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Abstract 

Background: The worldwide society is currently facing an epidemiological shift due 
to the significant improvement in life expectancy and increase in the elderly popula‑
tion. This shift requires the public and scientific community to highlight successful 
aging (SA), as an indicator representing the quality of elderly people’s health. SA 
is a subjective, complex, and multidimensional concept; thus, its meaning or meas‑
uring is a difficult task. This study seeks to identify the most affecting factors on SA 
and fed them as input variables for constructing predictive models using machine 
learning (ML) algorithms.

Methods: Data from 1465 adults aged ≥ 60 years who were referred to health centers 
in Abadan city (Iran) between 2021 and 2022 were collected by interview. First, binary 
logistic regression (BLR) was used to identify the main factors influencing SA. Second, 
eight ML algorithms, including adaptive boosting (AdaBoost), bootstrap aggregating 
(Bagging), eXtreme Gradient Boosting (XG‑Boost), random forest (RF), J‑48, multilay‑
ered perceptron (MLP), Naïve Bayes (NB), and support vector machine (SVM), were 
trained to predict SA. Finally, their performance was evaluated using metrics derived 
from the confusion matrix to determine the best model.

Results: The experimental results showed that 44 factors had a meaningful relation‑
ship with SA as the output class. In total, the RF algorithm with sensitivity = 0.95 ± 0.01, 
specificity = 0.94 ± 0.01, accuracy = 0.94 ± 0.005, and F‑score = 0.94 ± 0.003 yielded 
the best performance for predicting SA.

Conclusions: Compared to other selected ML methods, the effectiveness of the RF as 
a bagging algorithm in predicting SA was significantly better. Our developed predic‑
tion models can provide, gerontologists, geriatric nursing, healthcare administrators, 
and policymakers with a reliable and responsive tool to improve elderly outcomes.
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Introduction
Aging is a global phenomenon that represents  a significant risk factor for disability and 
many chronic diseases. This period of human life is a continuous but irreversible pro-
cess with a steady deterioration in body structure and functions [1, 2]. Population aging 
will increase healthcare costs, resulting in a huge medical burden and severe financial 
pressure on families, which poses profound economic, political, and social outcomes for 
both developed and developing countries [3, 4]. The global proportion of older people 
aged ≥ 60 is increasing rapidly compared to other age groups [5]. Currently, it is esti-
mated that 12.7% of the world’s population is elderly. By 2050, the elderly population 
is projected to make up more than 21.4% of the world’s population, and by 2100 this 
population will triple to reach approximately 27.7% [6]. Reports indicated that the pop-
ulation in Iran is in transitioning from youth to old age. About 10% of Iran’s popula-
tion is aged 60 years and older. According to official reports, people aged 65 and older 
will account for 31% of the total Iranian population by 2050, and this proportion will 
increase dramatically [7, 8].

In recent decades, advances inmedicine have significantly reduced global  mortality 
rates, leading to an increase in the world’s elderly population. Aging is not a disease, 
but neglect of people’s health monitoring has negative impacts on all countries’ health-
care, the economy, education, employment, social, and political sectors. The nega-
tive effects of the increasing aging population include decreased quality of life (QoL), 
increased dependence on others for doing daily activities and mental health problems, 
existing problems such asloss of job, loss of spouse and friends, loss of  children, poverty, 
and physical problems [9, 10]. On the other hand, improving life expectancy leads to an 
increase in the elderly population along with the amount of time spent as an older adult. 
In this situation, the epidemiology of diseases among the elderly also changes to chronic 
non-communicable diseases such as cardiovascular diseases (CVD), hypertension, dia-
betes, neoplasm, and dementia. As a result, it causes social and economic problems for 
the elderly, so the elderly population requires more health services than other age groups 
[11].

The concept of successful aging (SA) emerged in the gerontological literature to over-
come the challenges and problems of population aging. SA as a preferred term over-
laps with various terms such as positive aging, aging well, productive aging, and healthy 
aging [12, 13]. The SA stressed the quality of the aging life. This paradigm shifts the focus 
on aging from normal aging with four Ds (disease, disability, death, and dementia) to 
SA assesses how people can age well, and identifies the involved processes and compo-
nents with criteria to “how long,” “how well,” or “how healthy” live [14–16]. This concept 
has long intrigued academics and researchers. Robert Havighurs first defined SA in 1961 
as feeling life satisfaction and happiness during the latter stages of an individual’s lifes-
pan [17]. Rowe and Kahn [18] state that SA is not suffering from chronic diseases, but 
consists of a combination of three components, which are the low probability of dis-
ease and disease-related disability, high cognitive and physical functioning, and active 
engagement with life [18–20]. However, Rowe and Kahn’s theory ignored the dimension 
of mental health. In recent years, an increasing number of researchers have improved 
on the Rowe and Kahn model. For example, Crowther added “positive spirit” as a fourth 
dimension, and Bowling added “subjective well-being” [21].
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Previous studies have mostly described factors influencing SA. However, due to the 
subjective, interdisciplinary, and multidimensional nature of SA, measuring or predict-
ing is a difficult task. A fundamental emphasis of studies is on better understanding 
and defining SA and recognizing its determinants so that clinical care and protective 
interventions can be more meaningfully informed [22]. The influencing factors of SA 
are interdependent and complex, and the traditional model does not apply to SA [11, 
23, 24]. Rapid technological and digital advancement, such as artificial intelligence (AI), 
provides new ways to create novel smart services or renew health pathways by lean 
operations [11, 25, 26]. As a subcategory of AI, machine learning (ML) is an extensive 
discipline based on statistics or computational science that provides automated learn-
ing techniques to extract hidden patterns from empirical data and then make complex 
decisions based on learned behaviors [11, 21, 27]. The present study aimed to develop 
several ML predictive models for predicting SA using important features that influence 
SA. Finally, the performance of the ML models was compared to select the best one.

Results
Features extraction

After the literature review, an electronic checklist was prepared based on the 102 items 
extracted from the literature search. In the first phase of Delphi, 55 items were rejected 
and 15 items were qualified for the second Delphi phase. In the second phase, 13 items 
were accepted and 2 items were rejected by the experts’ panel. At the end of the Delphi 
phase, 44 eligibility features have entered the final checklist to predict SA.

Sample characteristics

Finally, 1465 cases participated in this study for data analysis including the 746 and 719 
associated with non-SA and SA classes, respectively. The 566 and 899 cases pertained to 
men and women, respectively, with an average age of 68.3 ± 3.325 years.

Multi‑variable statistical analysis

The results of data analysis pertained to the SA and non-SA elderly cases using the BLR 
as multi-variables statistical analysis are presented in Table 1.

In this table, the odd ratio shows the probability of occurrence of each state of vari-
ables, the CI is 95% of the occurrence of the odd ratio, and the correlation is defined as 
the correlation of each variable with the output class. To obtain the best influencing fac-
tors for the SA, we considered the P < 0.05 for these variables. In contrast, the variables 
with P > 0.05 were excluded from this study. Based on the information given in Table 1, 
the determinant factors of age [CI = 1.52–1.94] (β = 0.12), income level [CI = 2.12–2.76] 
(β = 0.44), hypertension [CI = 1.25–2.08] (β = 0.35), CVA [CI = 0.98–1.32 (β = 0.2), bone 
disease [CI = 0.85–1.2] (β = 0.1), liver disease [CI = 0.52–0.96] (β = 0.12), muscle dis-
ease [CI = 1.45–1.9] (β = 0.19), depression [CI = 1.52–1.86] (β = 0.25), convalescences 
[CI = 0.89–1.36] (β = 0.26), eye disease [CI = 0.63–1.02] (β = 0.29), diabetes [CI = 1.35–
1.52] (β = 0.27), cancer [CI = 1.45–1.82] (β = 0.25), sports activities [CI = 1.75–2.23] 
(β = 0.4), exercise time [CI = 2.14–2.56] (β = 0.38), type of exercise [CI = 2.25–2.7] 
(β = 0.48), sexual health [CI = 0.35–0.85] (β = 0.13), perform disease prevention activities 
[CI = 2.13–2.68] (β = 0.11), nutritional status [CI = 0.55–1.33] (β = 0.33), mal-nutritional 
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status [CI = 1.05–1.42] (β = 0.2), physical activity and exercise [CI = 2.11–2.63] (β = 0.37), 
general health [CI = 1.98–2.43] (β = 0.42), fatigue [CI = 2.15–2.41] (β = 0.21), physi-
cal dysfunction [CI = 0.6–0.93] (β = 0.44), physical function [CI = 0.45–1.1] (β = 0.47), 

Table 1 Results of correlation of factors affecting SA

Variable name Correlation (β) Odd ratio 95% confidence 
interval (CI)

P‑value

Age (years) 0.12 1.77 [1.52–1.94] 0.016*

Sex 0.18 2.45 [2.1–2.86] 0.3

Educational level 0.25 1.97 [1.68–2.2] 0.6

Marital status 0.16 0.55 [0.38–0.75] 0.21

Occupation 0.21 1.12 [0.98–1.35] 0.17

Income level 0.44 2.34 [2.12–2.76] 0.001*

Insurance status 0.32 1.69 [1.42–1.96] 0.3

Hypertension 0.37 1.71 [1.25–2.08] 0.005*

CVA 0.20 1.13 [0.98–1.32] 0.028*

Bone disease 0.1 1.05 [0.85–1.2] 0.001*

Renal disease 0.16 0.65 [0.42–0.83] 0.2

Liver disease 0.12 0.78 [0.52–0.96] 0.011*

Muscle disease 0.19 1.66 [1.45–1.9] 0.001*

Depression 0.27 1.71 [1.52–1.86] 0.013*

Convalescences 0.26 1.12 [0.89–1.36] 0.024*

Eye diseases 0.29 0.85 [0.63–1.02] 0.005*

Diabetes 0.27 1.48 [1.35–1.52] 0.001*

Cancer 0.28 1.77 [1.45–1.82] 0.001*

Other diseases 0.17 0.56 [0.32–0.78] 0.2

Sport activities 0.4 1.97 [1.75–2.23] 0.001*

Exercise time 0.38 2.39 [2.14–2.56] 0.001*

Type of exercise 0.48 2.47 [2.25–2.7] 0.001*

Sexual health 0.13 0.56 [0.35–0.89] 0.001*

Perform disease prevention activities 0.11 2.45 [2.13–2.68] 0.001*

Nutritional status 0.33 0.84 [0.55–1.23] 0.001*

Mal‑nutritional status 0.20 1.24 [1.05–1.42] 0.001*

Physical activity and exercise 0.37 2.39 [2.11–2.63] 0.001*

General health 0.42 2.22 [1.98–2.43] 0.013

Pain assessment 0.07 0.62 [0.51–0.83] 0.16

Fatigue 0.21 2.27 [2.15–2.41] 0.001*

Physical dysfunction 0.44 0.75 [0.6–0.93] 0.001*

Physical function 0.47 0.69 [0.45–1.1] 0.001*

Mental disorder 0.09 1.23 [1.12–1.46] 0.001*

Physiological disorder 0.15 1.77 [1.6–1.94] 0.001*

Life satisfaction 0.11 1.7 [1.57–1.89] 0.001*

Tension management 0.44 1.93 [1.78–2.13] 0.001*

Self‑efficacy 0.15 2.02 [1.97–2.16] 0.001*

Self‑esteem 0.41 1.24 [1.12–1.41] 0.01*

Hope 0.43 0.74 [0.49–1.02] 0.015*

Futurity 0.38 0.63 [0.51–0.87] 0.001*

Satisfaction with social support 0.27 1.78 [1.55–2.01] 0.01*

Social functional 0.17 1.91 [1.74–2.03] 0.01*

Social and interpersonal relationships 0.36 1.77 [1.63–1.86] 0.01*

Family support 0.15 1.45 [1.27–1.6] 0.01*
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mental disorder [CI = 1.12–1.46] (β = 0.09), physiological disorder [CI = 1.6–1.94] 
(β = 0.15), life satisfaction [CI = 1.57–1.89] (β = 0.11), tension management [CI = 1.78–
2.13] (β = 0.44), self-efficacy [CI = 1.97–2.16] (β = 0.15), self-esteem [CI = 1.12–1.41] 
(β = 0.41), hope [CI = 0.49–1.2] (β = 0.43), futurity [CI = 0.51–0.87] (β = 0.38), satisfac-
tion with social support [CI = 1.55–2.01] (β = 0.27), social functions [CI = 1.74–2.03] 
(β = 0.17), social and interpersonal relationships [CI = 1.63–1.86] (β = 0.36), and fam-
ily support [CI = 1.27–1.6] (β = 0.15) obtained the correlations with the output class at 
P < 0.05. The variables including sex (P = 0.3), marital status (P = 0.21), educational level 
(P = 0.6), occupation (P = 0.17), insurance status (P = 0.3), renal disease (P = 0.2), other 
diseases (P = 0.2), and pain assessment (P = 0.16) were excluded from this study.

Appraising the ML algorithms’ performance

The results of the evaluation metrics of ML algorithms including bagging, boosting, and 
simple algorithms with fivefold cross-validation are shown in Table 2.

Based on the evaluation metrics presented in Table  2, the RF model by  the maxi-
mum tree depth of 6 and 50 of algorithm’s iteration with sensitivity = 0.95 ± 0.01, 
specificity = 0.94 ± 0.01, accuracy = 0.94 ± 0.005, and F-score = 0.94 ± 0.003 gained the 
best predictive strength in classifying the SA and non-SA cases among older adults. 
The XG-Boost-trained algorithm with decision stump as a base classifier and gb-
tree as an objective function with sensitivity = 0.88 ± 0.01, specificity = 0.86 ± 0.02, 
accuracy = 0.88 ± 0.01, and F-score = 0.88 ± 0.01 was ranked as a second predictive 
performer in terms of SA compared to other ML-trained algorithms. Also the Ada-
Boost with the decision stump as a base classifier and maximum iteration equaled to 
20 with sensitivity = 0.88 ± 0.01, specificity = 0.86 ± 0.02, accuracy = 0.88 ± 0.01, and 
F-score = 0.86 ± 0.01 and bagging-trained algorithm with sensitivity = 0.84 ± 0.02, speci-
ficity = 0.84 ± 0.01, accuracy = 0.84 ± 0.01, and F-score = 0.84 ± 0.02 got the third and 
fourth predictive strength ranks among other ML-trained algorithms. Investigating the 
predictive strength of these four ensemble ML-trained algorithms using the mentioned 
performance indicators in this study showed that all of them obtained the pleasant capa-
bility in categorizing the SA and non-SA cases among the elderly with all performance 
criteria obtained more than 80%. The NB algorithm with sensitivity = 0.68 ± 0.04, speci-
ficity = 0.65 ± 0.05, accuracy = 0.69 ± 0.045, and F-score = 0.66 ± 0.04 obtained the low-
est performance in this respect. With the exception of the NB algorithm, all other ML 
algorithms gained a performance of more than 0.7. However, the bagging and boost-
ing algorithms gained more predictive strength in SA than other simple ML-trained 
algorithms. The results of comparing the algorithms based on the AUC curve in train, 
test and validation modes are shown in Fig 1.

By assessing and comparing the performance of all bagging, boosting, and base algo-
rithms in all train, validation, and test situation, we resulted that the RF model as a 
bagging algorithm with AUC-train = 0.918, AUC-validation = 0.886, AUC-test = 0.845 
gained the best predictive strength to classify the SA and non-SA cases among the 
older adults. The XG-Boost prediction model with AUC-train = 0.893, AUC-valida-
tion = 0.865, and AUC-test = 0.832 obtained the second predictive capability in classify-
ing these cases as a boosting method. Also, the test results obtained by this algorithm 
showed the pleasant generalizability capability in classifying the SA and non-SA cases 
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than RF model (we saw the less reduction of predictive power in test state result than the 
RF-trained ML by analyzing the ROC). Also, the AdaBoost and bagging algorithms with 
AUC-train = 0.836, AUC-validation = 0.765, AUC-test = 0.715 and AUC-train = 0.819, 
AUC-validation = 0.743, AUC-test = 0.703 gained the relative pleasant performance by 
AUC > 0.7 in all training, testing, and validation states. On the contrary, The J-48 and 
NB algorithms as the base algorithms with AUC-train = 0.623, AUC-validation = 0.558, 
and AUC-test = 0.531 and AUC-train = 0.569, AUC-validation = 0.526, and AUC-
test = 0.512, respectively, gained the worst performance strength in this regard. In gen-
eral, the evaluation of the functionality of all three types of bagging, boosting, and simple 
algorithms showed that the ROC values of the bagging and boosting were closer to the 
sensitivity vertices and so had the more favorable prediction strength for predicting the 
SA and non-SA cases among the elderly than the simple ML algorithms.

Table 2 Performance evaluation of selected algorithms

Algorithm Hyper‑parameters Sensitivity Specificity Accuracy F‑score

RF Maximum of depth = “6”
Maximum number of iterations = “50”
Number of execution slots = “1”
Bag size percent = “100”
Break Tie randomly = “True”

0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.005 0.94 ± 0.003

Bagging Bag size percent = “100”
Classifier = “REP‑Tree”
Maximum number of iterations = “15”
Number of decimal places = “2”
Number of execution slots = “1”

0.84 ± 0.02 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.02

AdaBoost Batch size = “100”
Classifier = “Decision Stump”
Maximum number of iterations = “20”
Weight threshold = “50”
Minimum number of instances per 
leafs = “1”

0.88 ± 0.01 0.86 ± 0.02 0.88 ± 0.01 0.86 ± 0.01

XG‑Boost Maximum depth = “8”
Classifier = “Decision Stump”
Base score = “4”
Min child weight = “1”
Booster = “gb‑tree”

0.90 ± 0.01 0.88 ± 0.02 0.89 ± 0.015 0.88 ± 0.01

MLP Number of hidden layers “10”
Learning rate = “0.25”
Momentum = “0.2”
Validation threshold = “20”
Maximum number of iterations = “20”
Normalize numeric values and attrib‑
utes = “True”

0.77 ± 0.03 0.75 ± 0.04 0.76 ± 0.035 0.76 ± 0.035

SVM Kernel type = “RBF”
Regularization parameters (C) = “10”
Gamma = “10”
RBF gamma = “0.1”
Degree for increasing dimensions = “3”

0.80 ± 0.03 0.79 ± 0.03 0.79 ± 0.03 0.79 ± 0.03

J‑48 Confidence factor = “0.2”
Minimum number of objects = “2”
Number of folds = “3”
Binary split = “false”
Reduced error pruning = ” True”

0.72 ± 0.04 0.72 ± 0.04 0.70 ± 0.04 0.72 ± 0.04

NB Use Kernel Classifier = “true”
Use Supervise discretization =  “true”
Batch size = “100”
Number of decimal places = “100”

0.68 ± 0.04 0.65 ± 0.05 0.69 ± 0.045 0.66 ± 0.04
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Overall schema indicating the performance and external testing prediction models

An overview of all data mining algorithms’ performance results including bagging, 
boosting, and simple algorithms based on sensitivity, specificity, accuracy, F-score, 
and AUC-test is shown in Fig. 2.

Figure 2 shows that the RF, bagging, AdaBoost, and XG-Boost as the ensemble algo-
rithms obtained better performance than the SVM, MLP, J-48, and NB as the simple 
algorithms to classify the SA and non-SA cases. The RF and XG-Boost obtained pleas-
ant performance for classifying the SA and non-SA cases, but the RF as a bagging 
technique algorithm gained better performance than the two other boosting algo-
rithms. In contrast, the NB-trained algorithm gained the worst performance in this 
respect. Evaluating the performance criteria considering the test state showed that 

Fig. 1 The ROC of all statutes of ML algorithms
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Fig. 2 The performance criteria of bagging, boosting, and simple algorithms
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RF and XG-Boost-trained algorithms with AUC-test gained the best generalizability 
capability than other ML-trained algorithms. Thus, these two ML-trained algorithms 
are more exposure to leveraging in external settings than others by pleasant perfor-
mance demonstrated in test data. To evaluate the external validity of our best-trained 
ML algorithms we used these two models to test the predictive capability of them in 
predicting the external samples of SA and non-SA. We used the cases pertained to SA 
and non-SA cases belonged to one elderly center of the Abadan city. Also, the 45 and 
70 cases associated with the SA and non-SA cases pertained to all older adults inter-
viewed in this center were used for external evaluation. In this respect, we reported 
the external validity results using the confusion matrix and the ROC obtained by test 
data. The results of the classification of these external test cases using the confusion 
matrix are shown in Table 3.

Based on the information given in Table  3, the RF and XG-Boost models gained 
sensitivity = 0.84, specificity = 0.88, and accuracy = 0.86, and sensitivity = 0.82, speci-
ficity = 0.84, and accuracy = 0.83, respectively. In external state comparing to these per-
formance criteria in internal validation, we did not obtain high reduction performance 
capability (average reduction < 10%) by these two algorithms. Also comparing the classi-
fication capability in test and train states confirms this subject (all ROC values pertained 
to RF, XG-Boost, and external test modes are close to each other) (Fig. 3).

Feature importance based on RF

Based on the RF algorithm, the features influencing the SA are described as their impor-
tance for prediction based on the Net Importance per percent (NI%) obtained with this 
algorithm. This result is shown in Fig. 4.

Table 3 External test classification by models

Forecasted as SA Forecasted as non‑SA

SA cases 38 (RF) 37(XG‑Boost) 7 (RF) 8 (XG‑Boost)

non‑SA cases 8 (RF) 11 (XG‑Boost) 62 (RF) 59 (XG‑Boost)

Fig. 3 The ROC of internal and external validation
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Based on Fig.  4, the variables of age with NI = 92.9%, social functional with 
NI = 88.87%, social interpersonal relationship with NI = 93.83%, depression with 
NI = 84.97%, and hypertension with NI = 80.56% gained NI > 0.8 and were considered as 
the nest factors influencing the SA by the RF as the ensemble algorithm. The variable 
of income with the NI = 11.4% obtained the least amount in this regard. Based on the 
results, it is concluded that the social factors with a higher NI than other physical, demo-
graphic, and mental variables can be considered as important factors influencing SA. In 
other words, improving the modifiers of social factors has a potential role in increasing 
the SA in the elderly.

Discussion
The aim of this study was to predict SA using ML methods. For this purpose, data of 
persons aged 60 years and older were analyzed. For doing this, at first, the most rel-
evant predictors related to SA were selected by using the BLR at P < 0.05. Then, eight 
well-known and commonly used algorithms such as AdaBoost, XG-Boost, Bagging, RF, 
J-48, MLP, SVM, and NB were trained. Finally, several evaluation metrics derived from 
the confusion matrix were calculated to validate the models. Our study applied some 
individual implementation, bagging, and boosting ML techniques to predict SA. In our 
study, the RF achieved the best performance as an ensemble and bagging algorithm. This 
algorithm can prove the strong performance of DTs in predicting SA.

To date, little research has been performed to classify SA using ML models. Kaur 
et al. assessed the performance of six ML algorithms to predict the national QoL and 
life satisfaction. In their study, the DT model showed the best performance with a root 
mean square error (RMSE) of 0.3. In addition, it is recognized that various factors 
such as income level, underlying condition, social support and engagement, hous-
ing condition, and access to services contribute highly to the prediction of SA [28]. 
Lee et al. compared the performance of three common supervised ML algorithms for 
elderly health-related quality of life (HRQoL) with chronic diseases. Five factors with 
statistical significance were identified for HRQoL: monthly income, chronic disease 
diagnosis, depression, discomfort, and perceived health status. Finally, the DT algo-
rithm yielded the best performance with an accuracy of 0.93 and an F-score of 0.49 
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[29]. Another study by Abdullah et al., presented a model for identifying QoL predic-
tors based on the RF model. In this study, some variables such as lifestyle, exercise, 
social interaction, healthcare accessibility, chronic morbidity, and income werepro-
posed as the most effective predictors of QoL [21]. Sim et al. designed an intelligent 
clinical decision support system (CDSS) based on ML algorithms to predict HRQoL. 
Finally, the RF algorithm yielded the best performance with an AUC-ROC of 0.898 
[30]. Cai et al. evaluated the performance of selected ML algorithms using a dataset 
including 3657 community-dwelling adults aged ≥ 60 years to predict SA. Finally, the 
DT model with an AUC of 0.90% was introduced as the most appropriate algorithm, 
and age, arm curl, 30-s sit-to-stand, and reaction time were introduced as important 
predictors in all models [11]. Paul et al. trained ensemble ML techniques to recognize 
ADLs in elderly people with HIV. After execution, the XG-Boost method obtained an 
average AUC of 83% [31]. Zhou et al. trained some ML techniques such as DT, XG-
Boost, Ada boosting, bagging, and RF to classify the healthy behaviors of the elderly. 
Their findings showed that ensemble techniques can improve the performance of 
models [32]. Lee et al. compared the performance of single and ensemble ML mod-
els to predict depression in elderly people. The results showed that ensemble models 
increased modeling performance [33]. Lin et al. also evaluated the prediction perfor-
mance of the bagging ensemble ML method with other basic ML methods such as lin-
ear regression, SVM, multilayer feedforward neural networks, and RF  to predict the 
functional outcomes of schizophrenia. Finally, the bagging ensemble algorithm out-
performed the other techniques [34]. Ahmadi and Asghari Varzaneh in separate stud-
ies [35, 36] developed ML models for the prediction of SA. The comparison results of 
the experiments conducted in their studies show that the present study has evaluated 
a larger number of ML algorithms for predicting SA in older adults. The results of 
the current study showed that the use of a larger number of algorithms can lead to 
higher accuracy and better predictive power. However, it is important to note that the 
study populations, features, and predictors used in the three studies were different, 
which may have influenced the results. Nonetheless, our results suggest that a more 
comprehensive approach to SA prediction can provide valuable insights into the fac-
tors contributing to SA and improve outcomes for older adults.

Although the current study presented an optimum performance in predicting SA in 
older adults, it had several potential limitations and challenges. We only applied eight 
ML techniques on a small dataset of elderly individuals and did not use complex deep 
learning (DL) models due to their high data requirements. DL methods can learn com-
plex representations of data but may overfit with small datasets due to a large number 
of parameters and sensitivity of optimization algorithms to available data. ML methods 
may be more suitable for small datasets. Although DL methods can achieve high perfor-
mance, they may not be appropriate for small dataset classification. However, the accu-
racy and generalizability of our models will be enhanced if we test other ML techniques, 
as well as DL models at the larger, multicenter, and prospective dataset containing time-
varying covariates to identify a more insightful set of longitudinal factors related to 
SA. In addition, the external validation method should be used to prove the results of 
the present study. Another posible limitation of this research is that it does not explain 
how the predictor and outcome variables are related causally. This causal relationship is 
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not the main purpose of this research, but it is certainly suggested in future research to 
determine a set of longitudinal features related to SA.

In this study, ML models were developed and evaluated for predicting SA in older 
adults. These models have the potential to provide valuable tools for improving elderly 
outcomes and increasing the probability of SA. However, their practical implementa-
tion must be carefully considered, and further research is needed to validate and refine 
the models in different populations and settings. The potential benefits of using these 
models in clinical practice and policymaking are significant. They can assist geriatri-
cians, senior nurses, healthcare administrators, and policymakers in providing optimal 
supportive services and customized therapeutic care for elderly persons. Additionally, 
the models can be used in combination with other tools and interventions to improve 
outcomes for older adults. However, the limitations of the models must also be acknowl-
edged, and ethical and privacy concerns related to their use must be addressed. In future 
research, the models developed in our study could be applied and customized to other 
social problems. This could lead to a better understanding of the factors contributing to 
SA and help improve health outcomes and QoL for older adults. Overall, our study pro-
vides a valuable contribution to the field of SA prediction using ML, and we hope that 
these models will be used to benefit older adults in the real-world.

Conclusions
The main idea of this study is to evaluate several ML models to predict SA. This study 
can assist geriatricians and senior nurses in providing optimal supportive services and 
customized therapeutic care for elderly persons by analyzing their physical, psychologi-
cal, and particularly social features and extracting the best evidence from the data. Our 
models also have the potential to provide healthcare administrators and policymakers 
with a reliable and responsive tool to improve elderly outcomes. These predictive models 
may also provide an advantage in increasing  the probability of SA. In future research, 
our models are expected to be applied and customized to other social problems.

Methods
Study design and setting

This research is a cross-sectional study that was performed in 2022. We included the 
data of 1465 elderly people who referred to healthy settings in Abadan City Iran. In our 
study, aged 60 years and older are considered the elderly. Developed countries con-
sider the age of 65 as the onset of old age. But the United Nations and the World Health 
Organization (WHO) recognize 60 years and older as elderly [37, 38].

Study roadmap

This study included three phases: 1—dataset preprocessing, 2—model development, 
and 3—evaluating the algorithms’ performance. The roadmap of this study is depicted 
in Fig. 5.

Data preparation

The SA variables are classified into socio-demographic, biomedical, and psychosocial 
classes. Data preparation is performed as follows:



Page 12 of 25Mirzaeian et al. BioMedical Engineering OnLine           (2023) 22:85 

Primary features selection

SA is a multidimensional concept, so finding predictive factors of SA is difficult. 
Therefore, a comprehensive literature review was performed to extract the potential 
features related to SA. The primary feature set prepared in the form of a checklist and 
then the most important features were selected by the Delphi study.

The panel of experts in the Delphi phase

A panel of experts, including 20 people, was contracted according to the following 
criteria: (1) should have knowledge related to older adults’ health; (2) have more than 
5  years of experience and/or scientific publications; (3) participants must consent 
to participate in this study and return the checklist. First, the purpose of this study 
was sent to the experts through emails, and informed consent for participation was 
received from them. Then, the electronic checklist was emailed to them. The experts’ 
panel included 13 gerontologists, two geriatrics nursing, two health information man-
agement specialists, and three epidemiologists. About 52% of the participants of the 
Delphi stage were females, the mean of their work experience and the mean of their 
age were 18 ± 3.2 SD and 45.6 ± 6.4 SD, respectively.

Predictor and outcome variables

Socio-demographic variables: This class includes variables such as age, gender, edu-
cational level, marital status, occupation, income level, and insurance status.

Biomedical variables: This class was about physiological function, cognitive func-
tion, health, and the ability to do activities of daily living (ADLs). These variables are 
comorbidity diseases (hypertension, cardiovascular accidents (CVA), osteopathic, 
eye disease, renal disease, liver disease, muscle disease, diabetes, cancer, convales-
cences, and other diseases), physical activity (sports activities, exercise time, type of 
exercise), sexual health (sexual health assessment), general health, pain assessment, 

Fig. 5 The study roadmap describing the study
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fatigue, physical dysfunction, physical function, physical activity and exercise, assess-
ment nutritional status, assessment mal-nutritional status, perform disease preven-
tion activities, mental disorder, and physiological disorder.

Psychosocial variables: This class was actively engaged in life and well adapted to life 
including life satisfaction, tension management, self-efficacy, self-esteem, hope, futu-
rity, social and interpersonal relationships, satisfaction with social support, and social 
functions.

Definition of variables

Some variables were defined as follows:
Ability to perform activities of daily living (ADLs): This variable is measured by the 

Barthel Index, which has 10 questions to measure physical functioning. Barthel Index 
determines one’s ability to perform basic ADLs, e.g., dressing, on a scale ranging from 0 
to 100. Scores of 0–20 indicate severe dependence, 20–60 complete dependence, 61–90 
moderate dependence, 91–99 partial dependence, and 100 indicate complete independ-
ence [33]. In this study, an independent person is someone who has a score of 100 based 
on the Barthel index.

Life satisfaction: This variable was measured by the life satisfaction scale developed 
by Diener et  al. [39]. This scale consisted of 5 items measuring the cognitive compo-
nent of well-being. Each statement has seven options and is scored from 1 to 7 (strongly 
disagree to agree strongly). The validity of this instrument was confirmed by Bayani et al. 
[34]. In this study, a person who is satisfied with life receives a score of > 20 on this scale.

QoL: The 36-Item short-form survey (SF-36) was administered to measure this vari-
able. This self-report questionnaire consists of 36 items and eight domains: physical 
function, social function, physical role-playing, emotional role-playing, mental health, 
evaluations of vitality, physical pain, and general health. In addition to these sections, 
SF36 also provides two general measures of physical health [total physical component 
score (PCS)] and mental and social health [total mental component score (MCS)]. The 
respondents’ scores in each domain vary from 0 to 100, and a higher score means a bet-
ter QoL. The validity and reliability of this questionnaire have been confirmed  in the 
Iranian population [35–37].

Physical activity, social, and interpersonal relationships: These factors are the 
SF-36 sub-categories evaluated in the elderly. In addition, the overall score was calcu-
lated to measure the QoL of the elderly. In this study, a score of 70 was considered the 
cut-off point for this variable.

Healthy lifestyle: Lifestyle determination generally depends on the total score 
obtained and is calculated by getting a score of 42–98 indicating an unfavorable, 99–155 
showing a medium, and 156–216 denoting a desirable lifestyle. It measures physical 
activity, exercise, recreation, healthy eating, stress management, and social and interper-
sonal relationships [38].

Nutrition status: The Mini Nutritional Assessment questionnaire was administered 
to measure the healthy nutritional status of the elderly. In this questionnaire, a score of 
12 or greater indicates that the person is well nourished and needs no further interven-
tion. A score of 8–11 shows that the person is at risk of malnutrition. A score of 7 or less 
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demonstrates that the person is malnourished [40]. The cut-off point of this variable in 
our study is 12.

Stress management: The Stress Management Questionnaire was used to describe the 
participant’s ability to cope with difficult and stressful situations. The total scores were 
divided into three levels low (0–30), moderate (31–39), and high (40–50) [41]. The cut-
off point of this variable in our study is 31.

Hope: This factor was measured with the Hearth Hope Index tool. This tool has three 
characteristics of hope, including temporality and future, positive readiness and expec-
tancy, and interconnectedness. This tool has 30 items and each item is scored between 
0 and 3. A score of 3 indicates that the item applies a score of 0 indicates that the state-
ment never applies to the respondent. Total scores can range from 0 to 90; higher scores 
indicate greater hope [42].

Self-efficacy: Self-efficacy means the effectiveness and ability of a specific perfor-
mance. The general self-efficacy (GSE) scale measured this factor. This tool has 10 items. 
For the GSE, the total score ranges between 10 and 40, with a higher score indicating 
more self-efficacy [43].

Self-esteem: This factor was measured with the Rosenberg Self-Esteem Scale. This 
tool has 10 items and each item is scored from 1 to 4. A score of 1 indicates Strongly 
Disagree and a score of 4 means Strongly Agree [44, 45].

Outcome variable (SA): The outcome variable was categorized into SA (coded 1) or 
non-SA (coded 0) classes. SA can be operationally defined as the ability of individuals 
to maintain physical, cognitive, and social functioning as they age, while avoiding dis-
ease and disability. This can be measured using a variety of indicators, such as physical 
performance tests, cognitive assessments, and self-reported measures of well-being. to 
be considered aging successfully, individuals should score well on these indicators and 
demonstrate a high level of functioning across multiple domains. Importantly, SA is a 
multidimensional concept that encompasses physical, cognitive, and social domains and 
is not simply a matter of avoiding disease or disability. One common model of SA is 
the “three-component model” proposed by Rowe and Kahn. In our study, SA was deter-
mined based on Raw and Khan’s model which has three principal components: “absence 
of disease and disease-related disability,” “maintenance of high mental and physical func-
tion,” and “continued engagement with life” [40]. According to this model, in our study 
the following inclusion criteria of SA were used: (1) absence of disease-related disability 
(the criteria met in this domain are being satisfied when adults have no disability and the 
number of chronic diseases ≤ 2 and a score below the median on the WHODAS-II), (2) 
maintenance of high mental and physical function (in this domain, the participants in 
our study had a Mini-Mental State Examination for Dementia Screening (MMSE-DS), 
a score of normal and a Bartle index = 100, and no presence of depression in the previ-
ous 12 months), and (3) “continued engagement with life” (in our study, life engagement 
is measured using Utrecht General Engagement Scale (UGES) and participants had 
engaged in three or more different social or religious activities at least once a month) 
[24, 41–44]. All predictor variables are shown in Table 4.
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Table 4 The elderly’s characteristics investigated in this study

Category Variable name Variable values Frequency 
of elderly 
participants

Socio‑demographic factors Age (years) 60–69 813

70–79 383

> 80 269

Sex Female 922

Male 543

Educational level No literacy 754

Elementary 297

Diploma 245

Academic 169

Marital status Married 874

Single 135

Divorced 121

Widowed 235

Occupation No job 212

Housekeeper 624

Retired 443

Self‑employment 186

Income level Under the poverty line 1121

On the poverty line 344

Insurance status Yes 1114

No 351

Biomedical factors Hypertension Yes 1123

No 342

CVA Yes 572

No 893

Bone disease Yes 894

No 571

Renal disease Yes 364

No 1101

Liver disease Yes 320

No 1145

Muscle disease Yes 935

No 530

Depression Yes 588

No 877

Convalescences Yes 270

No 1195

Eye disease Yes 460

No 1005

Diabetes Yes 622

No 843

Cancer Yes 418
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Table 4 (continued)

Category Variable name Variable values Frequency 
of elderly 
participants

No 1047

Other diseases Yes 256

No 1209

Sports activities Yes 971

No 494

Exercise time No exercise 913

< 30 min 383

> 30 min 169

Type of exercise No exercise 912

Aerobic 224

Non‑aerobic 143

Both 186

Sexual health Unhealthy 1271

Healthy 294

Perform disease prevention activities Yes 472

No 993

Nutritional status Fair 951

Good 514

Mal‑nutritional status No 571

Yes 894

Physical activity and exercise No 892

Yes 573

General health Unhealthy 992

Healthy 473

Pain assessment No 473

Yes 992

Fatigue No 573

Yes 892

Physical dysfunction No 484

Yes 981

Physical function No 484

Yes 981

Mental disorder No 491

Yes 974

Physiological disorder No 991

Yes 474

Psychosocial factors Life Satisfaction Pleasant 534

Unpleasant 931

Tension management Yes 942

No 523

Self‑efficacy No 491

Yes 874

Self‑esteem No 991

Yes 474

Hope No 871

Yes 594
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Identified SA in an elderly population

Based on selected variables, a cross-sectional study was performed in this phase. 
People aged 60 years and older were referred to health centers in Abadan city, Iran 
for a check-up of their health condition. Elderly participants were selected randomly 
from the list of the personal health records of the health centers and clustered accord-
ing to their social levels. Cluster sampling allows the researcher to identify clusters 
based on the different conditions of the research environment. This factor causes this 
study  to contain participants with different social conditions, meaning that the par-
ticipants in this study were from different social levels. After determining the sam-
ple, participants were invited for an interview. The sample size in this study was 1465 
people. To determine the sample size, the Cochran formula (Eq. 1) is used [46], and 
the sample size of the study was determined. P = 24% (P is the percentage of SA in the 
study of Shafiee et al. [3]) and Alpha = 1% (α).

n = sample size; N = population size; e = acceptable sampling error; p = the population 
proportions; z = z value at reliability level or significance level; reliability level 95% or 
significance level 0.05; z = 1.96.

The objectives of this study were explained to the participants and they contributed 
to the study if they wished. Inclusion criteria were age ≥ 60 years, having good cogni-
tive, and volunteering to participate in this study. Excluded criteria were as follows: 
participants who did not intend to cooperate, participants who had mental disorders, 
participants who did not have the ability to answer, people who did not have the abil-
ity to remember their past month, and people who left their interview incomplete 
for any reason. On the other hand, the interview was conducted by trained people 
that they are blinded to the purpose of this study. The researcher designed the inter-
view process under the supervision of an epidemiologist, and questions were asked in 
such a way as to reduce the amount of social desirability bias. Informed consent was 

(1)n =
p(1− p)

e2

z2
+

p(1−p)
N

=
0.24(0.76)

0.052

1.962
+

0.24(0.76)
40000

= 279,

Table 4 (continued)

Category Variable name Variable values Frequency 
of elderly 
participants

Futurity No 870

Yes 595

Satisfaction with social support Pleasant 334

Unpleasant 1131

Social functional No 484

Yes 981

Social and interpersonal relationships Weak 399

Strong 1066

Family support Yes 251

No 1214
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reviewed with each participant in a private room at the health center. Each interview 
took approximately 25 min, see the frequency of elderly participants in Table 4.

Feature selection

The feature selection method was used to reduce the dataset dimension and augment the 
data mining performance in the third step. Feature selection in a high-dimensional data-
set is one of the most important data mining steps, eliminating redundancy and irrel-
evant features. Feature selection is the use of statistical methods for reducing the dataset 
dimension. Concisely, some advantages of this process can be addressed as improving 
the mining performance, preventing overfitting the algorithms, increasing the compu-
tational capability, speeding up the data mining process, and increasing the understand-
ability [47–51]. In this study, to gain the most critical factors affecting SA in the elderly, 
we used the binary logistics regression (BLR) as a multi-variable method to get the most 
important factors influencing SA. Also, the P < 0.05 was considered the statistically sig-
nificant level in this regard.

Model implementation

We trained eight ML algorithms using three learning methods classifications including 
bagging [random forest (RF) and bootstrap aggregating (Bagging)], bossing [adaptive 
boosting (AdaBoost) and eXtreme Gradient Boosting (XG-Boost)], and simple tech-
niques (J-48, multilayered perceptron (MLP), Naïve Bayes (NB), and support vector 
machine (SVM)) in Waikato environment for knowledge analysis (WEKA) and Python 
programing language. In this step, the data mining process was performed using the 
selected algorithms because of primarily used in recent research with high-performance 
capability. The reason for using these algorithms is to explore the strengths and limita-
tions of each approach and to gain insights into the factors that are most important for 
predicting SA. Since SA is a complex and multifaceted concept, it requires a multidi-
mensional approach that can capture the diverse range of factors that contribute to it. 
By using a variety of algorithms, researchers can better understand which features and 
models are most effective for predicting SA and can create a more accurate and robust 
model. Additionally, using multiple algorithms can help reduce the risk of overfitting 
and increase the generalizability of the model to new data. Overall, using multiple ML 
algorithms can provide a more comprehensive and insightful analysis of the factors that 
contribute to SA. The selected algorithms in our study were described as follows:

RF: As an ensemble technique, RF is a bootstrap bagging technique aggregating sev-
eral decision tree algorithms to enhance the algorithm’s performance. The feature with 
the lowest Gini Index (Eq. 2) is considered to select the best feature for data splitting:

This algorithm has the strategy of voting sub-algorithms for calculating the per-
formance. Indeed, the algorithm’s capability is the performance of most similar trees 
in voting in the forest. The RF algorithms are suitable for high-dimensional datasets 
with numerous data samples. RF is an averaging method for reducing variance using 

(2)Gini Index (x) = 1−

n
∑

i=1

P(xi)
2.
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deep decision trees from different training data parts. Usually, this method slightly 
increases bias and a slight loss of interpretability, but it will generally significantly 
improve the model’s performance. In this decision tree type, the splitting process will 
occur using the input variables in the sub-dataset. The most prominent of this algo-
rithm can be mentioned as a good prediction model for predicting missing data, com-
mon for working with imbalanced data for error reduction, and the importance of 
variables in the classification [52–54].

Bagging: Bagging is another ensemble ML algorithm using the bootstrap aggregat-
ing method during the training process. It is designed to promote the capability of the 
algorithms used to classify and predict cases. This algorithm uses the decision tree or 
other algorithms such as artificial neural networks (ANNs) or logistics regression. In 
the bootstrapping method (Fig. 6), the various algorithms are trained using the sam-
ples obtained by sampling with replacement. Based on the voting method, this algo-
rithm considers the capability of classification capability pertained to most developed 
algorithms. One celebrated specification of this algorithm can be cited as reducing 
the variance and so the minimum probability of overfitting during the training pro-
cess [55–57].

AdaBoost: the AdaBoost algorithm uses weak algorithms to predict the output 
class. The idea of boosting is to enhance the poorer data mining algorithms’ perfor-
mance by combining them in one algorithm as a boost. This algorithm achieves the 
votes from the various classifier regarding the performance capability in dataset clas-
sification for better performance. So, this can provide a high computational capacity 
in classifying the classes. Some advantages of this algorithm can be noted as power-
ful acceptance in categorizing samples without any predefined knowledge existing in 
data, refraining from classifying the samples organized hard, and minimizing the bias 
and variance using the repeatable and coherent essence [58–60].

XG-Boost: The XG-Boost acts as a classifier and regressor in data mining. This 
pleasant boosting algorithm performs the prediction model using several boosted 
decision trees in a parallel way by gradient descent method. The enhancements of the 
values on the objective function (Eq. 3) are considered necessary during training the 
algorithm and building the boosted trees:

Fig. 6 The bootstrapping method in bagging techniques
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In Eq. 3, L is equivalent to the loss function during training the algorithm to assess 
the XG-Boost performance when training and � are equivalent to the regularization 
parameter to evaluate the algorithm’s functionality and overfitting situation. The f(j) is 
prediction pertained to the jth number of trees [61–63]. The Hessian (Eq. 4) and gradi-
ent descent functions are used to build the algorithm:

In Eq. 4, g(x) = gm−1(x), and L equals the loss function.

In Eq.  5, M and λ are equal to regularization parameters during the training of the 
algorithm.

The gain value associated with the root node is calculated as Eq. 6.

So, the output of the algorithm is calculated as follows:

SVM: The SVM algorithm as a classifier and regressor algorithm is applied in ML sci-
ence. When classifying the data instances, this algorithm uses the hyperplane concept 
for discriminating the different data on different class labels. This algorithm uses math-
ematical tricks to classify the other classes by increasing the dataset dimension to higher 
ones in a pleasant way. Depending on the complexity of the data, the SVM used various 
Kernel functions, namely, linear, polynomial, radial basis function (RBF), and so on. The 
RBF (Eq. 8), one of the SVM techniques, is recognized as least square (LS)-SVM having 
the speed and efficiency in the computation process due to confronting the linear equa-
tions [64–66].

In Eq. 8, |x − x′| is the square of the Euclidean distance between two input class fea-
tures, and σ is the regularization parameter on training the algorithm.

MLP: This feedforward configuration and backpropagation training mode of an Arti-
ficial Neural Network (ANN) has many applications in different fields. This ANN type 
consists of the input, hidden, and output layers. The input layer is responsible for gaining 
information from the external environment and converting the signals, data, or other 
input types to the specified calculation formula. The number of nodes in this layer is 
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equal to the study inputs. The second layer is for calculation, so most of the calculation 
process occurs in this layer. The output layer produces the calculation results and pro-
vides us with the ANN’s prediction results. Also, this algorithm uses the activation func-
tion for data transformation [67–70].

J-48: The J-48 decision tree algorithm, as a newer version of ID3, provided more capa-
bility with high flexibility. This decision tree type uses the concept of entropy (Eq.  9) 
used to split the tree; in other words, the attribute having highly different entropy and 
the capability of discriminating the various classes from others is considered the node 
for breaking the tree. By viewing the x as an attribute, p and j are equal to the element 
and its position; the entropy can be evaluated below:

The amount of entropy means the random status of the attribute; in other words, when 
entropy increases, the random degree is augmented, and decreasing the entropy pertains 
to the less occasionally, which is suitable for splitting [71–74].

NB: The NB (Eq. 10) as a probabilistic algorithm is a commonly used supervised ML 
algorithm for its high performance. The logic of this algorithm type is that each input 
variable can independently predict the output class occurrence; in other words, the rela-
tionships between the input variables are independently compared to the LR, in which 
the combinational relationships are considered for forecasting the output class. This 
algorithm can be considered a simple ML algorithm with high accuracy because of its 
dependent nature. Some advantages of this algorithm are simplicity in classifying the 
samples, best classification in the independent mode of variables, and high performance 
concerning classified inputs [75–78].

In Formula 10, P(Ck|x) is the probability of Ck occurrence when having the x features 
with specific values. PCk is the occurrence of the Ck class, and P(x|Ck) is the probability 
of the x when the class is determined as Ck.

K‑fold cross‑validation

In ML, we typically need to split our available data into two sets: a training set and 
a test set. K-fold cross-validation is a technique used to evaluate the performance of 
an ML model. It involves splitting the available data into k equally sized subsets, or 
“folds.” We then train and evaluate our model k times, each time using a different fold 
as the test set and the remaining folds as the training set. This allows us to get a more 
reliable estimate of the model’s performance, as we are testing on a different subset of 
the data each time. To perform k-fold cross-validation, we first randomly shuffle the 
data and then split it into k equally sized subsets. We then train our model k times, 
each time using a different fold as the test set and the remaining (k − 1) folds as the 
training set. After each training iteration, we evaluate the model’s performance on the 
test set and record the performance metric (such as accuracy or mean squared error). 

(9)Entropy (x) =

k
∑

j=1

Pj log2
1

pj
.

(10)P(Ck|x) =
P(Ck) ∗ P(x|Ck)

P(x)
.
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Finally, we compute the average performance across all k folds to get an estimate of 
the model’s overall performance. The value of K in this research was considered equal 
to 5.

Evaluation of the performance of ML algorithms

In this step, we evaluated and compared the selected ML algorithms using the con-
fusion matrix (Table  5) and calculated different performance criteria, including 
sensitivity, specificity, accuracy, and F-score  to get the most common algorithm for 
determining SA. In Table  5, TP and TN are the successful and unsuccessful cases 
correctly classified by the algorithm, while FN and FP are successful and unsuccess-
ful cases incorrectly classified by the model. Based on the confusion matrix, we cal-
culated the sensitivity (Eq.  11), specificity (Eq.  12), accuracy (Eq.  13), and F-Score 
(Eq.  14) of all ML algorithms. Also, the AUC-ROC diagram of all algorithms was 
drawn and compared. The k-fold cross-validation (k=10) was considered for measur-
ing errors during the training process. Finally, the most common data mining algo-
rithm for determining the SA was obtained.
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