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Background
The adrenal glands are important secretory organs that are positioned above the kidneys on 
both sides of the body. The adrenal glands can be divided into cortical and medullary layers, 
which mainly secrete adrenal corticosteroids, epinephrine, and norepinephrine, and play an 
important role in maintaining the normal functioning of body organs [1, 2]. Adrenal tumors 
are formed by abnormal proliferation of local adrenal tissue cells and are pathologically 
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Background: The morphology of the adrenal tumor and the clinical statistics 
of the adrenal tumor area are two crucial diagnostic and differential diagnostic features, 
indicating precise tumor segmentation is essential. Therefore, we build a CT image seg-
mentation method based on an encoder–decoder structure combined with a Trans-
former for volumetric segmentation of adrenal tumors.

Methods: This study included a total of 182 patients with adrenal metastases, 
and an adrenal tumor volumetric segmentation method combining encoder–decoder 
structure and Transformer was constructed. The Dice Score coefficient (DSC), Hausdorff 
distance, Intersection over union (IOU), Average surface distance (ASD) and Mean 
average error (MAE) were calculated to evaluate the performance of the segmentation 
method.

Results: Analyses were made among our proposed method and other CNN-based 
and transformer-based methods. The results showed excellent segmentation per-
formance, with a mean DSC of 0.858, a mean Hausdorff distance of 10.996, a mean 
IOU of 0.814, a mean MAE of 0.0005, and a mean ASD of 0.509. The boxplot of all test 
samples’ segmentation performance implies that the proposed method has the lowest 
skewness and the highest average prediction performance.

Conclusions: Our proposed method can directly generate 3D lesion maps 
and showed excellent segmentation performance. The comparison of segmentation 
metrics and visualization results showed that our proposed method performed very 
well in the segmentation.
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classified into benign tumors (expansive growth) and malignant tumors (invasive growth) 
according to their biological behavior [3–5]. Both benign and malignant tumor types can 
affect hormone secretion and lead to hypertension, hyperglycemia, and cardiovascular dis-
eases [6–8].

Computed tomography (CT) is an effective tool for diagnosing adrenal tumors, because 
it is non-invasive, produces clear images, and has high diagnostic efficiency. Because the 
morphology of the tumor (mainly refers to the smoothness of tumor edge) and the clinical 
statistics (mainly refers to the difference in density and gray level within the tumor) of the 
tumor area are two crucial diagnostic and differential diagnostic features, precise segmenta-
tion of the tumor is essential. There have been many studies evaluating traditional methods 
for adrenal tumor segmentation, such as classifying CT images pixel-by-pixel with a ran-
dom forest classifier [9], and applying a localized region-based level set method (LRLSM) 
to segment the region of interest (ROI) [10]. Some studies have proposed segmentation 
frameworks that combine various algorithms to obtain better segmentation performance 
[11–13]. These include the K-means singular value factorization (KSVD) algorithm, region 
growing (RG), K-means clustering, and image erosion.

In recent years, with the continuous improvement in computing power and the develop-
ment of deep learning techniques [14–16], deep learning has been increasingly applied in 
the medical field. In medical image diagnosis, many techniques have been used to assist in 
the diagnosis of disease through the segmenting of organs of interest. For example, research 
studies include the segmentation of brain tumors [17], segmentation of liver and liver 
tumors [18], and segmentation of kidneys [19]. However, all of the above studies segmented 
relatively large organs or tumors, and there is still room for improvement in the segmenta-
tion performance for small organs and small-volume tumors. Some researchers proposed 
the use of a knowledge-assisted convolutional neural network (KaCNN) for the difficult 
task of small organ segmentation, with this combining traditional and deep learning meth-
ods. The proposed framework has two phases: in the first phase, localization to the ROI 
region is performed, then in the second phase, segmentation of the ROI is performed by 
the proposed KaCNN, with the segmentation then being transformed back into the initial 
space [20]. However, only some studies applied deep learning to adrenal tumor segmenta-
tion. Such as Bi and Parehe have proposed using convolutional neural networks (CNNs) to 
segment adrenal tumors [21, 22].

In this study, a medical image segmentation method based on an encoder–decoder 
structure combined with a Transformer is proposed to perform volumetric segmentation 
for CT enhanced images of adrenal metastases. Considering that the proportion of tumor 
area is very small compared with the whole CT image, on average, the tumor volume only 
accounts for 0.267% of the whole sample (calculated by including samples in this study), 
which is very large from the perspective of segmentation difficulty. Therefore, we choose 
the DSC as the loss function to cope with the unbalanced situation of the number of fore-
ground and background voxels.
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Results
Patient characteristics

A total of 182 patients in the age group of 29–80 years (SD: 10.67) with a diagnosis of 
adrenal metastases were included in the study. Of these, 133 were single tumors, and 49 
were multiple tumors.

Quantitative analysis of segmentation performance

We compared our proposed method with other methods that have achieved good per-
formance in medical image segmentation tasks, such as 3D U-Net [19], TransBTS [17], 
ResUNet [23], UNet++ [24], Attention U-Net [25] and Channel U-Net [26]. As shown 
in Table 1, our proposed method achieved the best performance in the segmentation of 
adrenal metastases, with a DSC of 0.858, Hausdorff distance of 10.996, and IOU of 0.814. 
However, the other methods also showed excellent performance, and the performance 
measures for the proposed method were not significantly different to those of the other 
methods ( P > 0.3,P > 0.5,P > 0.5,P > 0.8,P > 0.2,P > 0.1 ). Although the differ-
ences were not significantly different, this analysis does at least show that our proposed 
method is equally effective as the other methods evaluated in the tumor segmentation 
task.

Figure 1 shows the prediction performance statistics of the above seven methods on 
the test set. It can be observed that the best performance metric values were obtained 
with the proposed method. The prediction results of all methods showed different 
degrees of skewness. Moreover, there were more "outliers" with the proposed method 
than with the other methods, which means that although the overall performance of our 
proposed method was good, it did not perform well for the segmentation of complex 
samples with small lesions or artifacts.

Visual comparison of segmentation results

2D visualization of some typical segmentation results is shown in Fig.  2. It can be 
seen that the method proposed in this paper is closest to the ground truth in the seg-
mentation of lesions, both in terms of their borderline and shape. Due to the padding 

Fig. 1 Comparison of the segmentation performance of different models for all test samples. The numbers 
at the top represent the mean values of each method (so is the green triangle). The upper, lower quartile, and 
median values are indicated on the right side of each box plot
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strategy, precise corner segmentations of every case have failed. It is discussed in [27] 
that padding may cause artifacts at the feature maps’ borderlines, and these artifacts 
may cause the network to become confused.

Furthermore, we selected unilateral and bilateral adrenal tumors for 3D visualiza-
tion and comparison in the test samples.

The visualization results for the unilateral adrenal tumor are shown in Fig.  3, the 
sample size is 256× 256× 60 . It can be observed that our proposed method was mor-
phologically closest to the ground truth mask, with a DSC of 0.951. The DSCs for 
3D U-Net, TransBTS, ResUNet, UNet++, Attention U-Net, and Channel U-Net were 
0.824, 0.856, 0.642, 0.797, 0.674, and 0.728, respectively.

Figure 4 visually compares the test sample containing bilateral adrenal tumors. The 
sample size is 256× 256× 95 . The DSC of our proposed method was 0.947, whereas 
those of 3D U-Net, TransBTS, ResUNet, UNet++, Attention U-Net, and Channel 

Input Ours 3D U-Net TransBTS ResUNet UNet++ Attention U-Net Channel U-NetGT

Case 1

Case 2

Case 3

Fig. 2. 2D visualization of adrenal tumors. To see more details of segmentation results, we selected one slice 
from every case (note that the DSC of Channel U-Net is 0 in case 1)

Fig. 3 Comparison of the results of unilateral tumor segmentation. a Ground truth. b Our proposed method. 
c 3D U-Net. d The mask predicted by TransBTS is also close to the ground truth. e ResUNet mistakenly 
identified the organ on the other side as an adrenal tumor. f UNet++. g Attention U-Net also incorrectly 
identified the normal organ on the other side as a tumor. h Channel U-Net
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U-Net were 0.857, 0.787, 0.868, 0.886, 0.866, and 0.766, respectively. Our prediction 
was closest to the ground truth label.

Ablation study

A series of ablation experiments were conducted to verify the effectiveness of each com-
ponent of the proposed method. The major components are as follows: (a) ED/DSConv: 
the encoder–decoder/depthwise separable convolution network is the basic architecture 
of the entire network. We use the DSConv network to maintain a reasonable number of 
parameters when deepening the network, and this also ensures that the parameters will 
not be too large when later add the Transformer; (b) SC: the skip-connection structure is 
used for concatenate the feature maps generated by corresponding encoders and decod-
ers; (c) TF: the transformer network has excellent modeling capabilities for establishing 
global dependencies. Table  2  shows the comparison results. It can be seen that DSC 
improves from 0.777 to 0.858, Hausdorff distance drops from 18.473 to 10.996, IOU 

Fig. 4 Comparison of bilateral tumor segmentation results. a Ground truth. b Our proposed method. c 
3D U-Net mistakenly divided the right adrenal tumor into two parts. d TransBTS. e ResUNet. f UNet++. g 
Attention U-Net. h Channel U-Net

Table 1 Mean DSC, mean Haustoff distance, mean IOU, mean MAE, and mean ASD for the different 
models

Methods DSC↑ Hausdorff 
distance↓

IOU↑ MAE↓ ASD↓

3D U-Net 0.811 29.957 0.721 0.0008 2.588

TransBTS 0.822 18.529 0.745 0.0007 1.927

ResUNet 0.823 21.908 0.736 0.0009 3.760

UNet++ 0.849 13.297 0.761 0.0006 0.853

Attention U-Net 0.779 14.146 0.689 0.0010 2.341

Channel U-Net 0.753 15.724 0.660 0.0009 1.921

Ours 0.858 10.996 0.814 0.0005 0.509
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improves from 0.690 to 0.814, MAE slightly decreases from 0.0006 to 0.0005, ASD drops 
from 1.544 to 0.509. All the evaluation metrics have different degrees of decline, proving 
our proposed method’s effectiveness.

We verified the influence of different transformer layers on the segmentation perfor-
mance. Table 3 shows the experimental results of the Transformer layer of 2 layers, 4 lay-
ers, 6 layers, and 8 layers. The evaluation metrics of the model of 8 layers are even worse 
than that of 2 layers. To balance the number of model parameters and segmentation per-
formance, we chose to use 4 Transformer layers for our proposed model. Figure 5 shows 
the heat map of the last layer’s output of the model with different transformer layers. It 
can be observed that each model can correctly locate the tumor, but the model with 8 
Transformer layers is not as good as the other three models at the borderline segmenta-
tion. Experiments show that the results will not be better when added more Transformer 
layers.

Discussion
The method proposed in this study extracts not only local features using a CNN, but 
also establishes global dependencies using a Transformer and uses deep separable con-
volution (DSConv) to reduce the number of parameters. Experiments demonstrated that 
our proposed method can accurately segment adrenal tumors, and that it outperformed 
mainstream medical image segmentation algorithms.

Traditional adrenal tumor segmentation methods have mostly used machine learning 
methods, such as random forest algorithms, regional level set algorithms, and K-means 
clustering algorithms. Although the above methods performed well in the segmentation 

Layer 4Layer 2

Layer 6 Layer 8

Ground Truth

Fig. 5 Last layer’s outputs of the model with different transformer layers. Except for Ground Truth, the left 
side of each subplot is the heat map, the color closer to red, the more model tends to judge this area as an 
abnormal tissue, and the right side is the tumor visualized in 3D (the color difference is to draw the 3D image 
in two-dimensional level)

Table 2 Quantitative analysis of major components

ED/DSConv SC TF DSC↑ Hausdorff 
distance↓

IOU↑ MAE↓ ASD↓

✓ 0.777 18.473 0.690 0.0006 1.544

✓ ✓ 0.827 13.989 0.764 0.0005 1.738

✓ ✓ ✓ 0.858 10.996 0.814 0.0005 0.509
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of adrenal tumors, they were still subject to some limitations. For one thing, most stud-
ies collected only small quantities of data. In addition, the above methods are based on 
a two-dimensional image, whereas each CT scan actually includes three-dimensional 
image data, which may result in a time-consuming segmentation process. However, 
our proposed method can segment the whole lesion simultaneously based on the whole 
three-dimensional CT image set.

In recent years, image segmentation algorithms based on deep learning have achieved 
excellent performance in medical image processing. Segmentation of lung nodules [28–
30] is a relatively mature application, and segmentation of brain tumors [31, 32], kidney 
[33], kidney tumors [34, 35], liver [36, 37], and liver tumors [38] are also research hot-
spots. There is a relevant study [39] that the authors employed a two-stage network to 
segment adrenal glands and evaluated the model with fivefold cross-validation, achieving 
excellent performance with a DSC of 0.874. However, the position and morphology of 
the adrenal gland are relatively fixed. The segmentation of adrenal tumors is more com-
plex than that of adrenal glands because of the various locations and sizes and blurred 
contours of adrenal tumors. Bi combined CNN and RW to segment adrenal tumors and 
achieved a segmentation performance 0.729 (F1-Score) [21]. Parehe introduced a three-
stage adrenal tumor segmentation and diagnosis network [22]. Although only a DSC 
of 0.690 was obtained, it did not affect the final diagnosis results. It is worth mention-
ing that this is the first time anyone has ever applied a Transformer to adrenal tumor 
segmentation. Because Transformer has achieved excellent results in natural language 
processing (NLP) tasks, it has regularly been applied to medical image segmentation. 
Transformer has excellent modeling capabilities and retains more spatial information 
and global features than convolutional neural networks. The method proposed in this 
paper takes advantage of both a convolutional neural network and a Transformer and 
achieved an average DSC of 0.858 in adrenal tumor segmentation.

For samples with bilateral adrenal tumors, early methods divided the bilateral tumors 
into two categories [9] or two stages to separate the bilateral tumors [13], indicating 
that the methods proposed in these studies needed additional location information to 
be provided manually. However, our proposed method will automatically learn relevant 
information about the image (such as shape and position information) in the feature 
extraction stage. The added position coding module can also ensure that the position 
information will be recovered after converting the image into a sequence. For image 
data preprocessing, most other methods have a set of complicated preprocessing pro-
cesses that are very time-consuming to perform. With the powerful feature extraction 
capability of a convolutional neural network and a Transformer, the proposed method 
only requires superficial window level and window width adjustment and normalization 
processing.

To verify the superiority of our proposed method, we compared its performance with 
other mainstream medical image segmentation methods. The experimental results 
showed that our proposed method achieved the best performance, with a mean of DSC 
of 0.858, Hausdorff distance of 10.996, IOU of 0.814, MAE of 0.0005, and ASD of 0.509 
in the segmentation of adrenal tumors. We selected three typical cases for two-dimen-
sional visualization analysis and further selected unilateral and bilateral tumor test sam-
ples for three-dimensional visualization analysis. It can be intuitively observed that the 
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segmentation result of our proposed method is closest to the ground truth both in shape 
and borderline. To verify the effectiveness of each component of the proposed method, 
we conducted extensive ablation studies, and the experimental results proved that each 
fundamental component contributed to the segmentation of tumors. We also further 
verified the influence of different transformer layers on the segmentation performance. 
The experimental results show that the optimal number of Transformer layers for the 
adrenal tumor segmentation task is 4, and the results will not be better when added 
more Transformer layers.

However, although our proposed method performed well, it also has some limita-
tions. For example, the segmentation effectiveness of our proposed method was only 
verified on adrenal metastases, and the segmentation could have been better for very 
small tumors and those with very indistinct boundaries, which is an urgent problem to 
be solved in future work. Furthermore, the proposed method has not been tested on 
an external data set. Therefore, the performance generalizability has not been evaluated 
and should require further analysis.

Conclusion
Our proposed segmentation method based on an encoder–decoder structure combined 
with a Transformer can effectively segment adrenal tumors, solving the problems of seg-
mentation difficulties caused by the irregular location of adrenal tumors, generally small 
tumor volume, varying internal intensity, and blurred contours.

Methods
Patients selection

This retrospective study was approved by the ethics committee of Tongde Hospital of 
Zhejiang Province (approval number 2022-183). The data were anonymized, and the 
requirement for informed consent was waived.

A total of 182 patients diagnosed with adrenal metastases between January 2014 and 
August 2019 were considered for inclusion in this study. An experienced radiologist and 
a novice radiologist in the radiology department of our institution labeled the adrenal 
tumors on the CT images. Patients first received 100–120 ml of contrast material (Ultra-
vist, Bayer Schering Pharma, Berlin, Germany) through an intravenous cannula inserted 
into a forearm vein, then underwent the multidetector CT examination. The original 
images were reconstructed from a 5-mm slice thickness into a 1.5-mm slice thickness. 
The parameters for the CT acquisitions were: 120 kV, 250–300 mA, 1.5–2.5 mm detec-
tor collimation, 1:1 table pitch, and 5-mm slice thickness. One author (J.W., abdominal 
imaging fellow) reviewed each sample manually to ensure that the diameter of each 
tumor was at least 10 mm in the long axis for the following two reasons: a. when the 
tumor is tiny, the boundary with normal adrenal tissue may not be apparent; b. If the 
tumor is tiny, it is more difficult to manually delineate the tumor, which will lead to lower 
consistency. In summary, we abandoned including tumor samples smaller than 10 mm.

Data pre‑processing

For each CT sample, the window level and width were adjusted to 40 and 300, respec-
tively, to remove the information that was not important or irrelevant to tumor 
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segmentation. Then, take one of the samples as an example; the sample size in the x, 
y, and z axes is 512× 512× 101 , respectively. The x and y axes were down-sampled 
to 0.5 times the original, and the z-axis was sampled to 1  mm slice thickness accord-
ing to the spacing. The cubic interpolation method was used as the sampling method. 
Finally, a normalization operation is performed to simplify the computation and unify 
the dimensions.

Proposed method

Our overall network architecture is shown in Fig.  6, with the encoder, decoder, and 
Transformer as the main framework. The encoder first down-samples the 3D input data 
while gradually extracting local features to generate a high-dimensional feature map. 
Then, the Transformer processes the high-dimensional feature map and establishes the 
global dependency. Finally, the new feature maps are connected with the previous fea-
ture maps which are down-sampled by the encoder at each step through the skip con-
nection, and the segmentation results are obtained after up-sampling.

Network encoder

For the volumetric medical image segmentation performed in this study, our input 
data were three-dimensional: X ∈ RC×W×H×D , where C is the channel, W is the width 
of each image item, H is the height of each image item, and D is the number of slices 
of the current input sample. In particular, the input image’s dimension of this model is 
256× 256× 32 . The encoder stage performs down-sampling four times. For each down-
sampling, the comprehensive data are down-sampled by a factor of two using the 3D 
CNN, and the channel dimension is changed to twice the original. The feature maps 

Fig. 6 Overall architecture of the network

Table 3 Quantitative analysis of different transformer layers

Layers DSC↑ Hausdorff distance↓ IOU↑ MAE↓ ASD↓

2 0.809 11.473 0.739 0.0006 0.946

4 0.858 10.996 0.814 0.0005 0.509
6 0.826 10.412 0.769 0.0006 1.702

8 0.807 14.721 0.740 0.0007 1.639
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generated at each stage are temporarily saved. Because the receptive field of the shallow 
network is relatively small, the extracted features generally contain edge, texture, and 
angle information.

In contrast, because of its greater receptive field, the deeper network can extract more 
abstract information, i.e., deep semantic information. To extract deeper features while 
ensuring a smaller number of parameters, we used DSConv for the down-sampling. 
The dimensions of the feature map after the last down-sampling are X′ ∈ RC

′×W
16×

H
16×

D
16 , 

where C′ = 256.

Transformer for feature embedding

(1) Linear projection and positional embedding

The Transformer cannot directly process the high-dimensional feature map X that is 
finally generated by the encoder. This feature map first needs to undergo a linear map-
ping operation. The linear mapping further extracts features using a convolution layer 
and reshapes the feature map to 256 patches of dimension W16 × H

16 × D
16 . Instead of 

directly segmenting the original image into patches, the Transformer can model local 
contextual features in the spatial and depth dimensions of the high-level feature map. 
The Transformer requires the input to be sequence data, so we use the Reshape opera-
tion to flatten the feature map to 256×N , where N = W

16 × H
16 × D

16.
The importance of the position of each pixel in the image cannot be ignored, and such 

spatial information is indispensable for the accurate segmentation of tumors. Therefore, 
we also add learnable position embedding to reconstruct location information.

(2) Transformer layer

The architecture of the Transformer layer, which consists of a multi-head attention 
(MHA) and feed forward network, is shown in Fig. 1.

The MHA consists of eight single attention heads, which can be viewed as mapping a 
collection of query vectors to output vectors based on key-value pairs. The details are 
shown in Formulas 1 and 2.

where WO
i ∈ R8dv×D , WQ

i ∈ RD×dk and WV
i ∈ RD×dv are learnable parameter matrices, 

and Q, K, and V are query, key, and value, respectively.
The Feed Forward Network comprises a fully connected neural network and an activa-

tion function.

Network decoder

Before up-sampling, patches need to be mapped (feature mapping) to the original space, 
then the up-sampling operation is performed. The decoder also up-samples four times, 
with the overall operation corresponding to the down-sampling. Because some spatial 

(1)
Multi Head(Q,K, V) = Concat(head1, . . . , head8)W

O

where headi = Attention
(

QW
Q
i , KW

K
i , VW

V
i

)

(2)Attention(Q,K, V) = softmax

(

QKT√
dk

)

V
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context information is inevitably lost during down-sampling, we use a skip connection 
to connect the feature maps corresponding to the down-sampling stage. This skip con-
nection ensures that the new feature maps contain both shallow low-level information 
and high-level abstract semantic information.

Comparison details

To verify the effectiveness of our proposed method, we make a comparison with the 
mainstream medical image segmentation methods. The implementation details of the 
compared methods are as follows:

a. 3D U-Net first constructs a 7× 7 convolution block, then constructs four encoder 
and decoder blocks. Finally, a final convolution block is constructed, including a 
transposed convolution and two sub-convolution blocks.

b. TransBTS is constructed with a series of components. It starts with four encoder 
blocks, which are then followed by a classical Transformer module containing four 
Transformer layers, each equipped with eight heads of attention. Subsequently, four 
decoder blocks are added to the model. To complete the architecture, TransBTS 
finally incorporates a convolutional layer and utilizes the softmax function.

c. ResUNet combines ResNet and U-Net by integrating the residual block in each 
encoder and decoder block. During skip-connection phase, convolutional blocks 
are additionally constructed to match the dimensions of the encoder output and the 
decoder output at the corresponding stage.

d. UNet++ aggregates 1 to 4 layers of U-Net together and builds a convolutional layer 
and sigmoid function at the end.

e. The structure of Attention U-Net is generally the same as that of U-Net, with the dif-
ference that Attention U-Net adds a layer of attention gates before skip-connection.

f. Channel U-Net builds six encoder and decoder blocks and adds the Global Attention 
Upsample module before skip-connection.

Training details

All networks were implemented based on the PyTorch framework, and four NVIDIA 
RTX 3080 with 10 GB memory were used for training. We divided the entire data set 
into 80% training set and 20% testing set. The testing set is finally used to test the seg-
mentation performance of our proposed model, and the results can be seen in Fig.  1. 
Given the large size of a single sample, 32 consecutive slices are randomly selected from 
a sample as input data. We adopted the Adam optimizer in the training process. The 
weight decay was set to 1× 10−5 , the learning rate was 2× 10−4 and 4 × 10−7 when the 
epoch, respectively, reached 0 and 999 (all networks were trained for 1000 epochs), the 
batch size was set to 2, and the random number seed was set to 1000.

Evaluation metrics

To evaluate the effectiveness of our proposed method, we used the Dice coeffi-
cient (DSC) and Intersection over union (IOU), which are widely used to evaluate 
the similarity between segmentation results and ground truth data in medical image 
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segmentation. Furthermore, we used the Hausdorff distance and Average surface dis-
tance (ASD) to evaluate the similarity of the surface between the segmentation results 
and ground truth. Mean average error (MAE) is used to assess the absolute error. 
These metrics are defined in Eqs. 3, 4, 5, 6, and 7, respectively:

For statistical analysis, we compare the difference between the prediction results 
of the proposed method and other methods. We first use the Levene test to check 
the homogeneity of variance and then conduct Student’s t test between our proposed 
method and other methods.
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