without requiring 
clinic visits. Here, we sought to determine whether acoustic features gathered using 
an automated assessment app could detect ALS as well as different levels of speech 
impairment severity resulting from ALS. Speech samples (readings of a standard-
ized, 99-word passage) from 119 ALS patients with varying degrees of disease sever-
ity as well as 22 neurologically healthy participants were analyzed, and 53 acoustic 
features were extracted. Patients were stratified into early and late stages of disease 
(ALS-early/ALS-E and ALS-late/ALS-L) based on the ALS Functional Ratings Scale-
Revised bulbar score (FRS-bulb) (median [interquartile range] of FRS-bulbar scores: 
11[3]). The data were analyzed using a sparse Bayesian logistic regression classifier. It 
was determined that the current relatively small set of acoustic features could distin-
guish between ALS and controls well (area under receiver-operating characteristic 
curve/AUROC = 0.85), that the ALS-E patients could be separated well from control 
participants (AUROC = 0.78), and that ALS-E and ALS-L patients could be reasonably 
separated (AUROC = 0.70). These results highlight the potential for automated acoustic 
analyses to detect and stratify ALS.
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Instrumental lab-based investigations of speech in ALS have demonstrated the 
value of speech assessment technologies for detecting and tracking ALS progression. 
The objective measurements afforded by the technologies provide information over 
and above that which can be gleaned by a clinician [32]. They can capture early signs 
of disease [26], be used to characterize ALS subgroups, including disease severity 
classifications [28], and distinguish patients from controls [39]. Detection of early 
signs of bulbar ALS is a substantial challenge that is very important to address for 
improving disease management [11]. However, lab-based systems tend to be com-
plex and require trained personnel to operate them, even in the context of audio-
only recordings. Furthermore, lab-based methods require dedicated lab space and 
for patients to visit a physical location outside the clinic, which requires time and 
effort for the patients. This creates barriers to data collection and precludes the 
incorporation of such tools into clinical practice or clinical trials, ultimately hinder-
ing technology adoption.

There has been great interest in developing remote, easy to use, and conveni-
ent speech assessment technologies for detection and tracking of ALS progres-
sion over time. Remote assessment systems have been developed by several groups 
in the recent years and have demonstrated great promise. For example, they have 
been used for distinguishing between ALS and control groups [21] and quantify-
ing change over time in ALS acoustics [34]. They also have been well-tolerated by 
ALS patients [29]. Some recent work by Modality.AI has additionally utilized remote 
assessment for ALS detection as well as stratification of patients into bulbar and 
presymptomatic (i.e., lacking overt bulbar symptoms) patient groups [20]. However, 
their study focused on only a few features relating to pause timing and rate. There 
may be additional value in a more representative, but still compact, acoustic feature 
set that captures speech metrics from other domains such as voice quality. Collec-
tively, an acoustic feature pipeline that can be utilized remotely could be of great 
value for stratifying patients for e.g., clinical trials or for more effective clinical deci-
sion making.

In the present study, we sought to validate an analytical pipeline developed by 
Winterlight Labs to detect signs of ALS from speech samples, as well as distinguish 
between severities of ALS-related speech impairments. Winterlight’s remote assess-
ment system has been used extensively for detecting cognitive–linguistic impair-
ments associated with a variety of neurodegenerative and psychiatric diseases [2, 10, 
14, 25], but not yet the speech motor impairment and not yet in ALS. The pipeline 
extracts a variety of acoustic features making it well suited for motor speech assess-
ment in ALS. Here, we hypothesized that a core set of acoustic features derived 
from Winterlight’s assessment pipeline could distinguish bulbar motor stages of the 
ALS (i.e., AUROC > 0.70) (1) ALS patients from control participants, (2) early ALS 
(ALS-E) patients from control participants, and (3) early ALS (ALS-E) from late ALS 
(ALS-L) patients. We additionally hypothesized that (4) weights given to individual 
features would be clinically interpretable in terms of relation to ALS and disease 
severity, and (5) that features influenced by sex (e.g., fundamental frequency meas-
ures) would not contribute substantially to modelling disease progression.
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Results
Classification results

Classification results suggested that it was possible to separate ALS (median [inter-
quartile range] FRS-bulbar scores: 11[3]) and control groups as well as ALS-E and 
ALS-L; AUROC was ≥ 0.70 for all comparisons. A plot of the 10 folds of ALS vs. 
control participants is shown in Fig.  1. We observed that the mean AUROC of the 
all-ALS vs control comparison was good (0.85), the AUROC of the ALS-E vs ALS-L 
comparison was somewhat lower (0.70), and that of the ALS-E vs. control comparison 
split the difference (0.78).

Feature coefficients

We identified across the ten train/test splits that certain groups of acoustic features 
tended to weight more strongly than others. See Fig. 2 for a summary of aggregated fea-
ture coefficients. It is evident that features from categories, such as speaking rate, inten-
sity, F0 distributional characteristics (e.g., range), and shimmer tended to have higher 
feature weights, whereas ZCR, jitter, HNR, and pause statistics tended to have lower 
coefficient magnitudes. Some feature weights also reflected differences in disease sever-
ity. For example, in the ALS vs. control comparison, speech rate had a + 0.36 coefficient, 
indicating that the speech rate in controls was higher than the ALS-E patients. In the 
ALS-E vs. ALS-L comparison, average word duration had a − 0.63 coefficient, indicating 
that the ALS-E average word duration was lower than the ALS-L patients.

Impact of sex

We observed that the impact of sex as a covariate was not substantial in the majority 
of the ten trained and evaluated models. In all cases, the no-interaction model was 
either a better fit to the data, or the interaction did not fit the data substantially bet-
ter. Thus, we retained the simpler model without interactions.

Discussion and conclusion
In this study, we validated an automated acoustic pipeline developed by Winterlight Labs 
for the purposes of stratifying ALS patients by bulbar disease severity. We observed that 
a relatively small set of the core acoustic features (n = 53) derived from the automated 
analysis were able to detect ALS well (mean AUROC across ten test sets was 0.85) but, 
importantly, we were able to detect early signs of bulbar impairment at a comparable 
rate (mean AUROC = 0.78) and could even reasonably distinguish between ALS severi-
ties (mean AUROC = 0.70). Furthermore, acoustic features that are known to change 
with the disease severity in ALS (e.g., speech rate) [40] were given strong coefficients, 
validating the use of the pipeline for capturing speech changes in ALS. Finally, the mod-
els that included a sex-interaction term were not substantially better fits for the data 
than models without interaction terms. These results highlighted the substantial prom-
ise of the Winterlight system for the detection of bulbar motor changes overall as well as 
the detection of early bulbar changes in patients with ALS.

Additional research groups have explored the detection of ALS at various stages 
using acoustic features (sometimes in combination with kinematic features) and their 
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Fig. 1 Receiver-operating characteristic (ROC) plots for all 10 held-out test set folds of each comparison. AUC 
(i.e., AUROC) is indicated for each fold. Folds and legend labels for AUC are color-coded. Axes (true positive 
rate, false positive rate) are identical across all three plots. Finally, the summary statistics are depicted in each 
panel corresponding to mean ± standard deviation (SD)
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classifiers’ performance was generally in line with that observed here. Modality.AI 
[20] used a multimodal dialogue agent to assist in the extraction of acoustic and kin-
ematic speech features. They additionally stratified patients into bulbar symptomatic 

Fig. 2 Aggregated feature coefficients across the three different binary classification conditions. In general, 
positive values correspond to the less-impaired group having higher values. Stronger weights are indicated 
by either darker orange (positive weights) or darker blue (negative weights) cell colours, and weights are 
additionally annotated. Feature names are indicated on the vertical axis. ac autocorrelation, apq amplitude 
perturbation quotient (3, 5, and 11-point cases), cc cross-correlation, ct count, db decibels, dda average 
absolute difference in amplitudes between periods, ddp difference of difference of periods, dur duration, Fo 
fundamental frequency, HNR harmonic/noise ratio, int intensity, max maximum, med medium, min minimum, 
norm normalized, ppq5 5-point pitch perturbation quotient, rap relative average perturbation, var variance, 
Zcr zero-crossing rate
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and presymptomatic groups. Their AUC performance was comparable to that of the 
present study; severe patients vs control mean AUC was 0.92, followed by a mean 
AUC of 0.81 for bulbar vs presymptomatic, and a mean AUC of 0.62 for controls vs 
presymptomatic patients. Our results by comparison were 0.85 (note: all patients 
rather than only severe patients), 0.70, and 0.78 for the corresponding comparisons. 
The difference in performance between the (A) less-severe vs more-severe compari-
son, and the (B) less severe vs control comparison may reflect differences in stratifi-
cation cutoff. Neumann et al. did not allow an FRS-Bulb score of 11/12 to count as 
“early” disease, whereas we did. Additional differences included our preponderance 
of ALS patients vs. controls (119 patients vs 22 controls) as compared to the inverse 
in Neumann’s work (29 patients vs 68 controls). Higher performance of voice-based 
classification has been reported [35, 39], but these either did not stratify patients into 
groups, or included mel-frequency cepstral coefficients, that we did not include in the 
present work because of the difficulty in their clinical interpretation.

Salient patterns were observed in the features that were given strong weights in the 
classification results. For example, rate-related features typically had relatively high 
coefficient values across all three of the binary comparisons. However, they were 
much stronger in ALS-L vs. ALS-E compared to, e.g., ALS-E vs. control. This reflects 
the greater rate of decline in speaking rate with more advanced disease [9], although it 
is notable that Allison et  al. [1] identified rate/pause related features as important for 
early detection of bulbar symptoms as well,this may reflect differences in the dataset or 
in the determination of “early” ALS (they used a self-report threshold of < 12 on FRS-
Bulb, which differs from our present criteria of ≤ 11/12). Other measures of articulation 
timing and control such as voice onset time have been shown to differ between early 
and late stages of ALS as well [36]. Additional features from phonatory and respiratory 
categories may show differential effects of disease severity that could correspond to the 
findings from the present study. For example, previous work has identified that maxi-
mum F0 and F0 range are important features for predicting intelligibility loss [18, 27], 
and phonatory instability is known to increase in advanced ALS [23]. In terms of res-
piratory features, the previous work has identified that impairment of respiratory mus-
cles (in particular expiratory muscles) occurs rapidly in ALS, which may correspond to 
the current observation of a strong weight applied to the intensity features (e.g., median 
intensity) [16]. Finally, it is notable that many of the features in our models, including the 
ones aggregated across multiple test-set repetitions, tended to be close to 0. For instance, 
across all three of the binary classifications, HNR features tended to have low-magnitude 
coefficient values, suggesting that they were not important for any of the classifications. 
This is likely a consequence of our choice of regularization approach, which makes inter-
pretation of the patterns across groups more straightforward.

Some of the features that we would have most expected to be affected by sex typi-
cally had low feature weights. This was particularly the case in the F0 mean and F0 
median features, which had low feature weights in the all-ALS vs. control and ALS-E 
vs. control comparisons. This observation supports our choice to not model interactions 
between sex and acoustic features in the present analysis. We acknowledge that at later 
stages of disease severity, there can be differential patterns of F0 change between males 
and females with males demonstrating higher F0 and females—lower F0 with disease 
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progression [17, 24]. This could explain their lower performance for distinguishing ALS 
severity groups. Notably, the weights for F0 features increased slightly in the ALS-E vs. 
ALS-L comparisons, which is unlikely to be due to a sex imbalance given that in the 
ALS-L group, 56% of participants were males, as compared to 63% in the ALS-E group. 
Potentially this is due to changes in the F0 that occur with disease progression [23].

There are many important clinical extensions to the present study that can comple-
ment our present efforts to distinguish ALS and control groups and different severities 
of ALS. There is rapidly growing literature highlighting the potential for speech acous-
tics to be used for disease differentiation and prognostication. For example, Milella et al. 
[19] identified that vowel space area from sustained vowel tasks, and alternating/sequen-
tial motion rates from diadochokinetic tasks, could capture differences between upper 
vs. lower motor neuron endotypes. Furthermore, acoustic analysis has the potential to 
track [34] and prognosticate [33] change over time in ALS-related speech impairments. 
These studies collectively highlight the value of speech analysis as a putative digital bio-
marker in ALS. These, along with possibly complementary modalities, such as magnetic 
resonance imaging (MRI) [3] may be useful for survival prediction in ALS [13, 30]. Given 
that speech networks in the brain can be altered in ALS [31], this or other data could be 
fruitful for developing a multimodal understanding of disease progression in ALS.

Our study has some limitations to be addressed in future research. An important 
consideration is that, of the > 750 features in the Winterlight pipeline, only the 53 here 
pertain to acoustics, and are drawn from a relatively small number of feature domains 
(e.g., many related to rate and pauses). This limits the ability to represent impairments 
in diverse domains of speech such as the resonatory subsystem, which can be affected in 
ALS [8]. It is also notable that the balance of feature types in the Winterlight feature set 
was biased substantially towards articulatory features. Many of these features were given 
relatively high feature weights, but they likely captured the same overall constructs, 
despite measuring e.g., pauses of different durations. Potentially, the methods to address 
collinearity could be of benefit to this analysis in future studies. We could additionally 
explore methods for accounting for more covariates, such as age and education level (in 
addition to sex as adjusted for here), which might provide better generalization in larger 
real-world datasets. Classification analysis demonstrated that in cases where the number 
of features exceeds the number of observations, it is not possible to select more predic-
tors than observations using a Laplace prior [38]. In practice, we did not expect to have 
a large number of important predictors, and empirically we observed good performance 
of the LASSO (i.e., Laplace) as implemented here. However, this is taken under advi-
sory for future work to explore different coefficient shrinkage methods, particularly in 
cases where there may be many more than 53 acoustic features to analyze. We also had 
a relatively imbalanced dataset between ALS and control participants; we addressed this 
using robust analysis and scoring methods (Bayesian methods with AUROC evaluation) 
that is resistant to influence by class imbalances. However, a larger control dataset might 
enable a more detailed appreciation of acoustic patterns associated with healthy per-
formance and enable comparisons between ALS and other neurodegenerative diseases 
as well. Furthermore, we empirically demonstrated that AUROCs were relatively con-
sistent across the held-out test sets, suggesting that, although small, our control cohort 
was at least modestly dispersed. A larger control group may be able to better capture 
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a wider range of normative speech behaviors, which could in turn enable more granu-
lar description of ALS-related speech impairments at various stages of diseases. Finally, 
we explored comparisons between ALS severities and controls or each other in a binary 
fashion; this led to interesting results and highlighted some interesting patterns in the 
data; however, a more nuanced comparison would be to perform a three-way classifica-
tion. We did not perform this analysis in the present study because we had a relatively 
mild cohort overall. Future work should explore multiclass classification after recruit-
ing ALS patients with a wider range of ALS-related speech impairments, which may 
also enable a more granular commentary on changes in ALS speech function over time/
across severity levels.

The results of the present study suggest that automated acoustic analysis using a 
pipeline developed by Winterlight Labs can detect bulbar ALS, as well as earlier stages 
of the disease. These results show that even with a relatively small set of acoustic fea-
tures, the Winterlight pipeline could stratify ALS patients into early and late bulbar 
stages, with clinically-interpretable feature importances. Future work will evaluate 
the detection using more participants and across a greater range of severities.

Methods
The data were collected from 141 participants (119 ALS, 22 controls). See Table 1 for a 
summary of relevant clinical and demographic features of the cohorts. Informed con-
sent prior to participation was collected in accordance with the Declaration of Helsinki. 
Inclusion criteria were fluency in English and a diagnosis of ALS by an experienced 
neurologist. Exclusion criteria were the presence of any other neurological disorders 
(e.g., stroke), and Montreal Cognitive Assessment (MoCA) score < 26/30, indicative of a 
potential cognitive impairment, and the inability to read the passage fluently (e.g., due to 
dyslexia or impaired vision). For patients only, the ALS Functional Rating Scale-Revised 
bulbar scale (FRS-bulb) was used to stratify them into “early” and “late” bulbar groups 
using the median value in the dataset, which was 11 out of 12 maximum; i.e., < 11/12 is 
ALS-L and ≥ 11/12 is ALS-E. Owing to the missing data for the FRS, n = 93 individuals 
were analyzed when comparing ALS-E vs ALS-L, and n = 70 were analyzed when com-
paring control vs ALS-E. Participants read the Bamboo Passage, which is 99 words in 
length and assesses various aspects of articulatory and respiratory motor function [40]. 
The data were recorded in a speech laboratory embedded into a multidisciplinary ALS 
clinic. The recordings were conducted using a high-quality digital recorder at 44.1 kHz 
in 16-bit resolution using a cardioid lavalier microphone.

Table 1 Summary of demographic and clinical information

All values are formatted as median ± interquartile range

ALS Control

Total sample size (Females) 119 (47) 22 (12)

Age (median [IQR]) 59 [14] 52 [8]

FRS-bulbar (median [IQR], score < 9/12) 11 [3], 13 –

Disease duration (years) 2.9 [3.3] –
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We preprocessed raw acoustic data by removing noise prior to downstream anal-
yses, using Praat [4]. At least 0.25  s of audio data (i.e., ~ 10,000 samples) was used 
for the spectral subtraction noise reduction algorithm [5], with a window length of 
0.025 s, which follows the recommendations on noise reduction in Praat. We selected 
sample length that was at least several times the length of the window (https:// www. 
fon. hum. uva. nl/ praat/ manual/ Sound__ Remove_ noise___ html; accessed 7 June 2023). 
Other settings for noise reduction included suppression range of 80  Hz to 10  kHz, 
and 40 Hz smoothing. The choice to use lab-based data followed from the purpose of 
the present study, which was to validate the Winterlight assessment pipeline for both 
ALS detection and ALS stratification, when the data are known to be of high quality 
and recorded was done under controlled conditions.

Further semi-automated quality analysis after noise suppression was performed 
to ensure high-quality data were analyzed. Thresholds were signal to noise ratio 
(SNR) > 30Db [7], clipping in fewer than 1% of data samples [15], and no unusual 
patterns of noise as evident by visual inspection of spectrograms (e.g., narrowband 
noise). These steps were performed by trained and experienced research assistants. 
The data with clipping or SNRs exceeding these thresholds were discarded and not 
analyzed further. This amounted to approximately 3 samples out of the initial set of 
122 recordings, yielding the final sample size of 119.

Winterlight’s automated pipeline extracts 793 features that encompass various 
domains of speech and language functioning. For the purposes of the present study, 
we chose to focus specifically on acoustic features, which were expected to reflect the 
motor speech impairment that occurs in ALS. We left the investigation of linguistic 
features to future work in patients who might have more pronounced cognitive defi-
cits and those on the ALS—frontotemporal dementia (FTD) spectrum. Specifically, 
we focused on a total of 53 acoustic features that reflected the integrity of the respira-
tory, phonatory, and articulatory physiologic speech subsystems ([12]). Briefly, these 
features include, but are not limited to, a variety of speech/pause durations and rates 
(articulation and respiration), jitter/shimmer/harmonic measures (phonation), as well 
as additional metrics such as zero-crossing rate. See Additional file 1: Table S1 for a 
description of these features in detail. Briefly, feature categories included: jitter/shim-
mer, fundamental frequency (F0), speech/pause durations, zero-crossings, harmonic/
noise ratio (HNR), and intensity.

Classification was performed using a Bayesian LASSO (i.e., the Least Absolute 
Shrinkage and Selection Operator) logistic regression model. See Fig.  3 for a sche-
matic diagram of the present statistical model. Following from classical logistic 
regression, which is a linear operation transformed using a log link function, the pre-
sent model consists of a global intercept α (i.e., between the two classes being com-
pared at any given time) and a vector of k ∈ {1…53} β coefficients (i.e., one per acoustic 
feature). The α parameter was drawn from a standard Normal N(0,1) distribution, 
whereas the βk were drawn from a Laplace L(0.5) distribution, where 0.5 is the param-
eter controlling the width of the distribution. The latter decision was made to impose 
a LASSO penalty on the βk, which is a technique for making coefficients sparse by 
imposing a penalty on high coefficient values. The Laplace distribution implements 
this in a Bayesian context [22]. Briefly, the Laplace distribution has a sharper peak 

https://www.fon.hum.uva.nl/praat/manual/Sound__Remove_noise___html
https://www.fon.hum.uva.nl/praat/manual/Sound__Remove_noise___html
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than a Gaussian distribution and so would be hypothesized to penalize coefficients 
with low values and compress them towards 0, without proportionally impacting 
higher coefficients.

As an empirical example of the parameter shrinkage induced by the LASSO penalty, 
see Fig. 4, which depicts a histogram of parameter values from one of the training folds 
in the present study, fitted using a Laplace distribution and a Normal distribution. It is 
evident that the Laplace prior forces parameters to cluster around 0, although retains 
a number of non-zero parameters with moderate to strong magnitudes (i.e., ~|0.5|). 
Importantly, this enabled us to more definitively comment on features that had strong 
impacts on classification decisions, by forcing those with low relative contributions 
closer to zero.

Binary classifications were performed between: (1) control vs all ALS, (2) control 
vs ALS-E, and (3) ALS-E vs ALS-L. We performed ten randomized dataset splits (i.e., 
tenfold cross-validation), where training data (50%) and testing data (50%) were fully 
separated. Train and test splits were performed 10 times per comparison condition, 
with splits being performed pseudorandomly at each iteration. AUROC values were 
aggregated across the ten held-out test sets. Note that a further split of training into 
training/validation was not performed, because of the underlying mechanics of the 
Bayesian model fitting process (there is no hyperparameter tuning as in, e.g., a sup-
port vector machine, and so a grid search of hyperparameters is not needed). At each 
testing iteration, AUROC was evaluated using the predicted score and the ground 

Fig. 3 The statistical model used in the present project. Image generated using PyMC v 5.4.1. Alpha is the 
offset parameter, beta is the vector of J = 53 regression coefficients (one per feature), and the posterior 
was modelled as a Bernoulli distribution. X and y are data objects. Numerical indices reflect the number of 
individuals. In the figure, the number of participants is 46 (i.e., 50% of the total data in the ALS-E vs ALS-L 
comparison)
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truth labels. Note that train and test splits were standardized using the mean and var-
iance of the training data.

In addition to the binary classification, we investigated the potential contribution of 
sex as an interactor variable in specific acoustic features, where it would be expected 
to play a role, given typical differences in vocal physiology between individuals born 
male and those born female. Specifically, sex effects were modelled in fundamental 
frequency and HNR features. Interactions were encoded at the data level as multi-
plicative interactions, and interaction vs no-interaction models were compared using 
the Watanabe-Akaike information criterion (WAIC).

Finally, the learned βk for each binary comparison and for each classification fold 
were extracted. The median of these values was calculated for plotting purposes, to 
provide an indication of the relative contribution of each acoustic feature to each 
classification decision.
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