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Abstract 

Background and objectives:  This study focused on changes in intestinal motility dur-
ing different sleep stages based on long-term bowel sounds.

Methods:  A modified higher order statistics algorithm was devised to identify 
the effective bowel sound segments. Next, characteristic values (CVs) were extracted 
from each bowel sound segment, which included 4 time-domain, 4 frequency-domain 
and 2 nonlinear CVs. The statistical analysis of these CVs corresponding to the different 
sleep stages could be used to evaluate the changes in intestinal motility during sleep.

Results:  A total of 6865.81 min of data were recorded from 14 participants, includ-
ing both polysomnographic data and bowel sound data which were recorded 
simultaneously from each participant. The average accuracy, sensitivity and specific-
ity of the modified higher order statistics detector were 96.46 ± 2.60%, 97.24 ± 2.99% 
and 94.13 ± 4.37%. In addition, 217088 segments of effective bowel sound corre-
sponding to different sleep stages were identified using the modified detector. Most 
of the CVs were statistically different during different sleep stages ( p < 0.05 ). Further-
more, the bowel sounds were low in frequency based on frequency-domain CVs, high 
in energy based on time-domain CVs and low in complexity base on nonlinear CVs 
during deep sleep, which was consistent with the state of the EEG signals during deep 
sleep.

Conclusions:  The intestinal motility varies by different sleep stages based on long-
term bowel sounds using the modified higher order statistics detector. The study indi-
cates that the long-term bowel sounds can well reflect intestinal motility during sleep. 
This study also demonstrates that it is technically feasible to simultaneously record 
intestinal motility and sleep state throughout the night. This offers great potential 
for future studies investigating intestinal motility during sleep and related clinical 
applications.

Keywords:  Sleep stages, The modified higher order statistics algorithm, Intestinal 
motility, Bowel sounds, Effective bowel sounds automatic recognition

*Correspondence:   
wangweidong@301hospital.com.
cn; hongyankang@buaa.edu.cn

1 Key Laboratory of Biomechanics 
and Mechanobiology (Beihang 
University), Ministry of Education, 
Beijing Advanced Innovation 
Centre for Biomedical 
Engineering, School of Biological 
Science and Medical 
Engineering, Beihang University, 
Beijing, China
2 Key Laboratory of Biomedical 
Engineering and Translational 
Medicine, Ministry of Industry 
and Information Technology, 
Chinese PLA General Hospital, 
Beijing, China
3 Bioengineering Research 
Center, Medical Innovation 
Research Division, Chinese PLA 
General Hospital, Beijing, China
4 Department of Pulmonary 
and Critical Care Medicine, 
Chinese PLA General Hospital, 
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-023-01166-z&domain=pdf


Page 2 of 21Wang et al. BioMedical Engineering OnLine          (2023) 22:105 

Introduction
In 2020, the journal Cell suggested that the primary cause of death during sleep was not 
the brain, not the heart, but the accumulation of reactive oxygen species in the intestines 
that caused the problem [1]. Other researchers found that about 68% of patients with 
functional dyspepsia also had sleep disorders [2].

The close relationship between gastrointestinal function and sleep as an important 
area for research, especially for a variety of diseases closely related to intestinal motility, 
such as inflammatory bowel disease, which have a common impact on sleep and affect 
quality of life [3]. In the 1990s, some qualitative and quantitative intestinal evaluating 
methods combined with polysomnography (PSG) recognized differences in intesti-
nal motility during sleep in patients with intestinal disorders. However, the qualitative 
assessment methods based on subjective descriptions or questionnaires [4, 5] gave 
biased results and could not accurately assess the correlation between sleep stages and 
intestinal status [6]. In the following studies, some quantitative methods were used in 
combination with PSG to investigate the relationship between sleep and intestinal dis-
ease. The quantitative methods used in the studies included nasal cannula with pressure 
sensors indicating small bowel pressure [7–9], and abdominal surface electromyogram 
sensors detecting intestinal electrical activity [10].

Research on the effect of sleep itself on intestinal motility may go back to the early 
1900s. Cannon described the differences in intestinal motility during waking and sleep 
through observational techniques [11]. Subsequently, the researchers quantified the 
effects of sleep on intestinal motility mainly through migrating motor complex (MMC), 
an intestinal contraction wave that begins in gastropathy through the colon. Some stud-
ies had concluded that sleep had significant inhibitory effect on gastrointestinal motility 
[12] and the cycles of MMCs and REM sleep were independent [13]. In recent years, 
quantitative evaluation using 3D-Transit capsules to monitor gastrointestinal motility 
[14] confirmed these MMC changes during sleep.

Among these quantitative methods, using a nasal cannula causes a strong sense of 
discomfort and a large load on the body [15, 16]; electromyograms have complex inter-
ference factors, so it is difficult to accurately evaluate intestinal electrical activity [17]; 
3D-Transit capsules also require invasive measurement, which can cause a certain 
amount of discomfort. Moreover, the position of the capsule cannot be easily located 
and controlled [18]. There is also a risk of accidental expulsion of capsules throughout 
monitoring. Considering that subjects are nearly motionless during sleep, and the sleep-
ing environment is tranquil, researchers have discovered that using the acquisition of 
bowel sounds (BSs) method to evaluate intestinal motility had obvious advantages [19]. 
Furthermore, BS monitoring fulfils the need for non-invasive and long-term monitoring 
during sleep.

The processing and analyzing methods of BS signals mainly performed de-noising pro-
cessing on the original BS data, and then performed effective BSs segments (EBSs) rec-
ognition and classification after data conversion. The de-noising methods included the 
Wiener filter [20], wavelet denoising [21], adaptive filters [22], etc., to remove friction 
sounds, interference signals of the human body and other ambient noise. The recogni-
tion algorithm mainly used higher order statistics (HOS) [23, 24], fractal dimension [25, 
26] and other methods to achieve data conversion, and then determined the thresholds 
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to recognize EBSs. After 2015, researchers gradually applied artificial intelligence (AI) 
algorithms to BSs. Specifically, machine learning methods mainly include Bayesian clas-
sification [27], support vector machines [28], autoregressive sliding averaging [29], etc., 
and deep learning methods mainly include backpropagation neural network [30], con-
volutional neural network [31], hybrid convolutional and recurrent neural network [19], 
long–short-term memory [32], etc. Compared with conventional algorithms, AI algo-
rithms are trained by a large amount of data to determine the parameters and models, 
and when the detection of large differences in the target, can be supplemented with 
training data and retrained, without the need to change the model can be extended to 
use, so it has a strong generalization ability [33]. In addition, the identification and clas-
sification of BSs can be calculated with accuracy varying from 75 to 95% [34]. However, 
the current AI algorithms mainly achieve relative long segments of BS classification [31, 
32], which cannot achieve endpoint recognition. For the BSs acquired during sleep had 
relatively high quality because of the quiet environment and the static state of the par-
ticipants. The HOS methods could totally achieve the accurate identification of EBSs. 
The main factors affecting the accuracy focused on the threshold. In previous studies, 
the threshold was either adjusted by varying the power of the overall back ground sig-
nals [24, or based on the histogram analysis of kurtosis with a fixed portion of 90% [29], 
or directly defined as the sum of the average and the standard deviation of the HOS val-
ues [35]. However, since BSs varied from person to person, which may be affected by the 
internal structure of the abdomen, age and gender, the fixed threshold used to identify 
EBSs of different participants would certainly affect the recognition accuracy.

In this study, we used our self-developed BS recorder to obtain long-term BSs. In addi-
tion, the HOS algorithms were adopted for EBSs recognition. Since the test environment 
did not change for each participant throughout the night, we selected 30 min of data for 
manual labeling. In addition, those labeled data were used to determine the threshold 
of each participant. The optimal threshold was then used to detect the EBSs through-
out the night. After that, the time-domain, frequency-domain and nonlinear character-
istic values (CVs) of EBSs within different sleep stages were extracted. Finally, intestinal 
motility was evaluated after statistical analysis of the CVs. This study takes the assess-
ment of intestinal motility during sleep as the starting point, which not only enriches the 
physiological parameters of sleep-state assessment, but also provides new avenues for 
the diagnosis of intestinal motility diseases, which has important clinical and research 
significance.

Results
The modified HOS algorithm (m-HOS) based on the annotation EBSs obtained the dif-
ferent optimal thresholds for each participant, as shown in Table 1.

Finally, we acquired a total of 6865.81 min of data from 14 participants. In addition, 
217,088 segments of EBSs corresponding to different sleep stages were recognized, as 
shown in Table 2.

As these CVs of time, frequency and non-linear domains did not conform to the nor-
mal distribution, non-parametric tests were performed. Specifically, Kruskal–Wallis H 
tests were used to complete the analysis and the significance values were adjusted by the 
Bonferroni correction for multiple tests.
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Table 3 shows the statistical analysis of time-domain CVS. The results in Table 4 show 
that the time-domain CVs were statistically different ( p < 0.05).

Table  4 shows the post hoc test results of the pairwise comparison of time-domain 
CVs. For v , the results indicated that the difference between two different stages were 
statistically significant except for N1–N2 and N1-REM. ForE0 , the results show that 
the difference between different stages were statistically significant except for w-N3. 
Forduration , the results were that the differences between different sleep stages were 

Table 1  Evaluation parameters of the m-HOS algorithm and the optimal thresholds

Participants Accurary(%) Sensitivity(%) Specificity(%) Optimal 
thresholds

1 97.96 99.24 91.95 75.57

2 99.14 98.23 98.82 29.00

3 95.73 98.13 90.13 828.37

4 93.95 91.35 94.98 55.19

5 93.33 96.94 84.84 142.05

6 91.54 89.62 92.36 85.01

7 98.56 99.59 96.22 61.37

8 99.48 99.73 98.78 71.69

9 98.98 98.71 99.10 64.37

10 97.23 95.49 97.64 43.39

11 95.72 99.09 91.02 356.13

12 98.27 98.41 98.28 126.47

13 92.34 97.42 87.75 357.21

14 98.22 99.42 95.95 413.83

Mean (Stand deviation) 96.46 (2.60) 97.24 (2.99) 94.13 (4.37)

Table 2  Number of EBSs during different sleep stages

Sleep stages Number of EBSs Length of 
sleep time 
(min)

Awake 72672 1751.32

N1 16412 461.67

N2 67229 2493.32

N3 33858 1080.00

REM 26917 1079.50

Total 217088 6865.81

Table 3  Distribution a and statistical results of time-domain CVs

a  Values are presented as median (interquartile range)

Time-domain 
CVs

Awake N1 N2 N3 REM p

cv 0.92 (0.38) 0.95 (0.38) 0.96 (0.37) 0.93 (0.37) 0.95 (0.36) 0.000

E0 31472.34(169325.93) 28228.17(179169.33) 21824.35(124121.42) 33160.73(194306.20) 24671.82(123788.59) 0.000

Duration 237 (416) 233 (358.75) 228 (161) 235 (163) 227 (142) 0.000

Frequency 0.63 (0.29) 0.57 (0.58) 0.48 (0.24) 0.45 (0.29) 0.30 (0.37) 0.004
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Table 4  Pairwise comparison results of time-domain CVs

Samples p

cv E0 Duration Frequency

w-N1 0.000 0.000 0.000 1.000

w-N2 0.000 0.000 0.000 0.150

w-N3 0.014 0.261 0.000 0.115

w-REM 0.000 0.000 0.000 0.009

N1–N2 0.115 0.000 0.000 0.808

N1–N3 0.000 0.000 0.013 0.659

N1-REM 1.000 0.000 0.000 0.086

N2–N3 0.000 0.000 0.000 1.000

N2-REM 0.000 0.000 0.388 1.000

N3-REM 0.000 0.000 0.000 1.000

Fig. 1  Distribution and trend of CVs in time domain. A Distribution of cv expressed as median and quartile 
values. B Distribution of E0 expressed as median and quartile values. C Distribution of duration expressed as 
median and quartile values. D Distribution of frequency expressed as median and quartile values, where for 
ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001



Page 6 of 21Wang et al. BioMedical Engineering OnLine          (2023) 22:105 

significant except for N2-REM. For frequency , the results show that there were no sig-
nificant differences between the groups except for w-REM.

Figure 1 shows the trend of CVs expressed as median and quartile values. Figure 1A 
shows cv increased from w to N1 and N2, decreased to the minimum during N3, and 
then increased in REM. Figure 1B shows E0 deceased from w to N2, increased during 
N3, and decreased during REM. Figure  1C shows that the duration decreased while 
entering sleep till N2, increased during N3, and decreased during REM. Figure 1D shows 
that frequency almost did not change across sleep stages.

Table 5 shows the statistical analysis results of frequency-domain CVs. Table 5 shows 
the data distribution with the median and quartile values and the p values were all less 
than 0.05, which meant that the difference for these four frequency-domain CVs during 
different sleep stages were statistically significant.

Table 6 shows the pairwise comparison results of frequency-domain CVs. For FC , the 
results show that the difference between any two different stages were statistically sig-
nificant except for w-N1 and N1-REM. For ER5−300 , the post hoc test results showed 
that the difference between two different stages were statistically significant except for 
N1-REM. For ER300−500 , the results show that the different between two different sleep 
stages were statistically significant except between N1-REM. For ER500−1000 , the results 
show that the different between two different sleep stages were statistically significant 
except for w-N1, w-REM and N1-REM.

Figure  2 shows the trend of frequency-domain CVs expressed as median and quar-
tile values. Figure  2A shows that the trend of FC increased from w to N1 and N2. It 

Table 5  Distributiona and statistical results of frequency-domain CVs

a Values are presented as median (interquartile range)

Frequency-
domain CVs

Awake N1 N2 N3 REM p

FC 140.93 (141.26) 141.15 (150.63) 156.46 (149.72) 129.14 (121.86) 144.17 (131.63) 0.000

ER5−300 0.90 (0.26) 0.90 (0.26) 0.88 (0.28) 0.93 (0.20) 0.91 (0.23) 0.000

ER300−500 0.06 (0.16) 0.06 (0.15) 0.07 (0.15) 0.05 (0.13) 0.06 (0.13) 0.000

ER500−1000 0.02 (0.07) 0.02 (0.08) 0.02 (0.09) 0.01 (0.04) 0.02 (0.07) 0.000

Table 6  Pairwise comparison results of frequency-domain CVs

Samples p

FC ER5−300 ER300−500 ER500−1000

w-N1 1.000 0.000 0.000 0.335

w-N2 0.000 0.000 0.000 0.000

w-N3 0.000 0.000 0.000 0.000

w-REM 0.000 0.000 0.000 1.000

N1–N2 0.000 0.000 0.000 0.000

N1–N3 0.000 0.000 0.004 0.000

N1-REM 0.890 1.000 1.000 0.255

N2–N3 0.000 0.000 0.000 0.000

N2-REM 0.000 0.000 0.000 0.000

N3-REM 0.000 0.000 0.030 0.000
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decreased while reaching N3 and increased in REM stage. The median and quartile val-
ues of FC indicated that the frequency of BSs was mainly distributed below 300 Hz. Fig-
ure 2B shows that it deceased after entering sleep from w to N1 and N2, but it increased 
to highest in the deepest sleep state and decreased in REM. The median and quartile 
values of ER5−300 indicated that the frequency distribution below 300 Hz accounted for 
more than 60%, which was consistent with the result of the above FC distribution. Fig-
ure  2C shows that ER300−500 increased from w to N1 and N2 and decreased in stage 
N3, and then increased in stage REM. The median and quartile values show that the 
ER300−500 distribution was under 20%. Figure 2D shows that ER500−1000 increased from 
w to N1 and N2, decreased in stage N3 and increased in stage REM. Furthermore, the 
median and quartile values show the ER500−1000 distribution was under 15%.

The analysis of the frequency-domain CVs shows that the frequency range of BSs 
during sleep was mainly distributed below 300  Hz and the low-frequency compo-
nents become larger as sleep gets deeper.

Table 7 shows the statistical analysis of nonlinear CVs. The results show that both 
the p values were less than 0.05 which indicated that both the nonlinear CVs in differ-
ent sleep stages were statistically different.

Fig. 2  Distribution and trend of CVs in frequency domain. A Distribution of FC expressed as median and 
quartile values. B Distribution of ER5−300 expressed as median and quartile values. C Distribution of ER300−500 
expressed as median and quartile values. D Distribution of ER500−1000 expressed as median and quartile 
values, where for ns, p > 0.05 ; *, p < 0.05 ; **, p < 0.01 ; ***, p < 0.001
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Table 8 shows the pairwise comparison results of nonlinear CVs. For FD , the post 
hoc test results show that the difference between two different stages were statisti-
cally significant except for N1-REM. For SampEn , the results show that the difference 
between stages were statistically significant except for N2-REM.

The trends of nonlinear CVs are shown in Fig. 3. Figure 3A shows that the trend of 
FD decreased from w to N1, increased in stage N2, and decreased from N2 to REM. 
Figure 3B shows that the trend of SampEn decreased after entering sleep reaching the 
lowest in stage N3 and increased in stage REM.

Table 7  Distributiona and statistical results of nonlinear CVs

a Values are presented as median (interquartile range)

Nonlinear 
dynamic CVs

Awake N1 N2 N3 REM p

FD 1.0910 (0.0664) 1.0837 (0.0649) 1.0862 (0.0634) 1.0852 (0.0615) 1.0836 (0.0609) 0.000

SampEn 1.00 (0.31) 0.99 (0.29) 0.97 (0.28) 0.96 (0.29) 0.97 (0.29) 0.000

Table 8  Pairwise comparison results of nonlinear dynamic CVs

Samples p

FD SampEn

w-N1 0.000 0.000

w-N2 0.000 0.000

w-N3 0.000 0.000

w-REM 0.000 0.000

N1–N2 0.000 0.000

N1–N3 0.009 0.000

N1-REM 1.000 0.000

N2–N3 0.038 0.000

N2-REM 0.000 1.000

N3-REM 0.000 0.000

Fig. 3  Distribution and trend of CVs in nonlinear domain. A Distribution of FD expressed as median and 
quartile values. B Distribution of SampEn expressed as median and quartile values, where for ns, p > 0.05 ; *, 
p < 0.05 ; **, p < 0.01 ; ***, p < 0.001
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Discussion
In our study, we proposed a m-HOS algorithm to find an optimal threshold for each 
participant, thus achieving relatively high accuracy in the identification of EBSs. Based 
on this, the CVs of EBSs were extracted to realize the quantitative assessment of intesti-
nal dynamic during different sleep stages. This study demonstrates that it is technically 
feasible to simultaneously record intestinal motility and sleep state throughout the night. 
This offers great potential for future studies investigating intestinal motility during sleep 
and related clinical applications.

In the existing studies, although there were some studies on the evaluation of intesti-
nal motility based on BSs, they mainly focused on the acquisition and recognition meth-
ods of EBSs [31, 36] and the correlation with intestinal diseases [37, 38], while only one 
study addressed bowel sounds during sleep [19]. However, this study only focused on 
the identification of bowel sounds at night and did not address the relationship between 
bowel motility and sleep.

In our study, PSG data and BS data were collected synchronously for the total duration 
of 6865.81 min. Using the m-HOS algorithm, 217088 segments of EBSs were automati-
cally identified, and the average accuracy, sensitivity and specificity were 96.46 ± 2.60%, 
97.24 ± 2.99% and 94.13 ± 4.37%. For each EBS, 4 time-domain CVs, 4 frequency-
domain CVs and 2 nonlinear CVs were extracted, and then each CV was statistically 
analyzed for different sleep stages.

Furthermore, the overall trends of CVs were meaningful. In the time domain, as sleep 
deepened, EBSs fluctuated less along the mean value, became longer in duration time 
and did not differ in the number of occurrences per unit time, but the energy values 
of EBSs became significantly larger. In the frequency domain, the low-frequency com-
ponent was the highest in stage N3, which was mainly concentrated below 300 Hz. In 
terms of nonlinear domain, fractal dimension and entropy both decreased from wake to 
sleep stages N1–N3 and increased during stage REM.

Surprisingly, the trends of the CVs in the above three domains are consistent with the 
EEG characteristics of different sleep stages. According to the standard criteria [39] of 
sleep stages annotation, the EEG of stage N3 is dominated by δ waves, and some other 
studies also showed that the EEG during stage N3 had high amplitude and low frequency 
[40, 41]. This coincides with the trends of BSs CVs in the time and frequency domains. 
In addition, for the nonlinear CVs of EEG in the previous review [39], a fractal compo-
nent decreases from wake to sleep stages N1–N3 and increases during REM sleep, and 
from the entropy perspective, the complexity of sleep EEG also decreases from wake to 
sleep stages N1–N3 and increases during REM. Therefore, the trends of intestinal motil-
ity based on BSs in different sleep stages also coincide with the EEG signals during sleep 
from the entropy perspective. For the fractal dimension, the N3 period is also at a low 
value, but the REM has a slightly different trend. The changes of BS during different 
sleep stages were consistent with the changes of EEG, indicating the possible regulation 
of intestinal motility by the nervous system during sleep, which also provides a new idea 
to validate the theory of brain–gut axis [42, 43].

Finally, it was concluded that intestinal motility was statistically different during differ-
ent sleep stages based on BSs, which indicates that intestinal motility does change with 
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the sleep state under the regulation of the nervous system. This, in turn, suggests that 
BSs can be an effective way for long-term evaluation of intestinal motility.

Though our study obtained important results, there are also some limitations: (1) the 
EBSs recognition methods can be further optimized. For instance, the removal of the 
turning-over segments also removes the EBSs during these periods. Although this is a 
very small part of the total BSs during sleep and do not affect the overall results, it could 
be better. In addition, although the optimal threshold achieved an average accuracy of 
more than 90%, there are still some participants whose recognition performance is not 
particularly satisfactory. Follow-up studies consider incorporating artificial intelligence 
methods to further improve the generalization of the recognition methods. (2) the num-
ber of participants is not that large. There were 14 participants, but we obtained 217088 
segments of EBSs throughout the night, which can provide relative sufficient data for 
the study of BSs during different sleep stages. In future studies, subjects could be further 
supplemented for more in-depth research. (3) it could be preliminarily concluded that 
BSs change with sleep stages. Further definitive patterns of changes in intestinal motility 
during sleep should be studied in depth in conjunction with sleep electroencephalog-
raphy (EEG), which has been widely recognized to vary in different sleep stages, and it 
would be more convincing to study BSs in conjunction with sleep EEG. Thus, in future 
research, after increasing the number of subjects, we can combine the EEG signals to 
illustrate the characteristic changes of bowel sounds during different sleep stages. Fur-
thermore, we can conduct correlation and coupling studies of EEG and bowel sounds 
during sleep, and explore the study of the brain–gut axis based on physiological signals.

Conclusion
The m-HOS algorithm has high performance in identifying EBSs segments, with 
the average accuracy, sensitivity and specificity of 96.46 ± 2.60%, 97.24 ± 2.99% and 
94.13 ± 4.37%, respectively. In addition, bases on the recognized EBSs and those CVs, 
we concluded that intestinal motility varies by sleep stages. Furthermore, the BSs are 
low in frequency, high in energy and low in complexity during deep sleep, which is con-
sistent with the state of the EEG signal during deep sleep. In summary, the BSs can well 
express intestinal motility during sleep, which provides an effective method of assessing 
long-term intestinal motility, and this offers great potential for future studies investigat-
ing intestinal motility during sleep and related clinical applications.

Materials and methods
Participants and devices

The research was approved by the Medical Ethics Committee of the Chinese PLA Gen-
eral Hospital for clinical research (No. S2022-341-01). Participants with good sleep qual-
ity [44], defined as no insomnia, latency to sleep onset of less than 15 min, total sleep 
time of approximately 8 h, and number of awakenings after sleep onset of less than 2 
were randomly recruited offline. Each participant signed an informed consent form. We 
also recorded some clinical factors that might influence intestinal motility, including age, 
gender and BMI [45]. The participants were confirmed the absence of intestinal disease 
to eliminate abnormal changes in BSs caused by gastrointestinal dysfunction. Partici-
pants were also instructed to eat little or no dinner and avoid medications and foods that 
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affect sleep. The study was conducted in the Sleep Monitoring Center of the First Medi-
cal Center of the Chinese PLA General Hospital. Finally, 14 participants were recruited 
to complete one night of data collection, as shown in Table 9.

We used the BS recorder and the PSG device to acquire BS data and physiological sig-
nals during sleep simultaneously. The BS recorder, which was self-developed, had two 
channels based on the Knowles’ SiSonic MEMS microphone ((SPU1410LR5H-QB) with 
the port hole at the bottom. The channel for BSs (BS-channel) was to collect the raw 
BSs through the microphone chip on the front side of the circuit board (the port hole 
facing the human body), and the channel for noise sounds (NS-channel) was to collect 
the external ambient noise through the microphone chip on the back side of the circuit 
board (the port hole facing the outside). The MEMS microphone had a tightly matched 
sensitivity of ± 3  dB and an ultra-wide band flat frequency response of ± 2  dB in the 
10–10 kHz frequency domain. The sound signals input to the 12 bits analog–digital con-
verter (ADC) of MCU (STM32L151) which was chosen from STMicroelectronics. The 
sample rate was 8000 Hz. After processing of MCU, the data were stored on a Micro-SD 
card. In order for the device to adhere to the surface of the abdomen, we also designed 
the sticking splice and a buckle to fix the device.

PSG is an objective approach that is considered the gold standard for sleep measure-
ment, especially for diagnosing physiologically based sleep disorders. A standard PSG 
montage was used following International 10–20 System guidelines [46]. The PSG device 
(EMBLA N7000) includes16-channel electroencephalography leads (EEG; F3, F4, C3, 
C4, O1, O2, M1, M2, GRD/REF), electromyography (EMG; 3 sub-mental leads), and 
electrocardiography (ECG; R/L Arm). Participants also wore thoracic and abdominal 
respiratory belts to monitor respiration.

Before the test, the technician wore the PSG sensors as requested and debugged them 
to ensure that each channel worked normally. The BS recorder was adhered on the sur-
face of the right lower abdomen.

Synchronization of the two devices was achieved by creating a synchronization signal 
by tapping the sensors against each other. Specifically, PSG was selected to use the leg 
myoelectric sensor, which can form a pulse signal for the tapping, and the pickup port of 
the BS recorder was used to tap with the leg myoelectric electrodes to form a synchroni-
zation signal for the two independent devices, which in turn achieves synchronization of 
the devices.

Data annotation

In our study, data annotation included the EBSs and sleep stages annotation. EBSs anno-
tation was achieved by two experienced clinicians in a double-blind manner. 30 min of 

Table 9  Participant data

* Body mass index
a Values are presented as mean scores (standard deviation)

Age (years) 32.35 (9.30)a

Sex (M/F) 8/6

BMI* 23.72 (3.13)a

Sleep time (min) 490.41 (43.06)a
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bowel sound data from each participant’s entire night were selected for labelling. The 
reason for selecting a participant’s 30-min BSs was to reduce the manual annotation 
workload compared to the full night’s data and, by manually annotating the local seg-
ment data, to set different HOS thresholds for each subject to improve the generalization 
ability of the effective bowel sound detection algorithm. While the HOS could assess 
the non-Gaussianity of the signal, the main factors affecting the non-Gaussianity of the 
bowel sound signal were the differences in the internal structure of the abdominal intes-
tinal tract in different subjects, which mainly included the thickness of the abdominal 
intestinal wall, the distance between the intestinal tract and the surface of the abdomen, 
the thickness of the abdominal fat, and so on. In addition, the 30 min could reflect the 
whole night state as the test environment remained virtually unchanged throughout the 
night. Furthermore, to ensure consistency in the selection of labelled segments across 
subjects, we chose a period during each subject’s stage N3 as the labelled segment. As 
stage N3 generally lasted 20–40 min [47], 30 min was chosen as the labelled segment.

The specific labelling rule was that the EBSs were longer than 10  ms and two EBSs 
with an interval of less than 100 ms were regarded as one EBS. The EBSs labeled by both 
clinicians would be the final EBSs, otherwise they would be abandoned.

The sleep stages were labeled in 30-s epochs in compliance with standard criteria [48] 
by an experienced technician who had passed the Registered Polysomnographic Tech-
nologist (RPSGT) examination. The sleep stages included an awake stage (w), a transi-
tion stage from wakefulness to sleep (N1), a light sleep stage (N2), a deep sleep stage 
(N3) and a rapid eye movement sleep stage (REM).

EBSs recognition algorithm

In our study, the EBSs recognition algorithm first determined the optimal threshold 
based on the annotated 30-min BS audio of each participant. Then, with the optimal 
threshold, the recognition algorithm could be used to identify the whole night’s EBSs. 
Figure 4 shows the flow chart of EBSs recognition.

Data denoising

The noise of bowel sounds during sleep mainly includes heart sounds, background 
noise and noise caused by turning over. In this section, the processing of heart sounds 
and background noise is mainly implemented, and the noise caused by turning over is 

Fig. 4  Flow chart of BS data processing and EBSs recognition. The optimal threshold was determined based 
on the labeled 30-min BS audio of each participant. Then, the whole night’s EBSs for each participant would 
be identified by the automatic recognition algorithm with the optimal threshold
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eliminated after subsequent identification. The denoising methods included the band-
pass filtering, adaptive filtering and wavelet threshold denoising.

The bandpass filter filtered out the noise outside the frequency band of BSs. Some 
existing research described that the BS signals were mainly distributed in the range 
of 100–500  Hz [49, 50], 5–600  Hz [29], and 100–1000  Hz (mostly 100–800  Hz)[36]. 
To ensure the retention frequency range of BSs and the removal of the main noise, we 
selected the bandpass filter of 100–1000 Hz. More importantly, such a bandpass filter 
filters out the influence of the first and second heart sounds on the bowel sounds [51].

The adaptive filter accomplished the denoising of ambient noise based on the two-
channel configuration, as shown in Fig. 5. In this study, we chose NLMS [52] to achieve 
the adaptive noise canceller (ANC) [53].The parameters that had to be set for NLMS 
included the filter order and the step size [54], and the parameters that measured the 
performance of the filter were mainly MSE, SNR and correlation coefficient [53, 55].
The filter order affected the computation time of the filter, the larger the filter order, the 
longer the computation time required; for the step size setting, the MSE decreased when 
the step size was small, and the convergence speed was accelerated when the step size 
was large. We considered the computation time, convergence speed and filtering effect 
simultaneously and set the filter length to 64 and the step size to 0.001 [53]. To evalu-
ate the filtering effect, we mainly used the parametric correlation coefficient. Since the 
experimental procedure was performed in the same monitoring environment for all sub-
jects, the ambient noise was kept essentially constant, which happened to be the ref-
erence input of the filter, and the output of the filter was the estimate of the ambient 
noise in the raw bowel sound signal, and the correlation coefficient was the correlation 
between the ambient noise and the estimate of the ambient noise. We performed adap-
tive filtering on 10 randomly selected 10 s segments of data from each of the 14 subjects 

Fig. 5  Adaptive filter architecture

Fig. 6  Procedure and parameters for wavelet threshold denoising
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to ensure that the correlation coefficient was greater than 0.9 to verify that the filter 
parameters were set to ensure that the filter had good filtering performance.

Wavelet threshold denoising (WTD) was used to suppress the noise component con-
centrated in the detailed component of wavelet decomposition using the Mallat pyrami-
dal algorithm. The WTD process included decomposition processes, thresholding 
processes and reconstruction processes, as shown in Fig. 6. According to the compari-
son of the filtering effect, the sym6 wavelet basis was selected and the number of decom-
position layers was determined as 6. In addition, the threshold was calculated using the 
Birge–Massart algorithm for the threshold denoising [56].

Determination of optimal thresholds based on the 30‑min labeled BSs

After data denoising, EBSs recognition was carried out. In the previous study [29], the 
modified iterative kurtosis-based detector (IKD) was used for the separation of the EBSs 
based on the kurtosis of a sliding-window BSs and a histogram analysis of the kurtosis 
time series (K). The percentage of the total frequency of K was fixed as 90% based on 
experience which may affect the recognition accuracy. Therefore, we devised the m-HOS 
based on the annotation EBSs. Specifically, for the 30-min labeled BSs of each partici-
pant, the histogram analysis of the HOS time series was obtained, and then the percent-
age was dynamically adjusted from 90 to 100% to determine the optimal threshold until 
the best detection performance was obtained based on the labelled EBSs. Figure 7 shows 
the flow chart of the m-HOS algorithm.

Obtaining the HOS time series

The 30-min BSs were labeled manually. The sliding window was MM = 0.003× Fs , 
where Fs was the sampling rate, and the constant 0.003 was set based on experience. The 
HOS time series (H) was calculated within the sliding window. In our study, the third-
order-statistics cumulant of the BSs was calculated using the cum3est function [57] in 
the MATLAB software.

Determining the optimal threshold for each participant

The temporary threshold was used for the EBSs recognition from the raw BSs. First, 
the histogram of H and the frequencies (freq) was calculated. Then, the sum of the freq 
reached the setPortion of the total frequencies and the temporary threshold was set as 
twice the recent index. The final optimal threshold was adjusted with the setPortion from 
0.900 to 0.999.

With the temporary threshold, the corresponding EBSs were recognized from H. The 
target EBSs whose corresponding H values should be larger than the temporary thresh-
old. In addition, the recognized rules were be consistent with the labeling rules.

The EBSs detected with the temporary threshold were compared with the manually 
labeled EBSs to evaluate the performance. Specifically, we used the Accurary to evaluate 
the recognition performance with different temporary thresholds. While the Accuracy 
achieved the maximum value, the corresponding temporary threshold was the optimal 
threshold for the participant. The Sensitivity and Specificity could help to reflect recogni-
tion performance.
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Figure 8 shows the definition of evaluation parameters. The red part was the manu-
ally labeled EBS, and the green part was the detected EBS. Several parameters were 
defined as follows: TP (the annotated EBS was correctly recognized as a true EBS), FP 
(the non-annotated segment was incorrectly identified as EBS), TN (the non-annotated 
segment was correctly identified as the noise part), FN (the non-annotated segment was 
incorrectly recognized as the noise part). The Accurary , Sensitivity and Specificity were 
defined as Eqs. (1), (2) and (3):

(1)Accuracy =
ETP + ETN

ETP + EFP + EFN + ETN

Fig. 7  Flow chart of m-HOS algorithm
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where E(.) denoted the energy of the corresponding segment. The reason for using the 
energy to calculate the evaluation parameters was that it could better express the rec-
ognition effect of transient signals with sudden energy aggregation-like EBSs. On one 
hand, it could avoid the recognition bias caused by the artificially labeled boundaries, 
and on the other hand, for the long-term BSs recognition, some particularly low-energy 
EBSs that were not recognized had little effect on the whole night BSs.

EBSs recognition and CVs extraction of the whole‑night’s data

The optimal threshold of each participant was used for the EBSs identification of the 
whole night. The same as the EBSs recognition of labeled 30-min BSs, the HOS time 
series of the whole-night BSs after denoising were obtained. Then, the determined opti-
mal thresholds of different participants, combined with the labeling rules, were applied 
to the EBSs recognition of the whole-night’s BSs.

The recognition and removal of turning‑over segments

Before the whole night’s EBSs recognition, we also recognized the turning-over seg-
ments for further improving the recognition performance. Specifically, we used the 

(2)Sensitivity =
ETP

ETP + EFN

(3)Specificity =
ETN

EFP + ETN

Fig. 8  Evaluation parameters definition of the m-HOS algorithm
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NS-channel data to recognize the turning-over segments. First, we calculated the HOS 
time series of the denoised NS-channel data and the length of sliding window was still 
MM = 0.003× Fs . Because the turning-over segments were evident and were a small 
amount, the parameters were directly determined by experience. The threshold was set 
at 50, the minimum length of turning-over segments at 1  s and the maximum length 
of interval between two turning-over segments at 1  s. Figure  9 shows one example of 
turning-over segment recognition. After the turning-over segments were recognized, 
the EBSs, while the turning-over segments happened were discarded.

CVs extraction of EBSs during different sleep stages

In this study, CVs of time domain, frequency domain and nonlinear dynamics were 
extracted which described the intestinal states from various angles.

The time-domain CVs involved cv , E0 , duration , and frequency . cv was the coeffi-
cient of variation indicating the fluctuation of data. E0 was the energy of each EBS. 
duration was the length of each EBS indicating the duration time. frequency was the 
number of EBSs during a corresponding sleep stage.

The frequency-domain CVs involved FC , ER5−300,ER300−500,ER500−1000 . FC was the 
centroid frequency describing the frequency with large components in the power 
spectrum. ER5−300 , ER300−500 and ER500−1000 represented the power in the 5–300 Hz, 
300–500 Hz and 500–1000 Hz to the total power, respectively.

The nonlinear CVs included fractal dimension ( FD ) and sample entropy ( SampEn ) 
which were based on the concepts of fractals and entropy like for EEG signals during 
sleep [41. FD was calculated by Katz algorithm based on the box-counting dimension, 
which could measure the unevenness and complexity of signals. FD was defined as the 
following equation:

Fig. 9  Turning-over segment recognition: A BSs with manually labeling information of EBSs. B BSs with 
automatic recognition information of EBSs. C noise sounds with automatic recognition information of 
a turning-over segment. Green lines: the start points of the segments. Red lines: the end points of the 
segments
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where L was the total length of the time series and d was the estimated diameter, which 
was regarded as the distance between the first point of the series and the farthest point 
of the series.

Entropy values reflect the number of times the patterns in a signal are repeated 
and thus measure the randomness and predictability of stochastic process and in 
more general terms, increase with greater randomness [43]. In our study, the sam-
ple entropy was chosen to express entropy. Compared with approximate entropy, the 
sample entropy did not include the comparison with its own data segment when cal-
culating the approximation, so the calculation error was small and did not depend on 
the data length, which was suitable for EBSs of different lengths. The sample entropy 
could be computed as Eqs. (5) and (6):

where N  was the length of a time series, m was the pattern length, r was the tolerance 
value, and τ is the time delay. Cm

i (r) is defined as the following equation:

where Bi = number of j where d
∣

∣Xi,Xj

∣

∣ ≤ r.
After the CVs extraction of all the EBSs, we classified the CVs corresponding to differ-

ent sleep stages according to the timepoint, where the EBSs were located.

Statistical analysis

Statistical analyses were completed for CVs of the five sleep stages using IBM SPSS Sta-
tistics 25. Before statistical analysis, a normal distribution test was performed using the 
Kolmogorov–Smirnov test. For data satisfying the normal distribution, the homogeneity 
of variance test should be performed. The value of p < 0.05 was considered to indicate 
statistical significance and the trend of different CVs during different sleep stages was 
expressed by the mean scores plot. For data not satisfying normal distribution, nonpara-
metric tests should be performed. Similarly, p < 0.05 indicated statistical significance 
and the data distribution could be expressed as median and quartile values.
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