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Abstract 

Background: Running with the appropriate intensity may produce a positive influ-
ence on the mechanical properties of cortical bone structure. However, few studies 
have discussed the effects of different running intensities on the mechanical properties 
at different levels, especially at the micro-level, because the micromechanical param-
eters are difficult to measure experimentally.

Methods: An approach that combines finite element analysis and experimental data 
was proposed to predict a micromechanical parameter in the rat femoral cortical bone 
structure, namely, the micro-level failure strain. Based on the previous three-point 
bending experimental information, fracture simulations were performed on the femur 
finite element models to predict their failure process under the same bending load, 
and the micro-level failure strains in tension and compression of these models 
were back-calculated by fitting the experimental load–displacement curves. Then, 
the effects of different running intensities on the micro-level failure strain of rat femoral 
cortical bone structure were investigated.

Results: The micro-level failure strains of the cortical bone structures expressed 
statistical variations under different running intensities, which indicated that differ-
ent mechanical stimuli of running had significant influences on the micromechanical 
properties. The greatest failure strain occurred in the cortical bone structure under low-
intensity running, and the lowest failure strain occurred in the structure under high-
intensity running.

Conclusions: Moderate and low-intensity running were effective in enhancing 
the micromechanical properties, whereas high-intensity running led to the weaken-
ing of the micromechanical properties of cortical bone. Based on these, the changing 
trends in the micromechanical properties were exhibited, and the effects of different 
running intensities on the fracture performance of rat cortical bone structures could 
be discussed in combination with the known mechanical parameters at the macro- 
and nano-levels, which provided the theoretical basis for reducing fracture incidence 
through running exercise.
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Background
Cortical bone bears most of the external loads, and once damage occurs in the corti-
cal bone structure, cracks will propagate under different loads and eventually lead to 
fracture [1, 2]. The inevitable degeneration in the mechanical properties of cortical 
bone with age will further increase the incidence of fracture [3]. Therefore, exploring 
an appropriate method to improve the mechanical properties to reduce fracture inci-
dence is important in the research field of biomechanics.

Running exercise is recognized as an effective way to improve bone mechanical 
properties, and running with the appropriate intensity could increase bone density 
and strength [4, 5]. Several experiments considered that the fracture load, cortical 
bone thickness, and tissue-level elastic modulus in the rat femoral and tibial cortical 
bone structures significantly increased under treadmill running at low or moderate 
intensity [6–8]. However, different viewpoints exist in the studies on the effects of 
high-intensity running on the mechanical properties of cortical bone. Several stud-
ies found that the rat femoral cortical bone under high-intensity running was infe-
rior to that of the sedentary group in terms of apparent mechanical properties and 
microstructural morphological parameters [9, 10]. Moreover, a report suggested that 
high-intensity running increased cortical bone density and thickness but not ultimate 
strength [11]. Therefore, the effects of different running intensities on the mechanical 
properties of cortical bone structure remain to be further investigated.

Furthermore, comparisons of several experimental results found different chang-
ing trends in the mechanical parameters at the macro-, micro-, and nano-levels even 
under the same running intensity. For example, the mechanical stimuli of running did 
not change the tissue-level elastic modulus and hardness but improved the micro-
structural morphology [12]. The main reason for this phenomenon is that cortical 
bone is hierarchical with its overall mechanical response being influenced by the 
interplay of its structure and material composition at different levels [13, 14]. Thus, 
mastering the changes in mechanical parameters at different levels is necessary to 
investigate the effects of different running intensities on the mechanical properties of 
cortical bone. Current experiments can obtain the macro- and nano-levels mechani-
cal parameters but have difficulties in measuring the micro-level mechanical param-
eters in cortical bone structure [15, 16]. Most studies only reported the changes in 
the microstructural morphology parameters under different loading environments 
[6, 12]. The effects of micromechanical parameters on cortical bone fracture perfor-
mance are significant, especially for micro-level failure strain in the osteon [17]. The 
softening and fracture time of bone structure are partly determined by the micro-
level failure strain, and the processes of bone resorption and formation are also influ-
enced by the micro-level failure strain [18, 19]. These illustrate that micromechanical 
properties are of great importance in the mechanics and physiology of cortical bone 
structure. Therefore, accurate acquisition of micromechanical parameters is a prereq-
uisite for mastering fracture performance and predicting fracture risk in cortical bone 
structure.
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The purpose of this paper was to propose an approach that combines finite element 
(FE) analysis and experimental data to predict the micro-level failure strain for the rat 
femoral cortical bone structures. FE analyses were performed on the rat femoral corti-
cal bone structures to simulate their failure processes under three-point bending load. 
Different failure strains were repeatedly assigned to the FE models during simulation, 
and the suitable values could be back-calculated by fitting the load–displacement curves 
between the experiments and simulations. Then, the effects of different running intensi-
ties on the micro-level failure strain in the cortical bone structures were investigated, 
which provided the theoretical basis for reducing fracture incidence through running 
exercise.

Results
Prediction results of micro‑level failure strain

Fracture simulations were performed on the forty-eight femoral FE models to predict 
the tensile and compressive micro-level failure strains of cortical bone structures in the 
different rat groups. All the material input parameters, except the failure strain, have 
been measured in the previous experiments; therefore, the fitting accuracy in the load–
displacement curves depended on the assignment of the failure strain. The adjustment 
interval of the tensile failure strain was set to 0.001 to ensure the simulation precision. 
That was, each simulation was conducted by adding 0.001 to the last tensile strain and 
then re-running the fracture simulation until the fit was successful. Figure 1 shows the 
comparison of the prediction precision with different tensile failure strains. A complete 
fracture occurred later as tensile failure strain increased, resulting in an increase in frac-
ture load. The discrepancies in the load–displacement curves were not remarkable and 
the differences in the fracture parameters between every two curves were less than 5% 
when the adjustment interval of the tensile failure strain was set to 0.001. Therefore, this 
comparison indicated that setting the tensile strain adjustment interval to 0.001 was rea-
sonable when performing fitting.

The fitting process was completed when the differences in the fracture parameters 
between the experiment and simulation were less than 5%, and the predicted tensile and 

Fig. 1 Comparison of the prediction precision with different tensile failure strains
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compressive failure strains in the FE models were the micro-level failure strains of the 
cortical bone structure. The predicted micro-level failure strains in the different groups 
are shown in Table 1. Significant differences in micro-level failure strain were detected in 
the rat cortical bone structures under treadmill running with different intensities, which 
indicated that the different mechanical stimuli of running had a significant influence on 
the micromechanical properties. The greatest failure strain occurred in the cortical bone 
structure under low-intensity treadmill running, and the lowest failure strain occurred 
under high-intensity treadmill running.

Moreover, the load–displacement curves of the two femur FE models and the cor-
responding cortical bone samples were selected from each group for observation, as 
shown in Fig. 2. Meanwhile, Table 2 shows the apparent stiffness and fracture load of 
the samples in the previous experiment. Because the input material parameters and the 
femur micro-CT images were both obtained from previous experiments, the established 
femur FE models should be similar to the experimental cortical bone samples. Thus, the 
simulated and experimental load–displacement curves could be well fitted, and the frac-
ture parameters between the experiments and simulations were nearly the same. The 
comparison of the curves showed that quasi-brittle fracture occurred in the three-point 
bending experiment and simulation, which indicated that the structure experienced a 
long elastic stage and then entered the fracture stage. Thus, the micro-level failure strain 
could be back-calculated directly from fitting the load–displacement curves because the 
yield stage was not obvious.

The microarchitecture parameters in the rat femoral cortical bone

The microarchitecture parameters of the rat femoral cortical bone structures were cal-
culated with CTAn, as shown in Table  3. Statistically greater Ct.BMD was detected 
in the EX12 group compared with the SED and EX16 groups (p < 0.05). Statistically 
greater Ct.Th was detected in the EX12 group compared with the SED and EX20 groups 
(p < 0.05). Significantly greater Ct.P was detected in the EX16 group compared with the 
SED and EX12 groups (p < 0.05).

Discussion
The cortical bone structure may express different changing magnitudes and trends in the 
mechanical properties at different levels even under the same load owing to its hierarchi-
cal structural characteristic [20]. Therefore, mastering the mechanical parameters at the 

Table 1 The predicted micro-level failure strains of cortical bone structures in different groups, 
mean ± SD

All the data were statistically different among the four groups (p < 0.05)

Rat group Micro‑level failure strain in tension Micro‑level 
failure strain in 
compression

SED 0.0275 ± 0.000313 0.0458 ± 0.000521

EX12 0.0289 ± 0.000391 0.0483 ± 0.000651

EX16 0.0284 ± 0.000317 0.0473 ± 0.000529

EX20 0.0251 ± 0.000319 0.0417 ± 0.000532
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macro- and micro-levels is necessary to investigate the effects of different loading condi-
tions on the fracture performance of cortical bone structure. Micromechanical param-
eters are difficult to measure experimentally because of the limitations in the structural 

Fig. 2 The load–displacement curves obtained from the experiment and simulation in each rat group. a SED 
group; b EX12 group; c EX16 group; d EX20 group
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characteristics. Thus, this study aimed to propose an approach to predict a micro-level 
mechanical parameter in the cortical bone structure and observe the changes in this 
mechanical parameter under running with different intensities.

One of the advantages of FE analysis is that the mechanical state in the FE model can 
be observed at any time [21]. Figure 3 exhibits the complete failure process in the femur 
FE model under three-point bending load. At the initial loading stage, the principal 

Table 2 The fracture parameters of the femur samples measured in the previous experiment, 
mean ± SD

a Statistically different from SED (p < 0.05)
b Statistically different from EX20 (p < 0.05)

Rat group Apparent stiffness (GPa) Fracture load (N)

SED 6.85 ± 2.72 124.52 ± 30.50

EX12 7.39 ± 1.32 155.62 ± 20.77a,b

EX16 7.24 ± 1.95 142.21 ± 33.71

EX20 8.00 ± 2.76 122.49 ± 24.17

Table 3 Microarchitecture parameters of the femoral cortical bone evaluated by micro-CT, 
mean ± SD

a Statistically different from SED (p < 0.05)
b Statistically different from EX12 (p < 0.05)
c Statistically different from EX16 (p < 0.05)
d Statistically different from EX20 (p < 0.05)

Rat group Ct.BMD (g/cm3) Ct.Th (mm) Ct.P (%)

SED 1.67 ± 0.03 32.40 ± 3.32 2.51 ± 0.60

EX12 1.71 ± 0.03a,c 35.23 ± 2.97a,d 2.25 ± 0.45

EX16 1.67 ± 0.05 34.41 ± 4.48 3.17 ± 0.71a,b

EX20 1.68 ± 0.03 32.40 ± 2.50 2.67 ± 0.59

Fig. 3 The failure process in the FE model under three-point bending load and the comparison of the 
fracture patterns between the present simulation and the previous experiment. The “SDV1” represents the 
damage variable D. a initial loading stage; b element damage stage; c element failure stage; d structure 
fracture stage; e experimental fracture pattern



Page 7 of 15Fan et al. BioMedical Engineering OnLine           (2023) 22:89  

strain was high at the loading and constraint locations in the femur, and few green dam-
aged elements first appeared near the upper indenter, as shown in Fig. 3a. Then, a large 
number of green damaged elements appeared at the lower middle of the femoral shaft 
with bending, which was opposed to the upper indenter, as shown in Fig. 3b. When the 
bending reached a certain degree, the red failed elements appeared at the lower side of 
the cortical bone structure and expanded longitudinally from the middle to both sides, 
forming a fan-shaped failure region, as shown in Fig. 3c. In addition, because the princi-
ple strain increased more quickly at both sides of the lower cylinders due to the support 
during bending, the elements near the lower cylinders occurred failure at the middle 
loading stage. However, no more new damaged elements occurred, which illustrated 
that the crack in the femur under bending load propagated in the middle position but 
not in the constraint location. When the red failed elements in the lower part of the 
cortical bone extended to both sides to a certain degree, they extended transversely and 
upward instead of longitudinally along the femur until the failed elements penetrated the 
central section of the femoral shaft, resulting in complete fracture, as shown in Fig. 3d. 
The comparison stated that the fracture pattern in the simulation was consistent with 
the previous experimental result, as shown in Fig. 3e [22]. Furthermore, the femur frac-
ture under three-point bending load has been reported to be caused by the continuous 
propagation of the lower surface crack in transverse and longitudinal directions, which 
cuts off the central section of the femoral shaft [23]. These comparisons could verify the 
feasibility and accuracy of the simulation in this study.

The results showed that the micro-level failure strains of cortical bone structure in the 
four rat groups were statistically different from each other (p < 0.05), which indicated 
that different mechanical stimuli of running produced significant effects on the micro-
mechanical properties of cortical bone structure. The EX12 group generated the greatest 
improvement in the micro-level failure strain, and the failure strain in the EX20 group 
was significantly lower than that in the SED group. The micro-level failure strain rep-
resents the failure threshold in the osteon, so its value could be used to describe the 
micromechanical properties of the structure and partly determine the apparent fracture 
process [24, 25]. Thus, this finding suggested that moderate and low-intensity running 
were effective in enhancing the micromechanical properties, whereas high-intensity run-
ning led to the weakening of the micromechanical properties of cortical bone structure.

A comprehensive discussion of the mechanical parameters at different levels is neces-
sary to investigate the effects of different running intensities on the fracture performance 
of cortical bone owing to its hierarchical structural organization. Previous experiment 
showed that the fracture load and apparent stiffness increased in the EX12 and EX16 
groups compared with the SED group, as shown in Table  2. Macro-level mechanical 
parameters are often determined by the combination of mechanical parameters at the 
micro- and nano-levels and microstructural morphology [26, 27]. Thus, the fracture load 
should be determined by a combination of microarchitecture parameters, micro-level 
failure strain, and tissue-level elastic modulus. The statistical results of the microarchi-
tecture parameters in this study showed that the Ct.Th in the EX12 and EX16 groups 
was statistically greater than those in the SED and EX20 groups, and the EX16 group 
had a remarkably greater Ct.P compared with the EX12 group. Moreover, the tissue-
level elastic modulus is significantly greater in the EX12 and EX16 groups than in the 
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other two groups, as shown in Table 4. The differences in the predicted micro-level fail-
ure strains suggested that the micro- and nano-levels mechanical properties in the EX12 
and EX16 groups were better than those in the other two groups, and their mechanical 
properties at the macro-level, including fracture load and apparent stiffness, were better 
than those of the other two groups. Therefore, running at moderate and low intensities 
could improve the mechanical properties of cortical bone structure.

The previous experiment also showed that the fracture load was the lowest in the EX20 
group, but the apparent stiffness was greater compared with the other groups, as shown 
in Table 2. This phenomenon states that different macro-level mechanical parameters in 
one cortical bone structure may also express different variations. The reason may be that 
the macro-level mechanical parameter was determined by different micro- and nano-
levels parameters. No substantial differences in the microarchitecture parameters are 
found between the SED and EX20 groups in Table 3. Although the longitudinal elastic 
modulus in the EX20 group was significantly lower than that in the SED group, the femur 
fracture under three-point bending load was mainly caused by transverse deformation, 
which depended on the transverse elastic modulus [28]. No remarkable differences in 
the transverse elastic modulus existed between the EX20 and SED groups, suggesting 
that the differences in fracture performance between the EX20 and SED groups may be 
determined by the micromechanical properties. The simulation results showed that the 
micro-level failure strain in the EX20 group was substantially lower than those in the 
other groups, which led to advanced fracture and low fracture load. However, its appar-
ent stiffness was not low because of the better microstructure morphology [29]. There-
fore, the fracture load in the EX20 group was lower than that in the SED group mainly 
because of the decrease in micro-level failure strain.

Several limitations existed during the simulations in this study. First, the loading con-
dition was single, only the three-point bending load was considered. In reality, the femur 
may be subjected to compression, torsion, and impact loads. Although this study only 
simulated the cortical bone fracture under three-point bending load, the established 
numerical method may also be applicable to bone fractures caused by other types of 
loads. Second, the microarchitecture features in the fracture surface have a great influ-
ence on the fracture performance. Our previous experiment did not conduct scanning 
electron microscopy analysis on the cortical bone fracture surface; hence, the micro-
architecture features of the fracture surface could not be observed. However, the reasons 

Table 4 The tissue-level elastic modulus of the cortical bone measured by nanoindentation test, 
mean ± SD

a Statistically different from SED (p < 0.05)
b Statistically different from EX12 (p < 0.05)
c Statistically different from EX16 (p < 0.05)
d Statistically different from EX20 (p < 0.05)

Groups Longitudinal elastic modulus (GPa) Transverse elastic 
modulus (GPa)

SED 23.57 ± 3.85 19.69 ± 2.97

EX12 24.15 ± 3.85 21.56 ± 2.29a,d

EX16 25.04 ± 3.84 20.97 ± 1.83a,d

EX20 20.71 ± 3.03a,b,c 18.74 ± 1.67
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for the changes in the macro-level mechanical parameters and the relationships between 
microarchitecture and micro-level failure strain under different mechanical stimuli were 
discussed, which may compensate for the inability to investigate the effects of the frac-
ture surface on the microarchitecture features.

Conclusions
The failure process in the rat femur FE models under three-point bending load was 
simulated, and the micro-level failure strain was predicted by back-calculation with 
the experimental data. The micro-level failure strains of cortical bone structures in the 
four rat groups were statistically different from each other, which indicated that differ-
ent mechanical stimuli of running produced significant effects on the micromechani-
cal properties of cortical bone structure. The greatest micro-level failure strain occurred 
in the cortical bone structure under low-intensity running, and the lowest failure strain 
occurred in the structure under high-intensity running. This finding suggested that 
moderate and low-intensity running were effective in enhancing the micromechanical 
properties, whereas high-intensity running led to the weakening of the micromechanical 
properties of cortical bone structure.

Materials and methods
Description of the previous three‑point bending experiment

The three-point bending experimental data needed in this study were obtained from our 
previous research, which focused on measuring the macro- and nano-levels mechani-
cal parameters of the rat femoral cortical bone structures under treadmill running with 
different intensities [22]. In this experiment, five-month-old male Sprague–Dawley 
rats were regarded as the experimental objects. Forty-eight healthy rats were randomly 
assigned to the sedentary control group (SED, n = 12) and treadmill running groups 
with speeds of 12 m/min (EX12, n = 12), 16 m/min (EX16, n = 12), and 20 m/min (EX20, 
n = 12). Throughout the experimental period, the rats in the exercise groups ran on the 
treadmill for 30 min/day, 5 days a week, for 4 weeks. The rats in the sedentary control 
group were allowed to move freely in the cages. All the rats were killed, and their right 
femurs were harvested after one month of rearing.

The three-point bending experiment was performed on the femur samples to obtain 
the fracture load. The experimental span was set to 20 mm, and the indenter was loaded 
at a uniform speed of 0.5 mm/min downward. The bending load from the indenter was 
applied on the cortical bone structure in the middle of the femoral shaft. The nanoinden-
tation test was performed on the cortical bone to measure the tissue-level elastic modu-
lus. Two cortical bone structures with equal size were cut along the axis of the femoral 
shaft in each sample. One was used to measure the transverse elastic modulus, and the 
other measured the longitudinal elastic modulus. Nanoindentation tests were performed 
with a speed of 750 μN/s and an indentation depth of 1000 nm [22].

Micro‑CT scanning

Forty-eight femurs were scanned by a micro-CT system at 18 μm voxel image resolution 
with 70 kV, and 100 μA. The scanned data were reconstructed using the NRecon soft-
ware. The region of interest (ROI) was manually selected for the analysis of the femoral 
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micro-CT images with the CTAn software. The total 5 mm cortical bone structure from 
the middle of the femoral shaft to the proximal and distal ends was selected as the ROI, 
where the failure location in the femur under three-point bending load was also in the 
range of this region. The microstructural parameters in the ROI of the femoral shaft cor-
tical bone structure, including the cortical bone mineral density (Ct.BMD), cortical bone 
thickness (Ct.Th), and cortical bone porosity (Ct.P), were measured.

Establishment of finite element models

The femoral micro images were imported into the MIMICS software to reconstruct the 
geometric model. Because the failure region was located at the cortical bone structure 
in the middle of the femoral shaft during three-point bending load, the trabecular bone 
structure was not created in the FE model. The image segmentation was chosen in the 
range of 800–2000 HU, and the trabecular bone region in the MIMICS software was not 
selected during the geometric reconstruction process [34]. Then, the femur FE model 
was established by ABAQUS software using the C3D8 element. The upper rigid indenter 
and lower rigid cylinders were created above and below the femur FE model to simu-
late the experiment boundary condition. Due to the large surface roughness of the lower 
cylinders in the electronic testing machine, great friction can be provided between the 
lower surfaces of the cylinders and the femur. Therefore, the lower cylinders were fixed 
to the lower surface of the FE model using the TIE connection. The upper indenter was 
set to frictionless contact with the femur model. The upper indenter was compressed 
vertically downward, and the two lower cylinders were fully constrained to implement 
bending load. The loading schematic diagrams in the previous experiment and the pre-
sent simulation can be seen in Fig. 4.

Fracture simulation with finite element models

As observed in the previous experiment and literature, the quasi-brittle fracture 
occurred on the rat femoral cortical bone structure under three-point bending load [12, 
22]. Therefore, the damage process can be described as the degradation of the structural 
mechanical properties when the critical failure strain in the element was reached [30]. 
This was accomplished using the ABAQUS User Material (UMAT) subroutine, where 
the material degradation was introduced to describe the progressive loss of stiffness due 

Fig. 4 The schematic diagrams of the boundary condition on the rat femur under three-point bending. a the 
experimental boundary condition; b the simulated boundary condition
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to crack initiation and propagation. In a quasi-static regime, the constitutive equation of 
elasticity introduced by a damage mechanics degradation can be expressed as [31, 32]:

where σ is the element stress tensor, Cd is the damaged stiffness matrix tensor in the 
element, ε is the element strain tensor, D is the damage variable, C is the initial stiffness 
matrix tensor in the element.

A key point in this fracture simulation is the choice of the damage evolution law describing 
the damage accumulation in the FE model. Because the bone failure process is mainly con-
trolled by the element strain in the FE model, the damage evolution law was selected as [33]:

where ε is the maximum or minimum principal strain in the element, εf is the critical 
tensile or compressive failure strain in the cortical bone material.

The structure remained in the elastic stage, and the initial stiffness matrix in the ele-
ment was not degraded when the principal strain was less than the critical failure strain 
of the cortical bone material. The principal strain gradually exceeded the critical fail-
ure strain as the bending increased, and the structure entered into the damage stage. 
The damage variable D increased with the principal strain, causing a decrease in the 
element stiffness. The damaged stiffness matrix was adopted to update the stress and 
Jacobian matrix in the element. The Jacobian matrix after the onset of the damage could 
be described as expression (4) [34]. When the damage variable D approached 0.999, 
the element failed and lost its bearing capacity. With further bending, the cortical bone 
structure cannot be effectively loaded and underwent complete fracture when the failed 
element increased and accumulated to a certain degree.

Prediction process of micro‑level failure strain

In the simulation process, the maximum and minimum principal strains in the element 
were compared with the critical tensile or compressive failure strains of the cortical bone 
material to determine whether damage occurred. Therefore, cortical bone fracture can 
be simulated by inputting four material parameters in the UMAT subroutine, namely, 
the elastic modulus, Poisson’s ratio, and critical tensile and compressive failure strains. 
First, the longitudinal and transverse tissue-level elastic moduli of the corresponding rat 
femoral cortical bone samples have been measured by previous nanoindentation test, as 
shown in Table 4 [22]. The poisson’s ratio was set to 0.3 [1, 14]. Additionally, the ratio 
of critical tensile to compressive failure strain of the cortical bone material was set to 
0.6 according to the literature [35, 36]. Therefore, only one material input parameter, 
namely the critical tensile or compressive failure strain, was not known. The critical ten-
sile or compressive failure strain in the cortical bone material was the micro-level failure 
strain in the structure, which was the predicted object in the paper.

(1)σ = Cdε

(2)Cd = (1− D)C

(3)D = 0 for(ε ≤ εf );D = 1− e

(

1−
ε

εf

)

for(ε > εf )

(4)
∂σ

∂ε
= Cd +

∂Cd

∂ε
: ε = Cd +

∂Cd

∂D
×

∂D

∂ε
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The first step was to select the approximate range of micro-level failure strain for the 
rat cortical bone structure. According to the literature, the failure strain of the corti-
cal bone material is in the range of 0.01–0.05 [37, 38]. Thus, the prediction started with 
tensile and compressive failure strains of 0.01 and 0.0167, respectively. Every FE model 
was solved with a range of failure strains in tension and compression while maintain-
ing 0.6 asymmetry until a single set of values could be determined that could make the 
simulated load–displacement curve best fit the experimentally measured one. Thus, the 
micro-level failure strain could be predicted by back-calculated fitting from the experi-
mental results. The flowchart of the prediction process can be seen in Fig. 5.

Mesh sensitivity analysis

Mesh sensitivity analysis was performed to determine the suitable element size for the 
femur FE model. Based on the femoral micro images from the SED group, different ele-
ment sizes (20, 30, 40, 50, and 60 μm) were selected to establish the femur FE models. The 
load–displacement curves predicted in the simulations with the five FE models are shown 
in Fig. 6. The shape of the load–displacement curve was similar when the material input 
parameters were the same and only the element size was different. However, certain dif-
ferences existed in the fracture load and fracture time. The FE model with coarse element 
underwent complete fracture early because the damage variable rose faster for the large 
element size, resulting in a faster decrease in the structural stiffness. The predicted three 
curves had no obvious differences in the fracture parameters when the element size was 
in the range of 30–50 μm. Therefore, the element size of the forty-eight femoral FE mod-
els established in this study was set at 30 μm considering the prediction accuracy.

Fig. 5 Flow chart of the prediction process for the micro-level failure strain
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Statistical analysis

Data analysis was performed using SPSS software. The mean values of all the parameters 
in each group were calculated. Differences among all groups were analyzed by one-way 
analysis of variance. If significant differences were observed, the LSD post hoc test was 
used to compare the differences between every two groups. The significance level of p 
was chosen to be 0.05.

Abbreviation
FE  Finite element
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