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Abstract 

Background: In this study, we proposed a deep learning technique that can simul‑
taneously detect suspicious positions of benign vocal cord tumors in laparoscopic 
images and classify the types of tumors into cysts, granulomas, leukoplakia, nodules 
and polyps. This technique is useful for simplified home‑based self‑prescreening 
purposes to detect the generation of tumors around the vocal cord early in the benign 
stage.

Results: We implemented four convolutional neural network (CNN) models (two 
Mask R‑CNNs, Yolo V4, and a single‑shot detector) that were trained, validated 
and tested using 2183 laryngoscopic images. The experimental results demonstrated 
that among the four applied models, Yolo V4 showed the highest F1‑score for all tumor 
types (0.7664, cyst; 0.9875, granuloma; 0.8214, leukoplakia; 0.8119, nodule; and 0.8271, 
polyp). The model with the lowest false‑negative rate was different for each tumor type 
(Yolo V4 for cysts/granulomas and Mask R‑CNN for leukoplakia/nodules/polyps). In 
addition, the embedded‑operated Yolo V4 model showed an approximately equivalent 
F1‑score (0.8529) to that of the computer‑operated Yolo‑4 model (0.8683).

Conclusions: Based on these results, we conclude that the proposed deep‑learning‑
based home screening techniques have the potential to aid in the early detection 
of tumors around the vocal cord and can improve the long‑term survival of patients 
with vocal cord tumors.

Keywords: Vocal cord tumor, Convolutional neural network, Otolaryngology, Deep 
learning

Background
Vocal cords are the folds of tissues related to voice creation. Benign tumors, such as 
cysts, granulomas, leukoplakia, nodules, and polyps, generated in the vicinity of the 
vocal cord can induce several clinical complications, including wheezing, stridor, dys-
phonia, cough, asthma, and vocal cord palsy, and progress to malignant tumors or even 
cancer. Similar to other tumors generated in the oral, laryngeal, and oropharyngeal posi-
tions, early detection and timely treatment of vocal cord tumors can improve the 5-year 
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survival rate of patients. However, unlike tumors around the tongue or gums, early stage 
tumors around the vocal cord are not easily detected with the naked eye, because many 
patients with vocal cord tumors first visit a hospital after the tumors have already pro-
gressed to malignancy or even cancer. In addition, it can be more helpful for individuals 
if information about the specific type of vocal cord tumors is provided during the first 
detection of the tumor in its benign stage, because the plan for medical treatment can 
differ according to the type of vocal cord tumors; for example, direct surgical treatment 
is recommended for cysts, leukoplakia, and polyps; however, voice therapy is first rec-
ommended in cases of granuloma and nodules [1]. In particular, most initial-stage nod-
ules improve with voice therapy; by contrast, approximately 50% of leukoplakia cases are 
dysplastic and require early surgical treatment [2]. Therefore, to improve the long-term 
survival of patients with vocal cord tumors, it is necessary to develop a home-based 
vocal cord self-screening technique that can easily detect the generation of early stage 
tumors around the vocal cord and also provide the specific type of vocal cord tumors 
detected during the self-screening procedure as an initial guide for proper treatments.

In this study, we used four popular convolutional neural network (CNN) models for 
endoscopic vocal cord images to detect the positions of tumor-suspicious areas in the 
image and simultaneously provide the specific types of vocal cord tumors within five 
subclasses (cyst, granuloma, leukoplakia, nodule, and polyp). We further ported a CNN 
model that exhibited the best performance among the four applied models in a high-
performance computing environment to operate in an embedded environment and veri-
fied the clinical usability of the model as a tool for home-based self-prescreening.

Related works
Recently, owing to the rapid development of artificial intelligence (AI) techniques, many 
studies have applied deep learning (DL) techniques to diagnose various medical images, 
such as X-rays, computed tomography, and magnetic resonance devices, because these 
imaging devices can provide standardized and high-resolution images, which are con-
venient for most AI-diagnostic studies [3]. By contrast, the number of DL studies based 
on endoscopic images is relatively small, and most target gastrointestinal and colorectal 
endoscopic images [4–6]. Most studies have analyzed oral, laryngeal, and oropharyn-
geal endoscopic images using traditional image-processing techniques [7, 8]. However, 
several machine learning- or deep-learning-based disease classification studies targeting 
the vocal areas have been reported [9, 10]. For example, Ren et al. applied ResNet-101 
to classify laryngoscopic vocal images, including normal, nodule, polyp, leukoplakia 
and malignancy [11]; Zhao et  al. applied MobileNet-V2 to classify vocal cord lesions 
(normal, polyp, keratinization and carcinoma) [12]; Byeon compared the performance 
of five machine learning and deep learning models (deep learning, naive Bayes model, 
generalized linear model, classification/regression tree and random forest) for predicting 
benign laryngeal mucosal disorders (nodules, polyps, cysts, Reinke’s edema, granuloma, 
glottic sulcus and laryngeal keratosis) [13]; Larsen et al. applied four CNN models (five-
layer CNN, VGG19, MobileNet-V2, and InceptionResNet-V2) to classify the images 
into abnormal (nodules) and normal [14]. In addition, Cho et  al. reported the follow-
ing two related papers: in one study, they applied four CNN models (six-layer CNN, 
VGG16, Inception-V3 and Xception) to laryngoscopic vocal fold images to classify the 
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image into abnormal and normal [15], and in the other study, they applied four CNN 
models (VGG16, Inception-V3, MobileNet-V2 and EfficientNet-B0) to classify laryngeal 
diseases (cysts, nodules, polyps, leukoplakia, papillomas, Reinke’s edema, granulomas, 
palsies and normal) [16]; You et al. applied 13 CNN models (AlexNet, four VGG mod-
els, three ResNet models, three DenseNet models, Inception-V3, and the proposed) to 
classify laryngeal leukoplakia (inflammatory keratosis, mild/moderate/severe dysplasia, 
and squamous cell carcinoma) using white-light endoscopy images [17]; Eggert et  al. 
applied DenseNet models to classify hyperspectral images of laryngeal, hypopharyngeal, 
and oropharyngeal mucosa into abnormal and normal [18]. Moreover, Hu et al. applied 
Mask R-CNN with ResNet-50 backbone to two types of laryngoscopic imaging (narrow-
band imaging and white-light imaging) for automated real-time segmentation and clas-
sification of vocal cord leukoplakia to classify the lesions into surgical and non-surgical 
groups [19]; Yan et al. applied the Faster R-CNN model to laryngoscopic images of vocal 
lesions to screen for laryngeal carcinoma [20]; Kim et  al. applied the Mask R-CNN 
model to laryngoscopic images for real-time segmentation of laryngeal mass around the 
vocal cord [21]; Cen et al. applied three CNN models (Faster R-CNN, Yolo V3, and SSD) 
to detect laryngeal tumors in endoscopic images (vocal fold, tumor, surgical tools, and 
other laryngeal tissues) [22]; Azam et al. applied up to nine Yolo models to laryngoscopic 
video for real-time detection of laryngeal squamous cell carcinoma in both white-light 
and narrow-band imaging [23]. Among these previous studies on vocal area disease 
detection, eight [11–18] used AI models for classification and, therefore, were not able 
to provide information about the tumor-suspicious positions in the image. Similar to the 
current study, five other studies [19–23] used AI models for object detection that can 
provide tumor-suspicious positions around the vocal cords; however, they commonly 
used only single-group disease images, such as vocal cord leukoplakia [19], laryngeal 
carcinoma [20, 23], laryngeal mass [21], and cancer [22].

In addition, several studies have reported the use of personal IT devices to detect 
oral diseases in their early stages. For example, Askarian et al. proposed a k-nearest 
neighborhood-based strep-throat classification algorithm using smartphone cam-
era images [24]. Song et al. proposed a CNN-based oral cancer detection algorithm 
using a smartphone-based intraoral dual-modality imaging platform [25]. Yoo et  al. 
proposed three CNN models (ResNet-50, Inception-V3 and MobileNet-V2) that can 
detect severe pharyngitis using throat images captured using a smartphone [26]. The 
target area of these studies was the back of the throat, including the tonsils [24], pal-
ate of a healthy patient, buccal mucosa of a patient with potentially oral malignant 
lesions, and malignant lesions from the lower vestibule [25] and throat [26]; however, 
none of these studies targeted tumors around the vocal cords. In addition, all these 
studies adopted a binary classification structure that can classify the input image 
only as healthy (normal) or diseased (suspicious), with none showing the positions 
of tumor-suspicious areas around the vocal cord in the image and, at the same time, 
providing more detailed classification results for the suspicious areas.

Therefore, to improve the clinical usability of the home-based vocal cord self-
screening technique, the self-screening application should provide more information 
about the positions of the suspicious areas and the specific type of each suspicious 
area, as well as the results of the binary classification.
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Result
Figure 1A, B presents the validation loss curves for the Mask-50/Mask-101 (epoch range: 
1–150) [27], Yolo-4 (iteration range: 1–12,000) [28], and SSD-MN (epoch rage: 1–120) 
[29] models. Figure  1C, D shows the bounding box loss curves for the same models. 
Based on these results, we selected epoch/iteration values of 95, 49, 10,366, and 118 for 
the Mask-50, Mask-101, Yolo-4, and SSD-MN models, respectively, during confusion 
matrix analysis using the test data set.

Figure  2 shows the results of the simultaneous tumor detection and type-classifica-
tion using the four implemented CNN models and sample images of cysts, granulomas, 
polyps, and nodules in the test data set. The Mask-50/Mask-101 models display both 
bounding box areas and segmentation areas, whereas the SSD-MN and Yolo-4 models 
display bounding box areas, which were all matched with the results of annotation by a 
clinical expert.

Figure 3 shows the class determination results of each CNN model for the test data 
set images, and Table 1 lists the results of the confusion matrix analysis of the four CNN 
models for each tumor type. For all types of benign tumors, the values of the F1-score, 
which represent the overall performance of the model, were the highest for the Yolo-4 
model among the four applied models: 0.7664 for cysts, 0.9875 for granulomas, 0.8214 
for leukoplakia, 0.8119 for nodules, and 0.8271 for polyps. In the case of false-negative 

Fig. 1 Curves of validation and bounding box loss in accordance with the increase of the epoch/iteration 
values (using validation data set). A Validation loss of Mask‑50 (black), Mask‑101 (red) and SSD‑MN (blue). 
B Validation loss of Yolo‑4. C Bounding box loss of Mask‑50 (black), Mask‑101 (red) and SSD‑MN (blue). D 
Bounding box loss of Yolo‑4
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(FN), which can further represent the feasibility of the model as a tool for home-based 
pre-screening purposes, the models with the lowest FN values were as follows: Yolo-4, 
cyst (14) and granuloma (1); Mask-101, leukoplakia (7) and nodule (14); and Mask-50, 
polyp (18).

Table 2 shows the results of the confusion matrix analysis of the four CNN models for 
all healthy and benign cases. For all test data sets, Yolo-4 showed the highest F1-score 
(0.8499), accuracy (0.9395), precision (0.8830), recall (0.8191), specificity (0.9713), and 
lowest FN value (70) among the four applied models.

Figure  4 shows the ranks of each CNN model for each type of vocal cord tumor in 
terms of the F1-score and FN results. Considering these graphs and the experimental 
results shown in Table  2, we concluded that for our data set, the Yolo-4 model is the 
most suitable CNN model for home-based prescreening for the early detection of benign 
vocal cord tumors.

Table  3 presents a comparison between the computer-operated Yolo-4 model with 
the original images and the embedded-operated Yolo-4 model with the camera images 
for 100 randomly selected test data set images. The embedded-operated Yolo-4 
model showed an approximately equivalent classification performance to that of the 

Fig. 2 Results of simultaneous tumor‑detection and type‑classification using the four implemented CNN 
models (for sample images in test data set). A Mask‑50—cyst. B Mask‑101—granuloma. C SSD‑MN—polyp. D 
Yolo‑4—nodule
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Fig. 3 Results of the class determination for test data set images. A Mask‑50. B Mask‑101. C Yolo‑4. D 
SSD‑MN. Cys Cyst, Gra Granuloma, Leu Leukoplakia, Nod Nodule, Nor Normal, Pol Polyp

Table 1 Results of the confusion matrix analysis of the four convolutional neural network models 
for each tumor type

Bold values in the table represent the cases of the lowest error (lowest in false negative) and the best performance (highest 
in F1-score) among the four models

TP true-positive, FP false-positive, FN false-negative, TN true-negative, Acc accuracy, Pre precision, Rec recall, Spe specificity, 
F1 F1-score

Tumor Model TP FP FN TN Acc Pre Rec Spe F1

Cyst Mask‑50 28 19 25 299 0.8814 0.5957 0.5283 0.9403 0.5600

Mask‑101 25 24 30 291 0.8541 0.5102 0.4545 0.9238 0.4808

Yolo‑4 41 11 14 302 0.9321 0.7885 0.7455 0.9649 0.7664
SSD‑MN 24 11 30 301 0.8880 0.6857 0.4444 0.9647 0.5393

Granuloma Mask‑50 85 34 2 262 0.9060 0.7143 0.9770 0.8851 0.8252

Mask‑101 74 11 8 278 0.9488 0.8706 0.9024 0.9619 0.8862

Yolo‑4 79 1 1 287 0.9946 0.9875 0.9875 0.9965 0.9875
SSD‑MN 70 6 8 281 0.9616 0.9211 0.8974 0.9791 0.9091

Leukoplakia Mask‑50 49 36 21 277 0.8512 0.5765 0.7000 0.8850 0.6323

Mask‑101 92 132 7 226 0.6958 0.4107 0.9293 0.6316 0.5697

Yolo‑4 46 6 14 303 0.9458 0.8846 0.7667 0.9806 0.8214
SSD‑MN 42 6 21 302 0.9272 0.8750 0.6667 0.9805 0.7568

Nodule Mask‑50 51 27 14 296 0.8943 0.6538 0.7846 0.9164 0.7133

Mask‑101 61 119 14 246 0.6977 0.3387 0.8133 0.6740 0.4784

Yolo‑4 41 2 17 313 0.9491 0.9535 0.7069 0.9937 0.8119
SSD‑MN 33 13 24 306 0.9016 0.7174 0.5789 0.9592 0.6408

Polyp Mask‑50 146 65 18 190 0.8019 0.6919 0.8902 0.7451 0.7787

Mask‑101 105 32 36 210 0.8225 0.7664 0.7447 0.8678 0.7554

Yolo‑4 110 22 24 218 0.8770 0.8333 0.8209 0.9083 0.8271
SSD‑MN 64 9 68 229 0.7919 0.8767 0.4848 0.9622 0.6244
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computer-operated Yolo-4 model, which implied the clinical feasibility of the imple-
mented AI model as a tool for home-based self-prescreening.

Discussion
The four CNN models implemented in the current study can provide information about 
tumor-suspicious positions around the vocal cord and, simultaneously, provide more 
detailed classification results (cysts, granulomas, leukoplakia, nodules, and polyps), 
which is an advantage of the current study compared with previous studies. In addition, 
we evaluated the clinical feasibility of the implemented CNN model as a tool for home-
based self-prescreening by porting a computer-based model onto a popular embedded 
device. Experimental results from the embedded device demonstrated the potential of 
the implemented model to assist in the early detection of tumors generated in the vicin-
ity of the vocal cords by individuals at home.

Table 2 Results of the confusion matrix analysis of the four convolutional neural network models 
for overall healthy and benign cases

Bold values in the table represent the cases of the lowest error (lowest in false negative) and the best performance (highest 
in F1-score) among the four models

TP true-positive, FP false-positive, FN false-negative, TN true-negative, Acc accuracy, Pre precision, Rec recall, Spe specificity 
F1 F1-score

TP FP FN TN Acc Pre Rec Spe F1

Mask‑50 359 181 80 1324 0.8657 0.6648 0.8178 0.8797 0.7334

Mask‑101 357 318 95 1251 0.7956 0.5289 0.7898 0.7973 0.6335

Yolo‑4 317 42 70 1423 0.9395 0.8830 0.8191 0.9713 0.8499
SSD‑MN 233 45 151 1419 0.8939 0.8381 0.6068 0.9693 0.7039

Fig. 4 Ranks of each CNN models (Mask‑50, Mask‑101, Yolo‑4, and SSD‑MN) for each type of vocal cord 
tumor in aspects of F1‑score (A) and false‑negative (B). Cys Cyst, Gra Granuloma, Leu Leukoplakia, Nod Nodule, 
Pol Polyp

Table 3 Results of the comparison test between the computer‑operated Yolo‑4 model and the 
embedded‑operated Yolo‑4 model for 100 randomly selected test data set images

TP true-positive, FP false-positive, FN false-negative, TN true-negative, Acc accuracy, Pre precision, Rec recall, Spe specificity, 
F1 F1-score

Platform TP FP FN TN Acc Pre Rec Spe F1

Computer 89 9 18 391 0.9467 0.9082 0.8318 0.9775 0.8683

Embedded 87 9 21 391 0.9409 0.9063 0.8056 0.9775 0.8529
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In this study, we aimed to develop a reliable diagnostic support technique using 
deep learning that can be easily utilized outside hospitals by non-medical experts 
for self-prescreening purposes. This kind of at-home self-prescreening technique 
can be particularly helpful and promising when highly infectious diseases such as 
COVID-19 are spreading, because many people are unwilling to visit hospitals for 
checkups. As a result, early detection of vocal cord tumors has become more dif-
ficult. Currently, a popular embedded device is used to implement an at-home self-
prescreening platform. If the implemented AI model is further ported to operate on 
a smartphone, the transmission of smartphone-photographed vocal cord images to 
a remote hospital server or cloud can be enabled. In addition to at-home self-pre-
screening based on the AI technique, more detailed diagnostic results related to the 
image, such as periodic tumor progression monitoring, counseling, and prescrip-
tion, can be provided by a medical expert to an individual via a smartphone, without 
frequent visits to the hospital. To implement such a system, it is necessary to gather 
more endoscopic images of benign, malignant, and cancerous lesions around the 
vocal cord and improve the currently implemented AI models, which is one of our 
future research topics.

This study has some limitations. First, we used 2183 images from the hospital 
database, which was insufficient for training the deep learning model, because the 
more images used during the training and validation phases, the better the quality 
of at-home self-prescreening of oral/laryngeal tumors. To further improve the per-
formance and reliability of the AI model, it is necessary to conduct additional multi-
country multi-city (MCC) collaborative research with various hospitals to gather 
more diagnostic images of various oral and laryngeal areas in future studies. Sec-
ond, we downloaded the sample codes for the three CNN models (Mask R-CNN, 
Yolo, and SSD) from GitHub and partially modified them to fit our study purposes. 
To further enhance the model performance and reduce its hardware requirements, 
which are necessary for reliable real-time on-device AI operations, it is necessary to 
optimize the current model codes in further studies. In addition, although the imple-
mented models showed reasonable performance on a utilized embedded platform, 
there are an increasing number of lightweight state-of-the-art models, such as Effi-
cientDet/EfficientNet, BASIC-L, and InternImage-H, which are suitable for at-home 
self-prescreening of the oral and laryngeal regions. To improve the net value of the 
present study, it is necessary to further implement and apply more recent models 
to find the most suitable deep learning model for at-home self-prescreening of the 
oral and laryngeal regions and to further improve the performance and operation 
time of the selected models on a lighter embedded device in future studies. Third, 
we evaluated the performance of the implemented CNN models in terms of confu-
sion matrix analysis, because the primary target of the current study was to show the 
performance equivalence between computer and embedded environments (Table 3); 
however, to improve the clinical feasibility of the current study (i.e., optimize the 
current models or replace other higher performance models), it is also necessary to 
further verify the performance of the implemented CNN models in terms of inter-
section over union, mean average precision, area under the region-of-interest curve, 
precision–recall graph, and mean inference time in future studies.
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Conclusion
In this study, we evaluated the possibility of a deep-learning-based endoscopic image 
analysis technique for at-home self-prescreening of vocal cord tumors by non-medical 
experts. Based on the experimental results, we concluded that the implemented deep 
learning models have the potential to aid in the early detection of tumors near the vocal 
cord, which may improve the long-term survival of patients with vocal cord tumors.

Materials and methods
Data preparation

We acquired 2183 laryngoscopic images (349 from the healthy group and 1834 from 
the benign group) from the Picture Archiving and Communication System of Pusan 
National University Yangsan Hospital after IRB approval (No. 05-2019-008). A trained 
otolaryngologist acquired, classified, and labeled the imaging data. All acquired images 
were unidentified before the model application. The images in the benign group were 
further divided into the following five subgroups: cysts, 242 images; granulomas, 386 
images; leukoplakia, 291 images; nodules, 256 images; and polyps, 657 images. The 
acquired images were then divided into training, validation, and test data sets at a 3:1:1 
ratio (Fig. 5).

Model implementation

We implemented four CNN models that can detect the position of tumor-suspicious areas 
and classify the type of tumors in the suspicious areas: Mask R-CNN with ResNet-50 back-
bone (Mask-50), Mask R-CNN with ResNet-101 backbone (Mask-101), Yolo V4 (Yolo-4) 

Fig. 5 Examples of the endoscopic vocal cord images (test data set) for healthy group (normal) and benign 
group (cyst, granuloma, leukoplakia, nodule, and polyp). A Normal. B Cyst. C Granuloma. D Leukoplakia. E 
Nodule. F Polyp
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and a single-shot detector with a MobileNet backbone (SSD-MN). Figure 6 presents the 
flow diagrams of the implemented CNN models. For this study, we downloaded sample-
codes of four CNN models from GitHub and modified them to fit our research and system 

Fig. 6 Flow diagrams of the implemented CNN models. A Mask‑50 and Mask‑101. B Yolo‑4 C SSD‑MN
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environments [27–29]. Table 4 provides detailed information regarding the model develop-
ment environments.

Model evaluation

We performed confusion matrix analysis using 374 test images to quantitatively evaluate 
the performance of the applied CNN models. The definitions of the true-positive (TP), 
false-positive (FP), true-negative (TN), and false-negative (FN) were as follows: (1) TP: both 
the model-determined position and type of the tumor coincided with those of the expert 
labeling; (2) FP: one or both of the model-determined position and type of the tumor did 
not coincide with that of the expert labeling; (3) TN: the model-determined images from 
the healthy group were normal; and (4) FN: the model-determined images from the benign 
group were normal. The accuracy, precision, recall, specificity, and F1-score (harmonic 
mean between precision and recall) were calculated as follows:

Accuracy (Acc) =
TP + TN

TP + FP + FN + TN

Table 4 Detailed information about the model development environments

Model Mask-50 Mask-101 Yolo-4 SSD-MN 

Operating System Windows 10 Windows 10 Ubuntu 18.04 LTS Ubuntu 18.04 LTS

Graphic Card 

NVIDIA GeForce 

RTX2060 

NVIDIA GeForce 

RTX2060 

NVIDIA GeForce 

RTX3060 

NVIDIA GeForce 

RTX3060 

Related Software Environments 

Anaconda 4.10.3

Python 3.7.9 

Tensorflow 2.0.0

Cuda 10.1 

CUDNN 7.6.5 

Anaconda 4.10.3

Python 3.7.9 

Tensorflow 2.0.0

Cuda 10.1 

CUDNN 7.6.5 

Anaconda 4.10.1 

Python 3.7 

Pytorch 1.7.1 

Cuda 10.1 

Anaconda 4.10.1

Python 3.7 

Pytorch 1.7.1 

Cuda 11.0 

Hyperparameters 

Learning Rate 0.001 0.001 0.001 0.015 

Batch Size 2 2 64 24 

Momentum 0.9 0.9 0.9 0.9 

Minimum Confidence Level 80% 80% 80% 35% 

Pre-trained Weights 

COCO pre- trained 

weights 

COCO pre- trained 

weights 

COCO pre- trained 

weights 

COCO pre- trained 

weights 

Annotation Tool 

VGG Image 

Annotator 2.0.0 

(Format: for Mask 

R-CNN) 

VGG Image 

Annotator 2.0.0 

(Format: for Mask 

R-CNN) 

VGG Image 

Annotator 2.0.0 

(Format: COCO 

dataset) 

RoboFlow 

Annotate (Format: 

DarkNet dataset) 

Data Augmentation No No No No 
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In addition, to further verify the feasibility of the implemented CNN model as a tool for 
home-based self-prescreening to detect early benign tumors around the vocal cord, we 
ported a CNN model that showed the best performance during confusion matrix anal-
ysis of the computer environment to operate on a popular embedded system (NVDIA 
Jetson  Nano™ Developer Kit; NVIDIA Tegra X1, Python 3.6, CUDA 10.2, CUDNN 
8.2.1, Opencv 4.1.1, and JetPack 4.6.1). A web camera (C922 Pro  Stream™; Logitech 

Precision (Pre) =
TP

TP + FP

Recall (Rec) =
TP

TP + FN

Specificity (Spe) =
TN

FP + TN

(1)F1-Score =
2× Pre × Rec

Pre + Rec

Fig. 7 Evaluation of the embedded‑ported convolutional neural network model using a web camera. The 
image in the yellow rectangular contour represents the web camera‑photographed image
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International S.A., Lausanne, Switzerland; 1920 × 1080,) was connected via a USB port, 
a 32-in monitor (UltraGear 32GK650F; LG Electronics Inc., Seoul, Korea) was connected 
via an HDMI port, and the web camera was positioned in front of the monitor (Fig. 7). 
One hundred images in the test data set were randomly selected and displayed on the 
screen individually (monitor setting: QHD 2560 × 1440 resolution, 144 Hz refresh rate, 
350 cd/m2 brightness, NTSC 72% color gamut, 70% in 3000:1 contrast ratio), and the web 
camera captured the images on the screen (camera setting: 1920 × 1080 resolution, FHD 
1080p/30fps, 78° field of view; focus and brightness were automatically adjusted).
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