
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Liu et al. BioMedical Engineering OnLine           (2023) 22:74  
https://doi.org/10.1186/s12938-023-01137-4

BioMedical Engineering
OnLine

Fovea-UNet: detection and segmentation 
of lymph node metastases in colorectal cancer 
with deep learning
Yajiao Liu1, Jiang Wang1, Chenpeng Wu2, Liyun Liu2, Zhiyong Zhang2 and Haitao Yu1* 

Abstract 

Background: Colorectal cancer is one of the most serious malignant tumors, 
and lymph node metastasis (LNM) from colorectal cancer is a major factor for patient 
management and prognosis. Accurate image detection of LNM is an important task 
to help clinicians diagnose cancer. Recently, the U-Net architecture based on convolu-
tional neural networks (CNNs) has been widely used to segment image to accomplish 
more precise cancer diagnosis. However, the accurate segmentation of important 
regions with high diagnostic value is still a great challenge due to the insufficient capa-
bility of CNN and codec structure in aggregating the detailed and non-local contex-
tual information. In this work, we propose a high performance and low computation 
solution.

Methods: Inspired by the working principle of Fovea in visual neuroscience, a novel 
network framework based on U-Net for cancer segmentation named Fovea-UNet 
is proposed to adaptively adjust the resolution according to the importance-aware 
of information and selectively focuses on the region most relevant to colorectal LNM. 
Specifically, we design an effective adaptively optimized pooling operation called 
Fovea Pooling (FP), which dynamically aggregate the detailed and non-local contextual 
information according to the pixel-level feature importance. In addition, the improved 
lightweight backbone network based on GhostNet is adopted to reduce the computa-
tional cost caused by FP.

Results: Experimental results show that our proposed framework can achieve 
higher performance than other state-of-the-art segmentation networks with 79.38% 
IoU, 88.51% DSC, 92.82% sensitivity and 84.57% precision on the LNM dataset, 
and the parameter amount is reduced to 23.23 MB.

Conclusions: The proposed framework can provide a valid tool for cancer diagnosis, 
especially for LNM of colorectal cancer.
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Background
Colorectal cancer (CRC) is the third most common cancer and the third leading cause of 
cancer death in the world [1]. In percentage terms, CRC accounts for 10% of the world-
wide cancer incidence and 9–10% of the global cancer deaths [2]. Lymph node metasta-
sis (LNM) is the main metastasis mode of CRC. Accurate diagnosis of LNM provides a 
solid foundation for the subsequent postoperative management and prognostic estima-
tion. Patients diagnosed with LNM should undergo lymph node dissection surrounding 
the colon region to prevent further spreading. However, the diagnostic results of LNM 
are usually artificially given by clinicians with reference to medical images, which may 
cause inaccurate diagnosis when clinicians are under heavy work and long-time fatigue 
operation. Hence, an automatic and reliable LNM diagnosis is highly demanded for 
assisting clinicians in the diagnostic process.

In recent years, convolutional neural networks (CNNs) have shown great potential in 
the field of medicine, and more specifically in diagnostic medicine, initial results from 
the application of deep learning to metastasis diagnosis are very promising [3, 4]. Within 
CNNs, architectures inspired from the U-Net [5] have been widely used for medical 
segmentation due to their unique ability to analyze features with an encoder–decoder 
structure [6–8]. They can leverage an end-to-end training paradigm with input images. 
This makes it possible to segment LNM region and provide a consistent interpretation 
of the results [9]. To enhance the feature expression abilities of medical image, research-
ers proposed multiple ways including the introduction of multi-model combination, 
multi-branching, and attention mechanism. U-Net ++ [10] integrates U-Net structures 
of different sizes into a network. The encoder and decoder subnetworks perform feature 
fusion through a series of nested, dense skip connections to reduce the semantic loss 
between the feature mappings. Double U-Net [11] stacks two U-Net architectures on 
top of each other. The additional U-Net network is adopted to learn high-level global 
features, and then these features are fused with the results from the original U-Net in the 
final decoder. Triple U-Net [12] includes an RGB branch, a HE branch and a segmenta-
tion branch. The features extracted from RGB and HE branches are fused to the segmen-
tation branch to learn better representations. Attention U-Net [13] enables the model 
to utilize the detailed information of features and enhance the mapping and expression 
of features, by adding a mechanism of attention gates (Ags) to the encoder and decoder. 
Ags implicitly generate soft region suggestions, highlighting salient features useful for 
specific tasks. The abovementioned studies improve the structure of U-Net and achieve 
good results in medical image segmentation, it is easy to cause the imbalance of detailed 
and non-local contextual information extraction due to the inherent limitations of the 
CNN and codec structure [14–16]. This problem prevents neural networks from effec-
tively learning general patterns of LNM. To overcome this problem, it is necessary to 
consider the precise boundaries of different LNM regions and explore their contextual 
dependences, so that LNM regions can be completely segmented from the intricate tis-
sue background. Thus, the key challenge of this problem is how to achieve the aggrega-
tion of detailed and non-local contextual information.

In the visual neuroscience, the aggregation process belongs to a high visual acuity sys-
tem, where the retinal fovea contributes to resolving fine spatial detail and the other por-
tion of the retina receive a blurred but wide range field of view [17–19]. For example, 



Page 3 of 20Liu et al. BioMedical Engineering OnLine           (2023) 22:74  

in Fig. 1, the distribution of retinal photoreceptor cells on the eyeball is hugely uneven, 
and that many of them concentrate at the fovea. While in the peripheral portion of the 
fovea, photoreceptor cells decline rapidly with increasing distance from the fovea. In 
other words, the fovea has high resolution and the peripheral portion has low resolu-
tion. Thus, the fovea can clearly distinguish and recognize the detailed information, and 
the low-resolution portion surrounding the fovea can obtain the non-local contextual 
information for quick judgment. Inspired by the fovea of the human visual system, the 
paper proposes the Fovea-Unet, a lightweight architecture that performs effective LNM 
segmentation of medical images by devising a Fovea Pooling (FP) method to aggregate 
the detailed and non-local contextual information in the U-Net encoder. The FP consists 
of an importance-aware module and the pooling layer with adaptive radius. First, the 
pixel-level importance of features in the spatial domain is calculated through the impor-
tance-aware module that is built on the attention mechanism. Then, the pooling layer 
aggregates the features with variable pooling radius with an inverse trend of importance. 
The proposed FP is used in aggregating detailed and non-local contextual information 
by applying adaptive pooling layers with different radii which handle the segmentation 
of the region most relevant to LNM at different resolutions. Unlike other U-Net vari-
ants adding attention mechanisms, FP overcomes the inherent limitation that the CNN 
and codec structure cannot balance detailed and non-local contextual information by 
improving pooling. This operation ensures that the FP can better obtain the non-local 
contextual information in a full field of view while keeping the reservation of detailed 
information.

However, the remarkable thing is the importance-aware module of FP will bring the 
huge computational burden to the entire network. The feasible solution is to reduce 
the calculation burden via carrying out an efficient and lightweight neural architecture 
design [20–22]. To this end, we introduce the GhostNet [23] as backbone network for 
feature extraction, which is a lightweight network that can reduce the calculation cost 
while retaining the intrinsic features. But directly applying it as the backbone network of 
LNM segmentation will degrade the segmentation performance because of the intrinsic 

Fig. 1 Inspiration of Fovea-UNet. Left, the map shows the LNM images from the perspective of the human 
eyeball, and the isodensity lines of retinal photoreceptors in the human retina are drawn on the eyeball. 
Right, examples from different resolutions, correspond to portions with different photoreceptor densities
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feature maps calculated by the normal convolution layers may yield insufficient detailed 
information. Inspired by the theory of neural network representations similarity [24], 
which has successfully shown to be powerful in providing insights on properties of rep-
resentations within the neural network, we adopt Hilbert–Schmidt independence crite-
rion (HSIC) to improve the diversity of features. Thus, the improved GhostNet, called 
nHSIC–GhostNet (H-GhostNet), has the ability to learn the full intrinsic information of 
the input medical images. Specifically, a similarity constraint, namely, HSIC, within each 
layer is used as the regularization of the training process and targets to boost the diver-
sity of intrinsic features. Through the HSIC regularization term, the proposed H-Ghost-
Net has the capability of obtaining more feature information and redundancy, which 
facilitates the accuracy of segmentation results.

In summary, the main contributions of this paper are as follows.

(1) We develop an importance-aware Fovea Pooling (FP) to enable the network can 
focus on the region most relevant to LNM, which is a novel adaptive aggregation 
pooling method. FP provides a better alternative trade-off that takes both detailed 
information and non-local contextual information into consideration.

(2) We propose an improved H-GhostNet as lightweight backbone network to pro-
mote the ability of discriminative and heterogeneous feature extraction through an 
intrinsic feature-based regularization term. The proposed training strategy cooper-
ates the Ghost convolution layer and HSIC regularization to gain the effective fea-
ture representations while maintaining a little amount of computation.

(3) We demonstrate the effectiveness of our proposed Fovea-Unet on a practical diag-
nostic task challenging task. The LNM for colorectal cancer dataset is collected and 
well-annotated. In addition, comprehensive experiments are conducted and show 
that our proposed method outperforms state-of-the-art metastasis segmentation 
methods in the segmentation accuracy and efficiency.

The paper is organized as follows. The LNM segmentation experimental results are 
given in “Results” section. The discussion based on the experimental results is give in 
“Discussion” section. This paper is summarized in “Conclusion” section. The proposed 
Fovea-Unet neural network is given in “Methods” section.

Results
Datasets description

In this work, we design the Fovea-Unet to detect colorectal cancer metastasis and seg-
ment lymph node metastasis regions. We collected paraffin samples from curative resec-
tion of colorectal cancer with lymph node metastasis from Tangshan Gongren Hospital 
from January 2016 to December 2018. All samples were followed by the process of hema-
toxylin–eosin (HE) staining, soaked in 10% neutral formalin solution for half an hour to fix 
the shape of tissues, wrapped into paraffin for half an hour for dehydrating, sectioned on 
a paraffin microtome, and then dewaxed and stained by HE. Finally, the digital tomogra-
phy scanner was applied to scan pathological sections into 81 whole slide images (WSIs). 
The lymph node metastasis regions in WSIs were viewed with K-Viewer software (version 
1.5.2.5; KFBIO; http:// www. kfbio. cn) at a specific rate, such as × 10 magnification and × 20 

http://www.kfbio.cn
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magnification, which ensure that the field of view can cover the single metastatic region. 
In this way, all metastatic regions from the WSIs were manually extracted and resized to 
1024*1024 uniformly. After labeling, these metastatic regions with annotations were used 
to construct the dataset. Table 1 shows the partition of the dataset. Metastatic regions were 
adopted as input images to achieve high-precision pixel-level segmentation. It should be 
noted that the collection of these images was approved by the Ethics Committee of Tang-
shan Gongren Hospital (Grant No. GRYY-LL-2019-50).

Experiment settings

The proposed Fovea-Unet is implemented based on the Pytorch 1.8 framework and is 
trained with one NVIDIA A100 SXM4 GPU with 80 GB RAM. In the model, we use the 
Adam with parameters beta1 of 0.9 and beta2 of 0.999 to train the whole end-to-end net-
work. The backbone is based on GhostNet pre-trained on ImageNet. In the training stage 
of 300 iterations, the freeze training method is adopted at the first 30 iterations to put more 
computing resources on training the network parameters containing the FP modules while 
preventing the pre-trained weights of backbone network from being destroyed, which can 
improve the training efficiency. In this stage, the learning rate is set to 10–4. After the freez-
ing stage, all the parameters in the model participate in the training process and the learning 
rate is set to 10–5, the mini-batch size is set to 4. In each stage of the encoder subnetwork, 
all feature maps are first reduced to one-quarter of the original number of channels using 
the prior convolution layer. In the FP, we use the adaptive reflect padding to retain the same 
size. Besides, data augmentation strategies are utilized to enhance the dataset diversity, and 
the dataset was randomly divided into the training set and the test set in a ratio of 8:2.

To accurately evaluate the segmentation accuracy, in this paper, we used the intersection 
over union (IoU), dice similarity coefficient (DSC), Sensitivity (Sen), Specificity (Sp), and 
Precision (Pre) as the main evaluation metrics, which are defined below:

(1)

IoU =
TP

TP + FP + FN

DSC =
2 ∗ TP

2 ∗ TP + FP + FN

Sen =
TP

TP + FN

Sp =
TN

TN + FP

Pre =
TP

TP + FP

Table 1 Overview of the training and testing LNM datasets

Datasets Metastatic WSIs Metastatic 
regions

Train 57 451

Test 24 173

Total 81 624
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where FP, TN, FN, TP denote the number of false positive, true negative, false negative 
and true positive pixels, respectively. IoU ∈ (0, 1) is the ratio between the intersection 
and union of LNM regions in the ground truth and network segmentation results. The 
higher the IoU, the better the image segmentation result. DSC ∈ (0, 1) is an evaluation 
matrix often used to evaluate the similarity between the ground truth and the segmenta-
tion results in medical image segmentation. The higher the DSC, the better the image 
segmentation results. For Sen, Sp and Pre ∈ (0, 1), the closer they are to 1, the better the 
segmentation effect.

Experiment results

This section shows the segmentation results on lymph node metastasis dataset. In this 
paper, U-Net is set as the basic reference network. Based on this, we first assess the per-
formance of the proposed Fovea-Unet and compare it with other improved networks 
based on U-Net. For a fair comparison, we implement their network architectures and 
utilize the same data preparation methods. Table 2 compares the segmentation results 
of the U-Net, U-Net + + , Double U-Net, Triple U-Net, and Attention U-Net in terms of 
all metrics used in our experiments. Analysis of Table 2 shows that all the improved net-
works achieve performance improvement compared with the original U-Net. As shown 
in Table  2, the Fovea-Unet achieves the best performance on five evaluation metrics 
except for Sp score, reaching 79.38%, 88.51%, 92.82%, 96.80%, and 84.57% for IoU, DSC, 
Sen, Sp, and Pre, respectively. Compared with the basic U-Net, Fovea-Unet increases its 
IoU, DSC, Sen, Sp, and Pre by 12.94%, 8.67%, 7.53%, 2.12% and 9.53%, respectively. In 
addition, compared with other networks, the detailed and non-local contextual infor-
mation aggregation capability of Fovea-Unet improves the accuracy, such as IoU and 
DSC. Attention U-Net, with the advantage of attention, produces IoU and DSC results 
of 78.22% and 87.78%, respectively, which are only lower than those of our network. Sig-
nificantly, the parameter amount of the proposed Fovea-Unet is only 23.23 MB, which 
even lower than Attention U-Net by 152.5 MB.

To further verify the effectiveness and robustness of the Fovea-Unet proposed in this 
paper for lymph node metastasis segmentation, we selected some state-of-the-art seg-
mentation networks for comparison, including three typical networks, namely, U-Net 
[5], SegNet [25], DeepLabv3 + [26], and two lightweight segmentation networks, namely, 
Enet [27], LEDNet [28]. The Fovea-Unet for LNM diagnosis performs well in the training 
process, as shown in Fig. 2. The training loss decrease rapidly to 0.15 after 100 epochs 
with Fovea-Unet, while other networks have similar trends but higher losses. The DSC 

Table 2 Comparison results of the proposed network with other networks based on U-Net

Bold font indicates the best value for each metric

Networks IoU DSC Sen Sp Pre Params/MB

U-Net 0.6644 0.7984 0.8529 0.9468 0.7504 147.59

U-Net +  + 0.7255 0.8409 0.8913 0.9585 0.7959 184.58

Double U-Net 0.7290 0.8432 0.9072 0.9671 0.7877 173.99

Triple U-Net 0.7602 0.8564 0.9046 0.9626 0.8131 369.39

Attention U-Net 0.7822 0.8778 0.9212 0.9693 0.8383 175.76

Fovea-Unet 0.7938 0.8851 0.9282 0.9680 0.8457 23.26
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increase simultaneously with the decrease of training loss. Among these networks, the 
Fovea-Unet achieves DSC of 88% after 125 training epochs, which is significantly better 
than other networks.

The performance comparison results are listed in Table 3. The Fovea-Unet performs 
significantly better than other networks for all metrics. Notably, in terms of metrics that 
have priority at the foreground pixel, it is observed that the proposed method shows 
superior performance with increments of 11.34%, 7.53%, 3.61% in Sen, 15.43%, 9.53%, 
and 8.06% in Pre compared with normal networks, respectively. Similarly, our proposed 
network shows great improvements of 13.61%, 6.48% in Sen, 9.87%, and 12.87% in Pre, 
respectively, while keeping the model parameters at the same level as two lightweight 
segmentation networks. Furthermore, Fig.  3 lists the segmentation results of different 
networks for several typical metastasis images on the lymph node metastasis data set 
and compare the corresponding segmentation prediction generated by overlaying seg-
mentation masks on the input images. It is obvious that existing state-of-the-art net-
works under-segment regions with irregular shapes and low contrast characteristics, 
while Fovea-Unet performs extremely well (Rows 1–3).

Fig. 2 Training loss and DSC score of different networks with LNM dataset. a. Network training loss. b 
Network training DSC 

Table 3 Comparison results of the proposed network with other state-of-the-art segmentation 
networks

Bold font indicates the best value for each metric

Networks IoU DSC Sen Sp Pre Params/MB

SegNet 0.5975 0.7480 0.8148 0.9317 0.6914 112.32

U-Net 0.6644 0.7984 0.8529 0.9468 0.7504 147.59

DeepLabv3 + 0.7002 0.8237 0.8921 0.9491 0.7651 134.83

LEDNet 0.6245 0.7689 0.7921 0.9496 0.7470 8.65

Enet 0.6447 0.7840 0.8634 0.9382 0.7179 13.36

Fovea-Unet 0.7938 0.8851 0.9282 0.9680 0.8457 23.26
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Discussion
The proposed Fovea-Unet improves the effectiveness and efficiency due to its several 
advantages:

1. The importance-aware Fovea Pooling (FP) is proposed to aggregate the detailed 
information and non-local contextual information which has ability to focus on what 
the region most relevant to LNM.

2. The improved H-GhostNet is proposed as a lightweight backbone network, promot-
ing the ability of discriminative and heterogeneous feature extraction, improving the 
computation speed.

Impact of different pooling strategies in FP

To discuss the effectiveness of the FP in Fovea-Unet, we conduct comprehensive abla-
tion studies in terms of the aggregation method of the pooling layer and the boundary of 
pooling radius.

Effect of different pooling aggregation methods

The proposed Fovea-Unet respectively designs four FP in four stage of the encoder sub-
network to refine and aggregate the information. To justify the effectiveness of FP, we 
first compare the results obtained when the FP is removed and the different pooling 

Fig. 3 Segmentation results on LNM dataset of different networks. a original input images. b labels. c 
Fovea-UNet. d DeeplabV3 + . e U-Net. f ENet. g LEDNet. h SegNet
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methods are employed including Lp Pooling [29], Average Pooling, and Mixed Pooling 
[30]. It should be noted that the Max Pooling was not used as a comparative method, 
because the characteristic of only selecting the largest element will harm the network 
segmentation performance.

As detailed in Table 4, the three different pooling methods in the FP greatly improve 
the segmentation performance with the baseline denoted as identity map, where the IM 
denotes the identity map, LP denotes the Lp Pooling method, AP denotes the Average 
Pooling, and MP denotes the Mixed Pooling. For the evaluation metrics on four differ-
ent methods, the IoU increase by 12.95%, 11.70%, and 12.92%, respectively, and DSC 
increase by 8.66%, 7.89% and 8.66%, respectively, which signifies the effectiveness of 
FP for segmentation tasks. Segmentation metrics show that three methods all achieve 
good performance and have an average score of 79.98% and 88.25% in terms of IoU and 
DSC. Moreover, Mix Pooling and Lp Pooling get a relatively higher score than the Aver-
age Pooling, indicating that appropriate proportion of maximum information is impor-
tant for good segmentation performance on LNM region. From the results presented in 
Table 4, it is obvious that the great improvement is brought by FP with low correlation to 
the chosen pooling methods in the FP.

Effect of different pooling boundaries

When the importance of a specific element zik is set to zero, the pooling radius reaches 
its maximum, i.e., r = eς . ς is an empirical value associated with the maximum pooling 
radius, namely, pooling boundaries [see the Eq. (6) in “Methods” section for details]. In 
this section, we discuss the impact of different pooling boundaries on the segmentation 
performance and how to set the value of pooling boundaries in a comparative experi-
ment conducting with five different scales in each stage of encoder sub-network. It is 
worth noting that we use a normalization term s = eς/wi to denote the pooling bound-
ary, where wi represent the spatial size of feature i . For the output features of the four 
stages in the encoder, the parameters s is first set to 1/8, and then the parameters are 
adjusted stage by stage until the best results are obtained. In each stage, five different 
experiments of pooling boundaries from 1/2 to 1/32 are conducted, which is shown in 
Fig. 4.

From the comparative results, the Fovea-Unet gets the best performance when 
s = 1/16 or s = 1/8 , while suboptimal performance is got with reduction of pooling 
boundary and sharp decline of performance is shown with increasingly pooling bound-
ary. In the deeper stage of 3 and 4, the trend of peak value is strengthened in both 
extreme, at the same time, variance of performance is also nearly doubled compared to 
the stage 1 and stage 2. The main reasons are as follows. In the low-level feature maps, 

Table 4 Comparison results of the proposed network under different pooling aggregation methods

Methods IoU DSC Sen Pre Params/MB

IM 0.6646 0.7985 0.8531 0.7505 11.98

LP 0.7941 0.8852 0.9280 0.8462 23.26

AP 0.7816 0.8774 0.9140 0.8437 23.26

MP 0.7938 0.8850 0.9282 0.8457 23.26
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each location represents small local neighborhood information and the shallow features 
take a majority of images information, which is responsible for detailed contextual infor-
mation but making decision in a small extent. In contrast, with the increased receptive 
filed gradually, each element of the high-level feature maps has larger non-local percep-
tion and semantic information that contributes to the segmentation results in a greater 
extent. Hence, in different stages, it is more advantageous to employ a proper combina-
tion of pooling boundaries to explore both the detailed information and non-local con-
textual information for a better guidance of the FP, so as to improve the performance of 
segmentation network. The optimal value of s in each stage should be set according to 
Fig. 4, i.e., s = 1/8 in stage 1, s = 1/16 in stage 2, s = 1/8 in stage 3, and s = 1/8 in stage 
4.

Impact of different backbones in Fovea‑Unet

We also compare the proposed backbone H-GhostNet with other backbones. Moreover, 
we demonstrate the effectiveness of HSIC regularization.

Quantitative analysis of different backbones

To investigate the effectiveness of different backbones to the proposed method, we com-
pare the proposed H-GhostNet with five different state-of-the-art backbones, which 
include three normal backbones, namely, VGGNet [31], ResNet [32], InceptionNet [33], 
and two lightweight backbones, namely, MobileNet [34], GhostNet [23]. All of them 
can extract the abundant feature information at the shallow level and provide the dis-
criminative feature at the high level. For a fair comparison, we also implement their net-
work architectures and utilize the same parameter initialization methods. Our proposed 

Fig. 4 Performance of different pooling boundaries in each stage. a stage 1. b stage 2. c stage 3 d stage 4
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H-GhostNet considers the heterogeneous feature generation as a regularization term of 
the loss function. In Table  5, we report the results of the proposed method with dif-
ferent backbones, from which we can see that the proposed H-GhostNet performs 
favorably against other backbones. It is obvious that the Fovea-Unet with the backbone 
of H-GhostNet achieves prominent performance with IoU 79.38%, DSC 88.51%, Sen 
92.82%, and Pre 84.57%. In particular, our method shows the increments of 2.73%, 0.17%, 
1.65%, 2.35%, 2.27%, and 0.99% in terms of comprehensive metric of DSC compared to 
above backbones. We observe that ResNet as the backbone has a faint superiority, prob-
ably due to the deeper network architecture with 50 layers. Nonetheless, the amount of 
space tied up by ResNet would make the network bloated. Among the performance with 
lightweight backbones, the accuracy metrics are declining in varying degrees with the 
decrease of model parameter quantity. In addition, it is worth noting that the proposed 
H-GhostNet significantly improves the segmentation accuracy of the baseline backbone, 
GhostNet, and achieves improvements of 1.57% in IoU, 0.99% in DSC, 1.84% in Sen, and 
0.26% in Pre, which validate the regularization of the intrinsic feature-based topology. 
Overall, these comparable accuracy results reveal the good capability of H-GhostNet to 
effectively extract features from the training dataset while keeping the smallest memory 
occupation compared to both normal and lightweight backbones.

Effectiveness of HSIC regularization

The effect of HSIC regularization is further explored through the visualization of chan-
nelwise feature similarity. We continue our investigation using CKA to study the internal 

Table 5 Comparison results of the proposed network under different backbones

Bold font indicates the best value for each metric

Backbones IoU DSC Sen Pre Params/MB

VGG 0.7511 0.8578 0.9026 0.8173 103.05

ResNet 0.7911 0.8834 0.9250 0.8453 241.68

Inception 0.7678 0.8686 0.9127 0.8286 75.12

MobileNet 0.7569 0.8616 0.8998 0.8266 48.83

GhostNet 0.7781 0.8752 0.9098 0.8431 23.26

H-GhostNet 0.7938 0.8851 0.9282 0.8457 23.26

Fig. 5 CKA similarity heatmap of GhostNet backbone among the first fifty channels of intrinsic features for 
two cases, including without LHSIC a–e and with LHSIC f–j. a, f layer 8. b, g layer 10. c, h layer 12. d, i layer 14. 
e, j layer 16
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representation structure of specific layers, which enable quantitative comparisons of fea-
tures within networks [35]. As shown in Fig. 5, the first 50 intrinsic feature maps within 
a specific layer are taken as the input to generate a heatmap with the x and the y axes 
indexing ordered representations. Darker color represents the higher similarity when 
the Fovea-Unet is trained without the regularization, it is observed that intrinsic features 
extracted by a specific layer have different statistic properties with different training 
strategies. In Fig.  5a–e, features extracted without regularization tend to be homoge-
nous, we visualize the same situation except for the extra similarity regularization LHSIC 
in Fig. 5f–j. It results in relatively low channelwise similarity, which confirms that the 
H-GhostNet regularized by the similarity constraint can effectively promote the capabil-
ity of Fovea-Unet. In the future, the devised H-GhostNet can be utilized to facilitate the 
medical segmentation tasks with the complementary knowledge of features.

Limitation and future work

Although promising results have been obtained, there still are some limitations in the 
proposed Fovea-Unet that should be taken into consideration. On one hand, the atten-
tion-based importance-aware modules would result in large number of floating-point 
operations per second (FLOPs) with high computational costs and the calculation pro-
cess of pooling radius is relatively tedious. On the other hand, the single-head FP would 
hard to cope with the situations of extremely scattered metastasis. In the future work, 
more efficient computing methods can be used in the importance-aware modules, and 
the multi-head FP can be developed with reference to the multi-head attention mecha-
nism in Transformer, which makes the segmentation network more flexible in feature 
aggregation and further improves the quality of LNM segmentation.

Conclusion
Automatic diagnosis of lymph node metastasis on colorectal cancer is challenging due 
to the dilemma of aggregating the detailed information and non-local contextual infor-
mation. In this paper, we propose a novel importance-aware FP to tackle the afore-
mentioned issue. The FP adopts an importance-aware module and a pooling layer with 
adaptive radius to adjust the resolution of different regions to aggregate detailed and 
non-local contextual information, so that the network can focus on the LNM region 
with high diagnostic value. On this basis, an improved lightweight backbone H-Ghost-
Net is developed for reduce the computational burden of FP on the entire network. 
H-GhostNet utilizes the feature-based similarity regularization to enhance the ability 
of discriminative and heterogenous feature extraction. Based on the quantitative and 
qualitative analysis of segmentation results, it can be concluded that our method outper-
formed all other methods based on deep learning by a large margin while keeping a low 
model parameter cost. The comprehensive experiments demonstrate the superiority of 
the proposed methods, which inherently can be transferred to extensive medical image 
segmentation baseline for powerful feature extraction and aggregation ability.
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Methods
Overall network architecture

As shown in Fig. 6, the proposed Fovea-Unet is built and extended on the U-Net archi-
tecture, which mainly consists of a CNN encoder for extracting image features from 
different layers and a CNN decoder for pixelwise segmentation. In the encoder sub-
network, to produce richer contextual information and aggregate them in a better 
manner, we replace the identity map that lay in the skip connection with four FP mod-
ules. The importance-aware modules of FP first take the intermediate feature maps Fi, 
i ∈ {1, 2, 3, 4} as input, and yields the importance-aware map Pi, i ∈ {1, 2, 3, 4} , respec-
tively. Then, the pooling layer is adopted to aggregate the feature in the spatial domain, 
where the pooling radius depends on the importance-aware of specific feature map and 
the pooling step is one. Meanwhile, the H-GhostNet is adopted as the backbone net-
work for feature extraction, where the last global pooling and fully connected layers of 
H-GhostNet are removed. Only one convolution and four bottlenecks for primary fea-
ture extraction are retained, where each bottleneck contains four H-Ghost convolution 
layers. Without loss of generality, for an input image, the output features of four bottle-
necks are Fi, i ∈ {1, 2, 3, 4} mentioned above. The output size of each feature is 1/2, 1/4, 
1/8, and 1/8 of the input image. Once this encoding process is finished, the encoding 

Fig. 6 The overall structure of the proposed Fovea-UNet. a. The architecture of Fovea-UNet. Medical 
input images are first fed into the extracting path and four intermediate features maps are obtained. 
Then the Fovea Pooling modules take the feature maps as input and yield the output respectively. 
Lastly, the segmentation mask is acquired by concatenating the output of FP in turn and upsampling 
layers hierarchically. b. The illustration of Fovea Pooling. The importance-aware module calculates the 
importance-aware map using the intermediate features as input, and the importance-aware map of each 
feature provides the basis of the pooling radius. We map the pooling process on the original input images 
as the illustration, which is shown in the upper part of (b). The closer to warm the color of the picture border 
is, the more the picture contains detailed information. c. The illustration of the HSIC-Ghost convolution layer. 
The constraint of the normal convolution layer that generates the distinct intrinsic features is added and then 
we adopt more cheap operations to ensure the distinction and sufficiency of features
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features are concatenated with the decoder output in turn for the final generation of the 
segmentation mask.

Fovea pooling

Information aggregation is great importance for segmentation network in capturing 
detail and no-local contextual information [36]. General information aggregation is 
modeled as:

where zi is the newly aggregated feature at the position i , and xi is the feature at posi-
tion i in the input feature map X . ∀j ∈ �(i) enumerates all positions in the region of 
interest associated with i , and �ij represents the relative location of position i and j . 
F(xi, xj ,�ij) can be any function or learned parameters according to the operation and 
it represents the information flow from j to i . Note that taking relative location �ij into 
account F(xi, xj ,�ij) is sensitive to different relative locations. In addition, N  is for 
normalization. Although these attention methods successfully capture the importance 
and relationship between different areas from the perspective of information flow, they 
ignore the further highlight of the most important area that contributes to segmentation 
results. Thus, the essence of features could not be fully revealed which downgrades the 
segmentation accuracy.

To remedy these drawbacks, the Fovea Pooling inspired by human retinal Fovea is pro-
posed to dynamically aggregate the detailed information of important areas and non-
local contextual information of other areas based on the capacity for adaptively adjust 
the pooling radius according to the importance-aware of information. The proposed 
Fovea Pooling consists of an importance-aware module and the pooling layer with adap-
tive radius. First, the pixel-level importance of features is calculated through the impor-
tance-aware module evolved from PSANet [37]. Then, the pooling layer aggregates 
the features with variable pooling radius which has an inverse trend of the pixel-level 
importance.

Specifically, for the importance-aware module, the architecture follows the PSA 
module of PSANet in general. PSA module as a pointwise spatial attention mod-
ule, aiming to adaptively obtain the information over the entire feature map, provides 

(2)zi =
1

N

∑

∀j∈�(i)

F(xi, xj ,�ij)xj

Fig. 7 Architecture of importance-aware module
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an implementation method to get the pixel-level importance of features for this work. 
Compared with PSA module, the importance-aware module only remains the archi-
tecture of generating pixelwise global attention maps for each position in feature map 
X through several convolutional layers as the importance-aware module in our Fovea 
Pooling. The specific architecture of the importance-aware module followed PSANet is 
shown in Fig. 7.

As illustrated in Fig. 7, the importance-aware module adaptively predicts two global 
importance-aware maps Z for each position in the feature map X by two parallel 
branches, i.e., collect branch and distribute branch. In the collect branch, at each posi-
tion i , we predict how current position is related to other positions based on feature at 
position i . In addition, vice versa, the distribute branch is used to distribute the infor-
mation at the current position to assist the prediction of other ones. Hence, Eq.  (2) is 
rewritten as:

where aci,j and adi,j denote the predicted attention values in the pointwise attention map 
Ac and Ad from collect and distribute branches, respectively. Before this, the intermedi-
ate attention maps Hc and Hd is calculated as the over-completed map both with the 
spatial size of H ×W  and (2H − 1)× (2W − 1) channels. According to this, the ele-
ment at sth row and tth column in the attention mask ac

[k ,l]
 is:

where [·, ·] indexes position in rows and columns, and hc indicates the reshaped feature 
embedding at the position [k , l] with size of (2H − 1)× (2W − 1) . Similar to the collect 
branch, the element of distribute attention mask ad

[k ,l] is computed as:

These two maps ac
[k ,l]

 and ad
[k ,l] encode the context dependency between different posi-

tion pairs in a complementary way, leading to improved information propagation and 
enhanced utilization of long-range context.

In the pooling layer, global importance-aware map Z is regarded as calculation basis 
and pooling radius rk in each position is decided by the corresponding importance:

where rk denotes the pooling radius in position k , Zi
k denote the importance in the posi-

tion k of the layer i , and ς is an empirical value. We take this empirical equation that 
make the region with high importance maintain high resolution and rk = 1 if Zi

k = 1 , 
while the other extreme is rk = ⌊eς⌋ if Zi

k = 0 . It ensures the radius decline rapidly along 
with the linear increase of normalized importance, which variable factors can be syn-
thetically considered and used to the utmost limits for reaching the optimum effect on 
feature aggregation.

(3)zi =
1

N

∑

∀j

aci,j xj +
1

N

∑

∀j

adi,j xj

(4)ac[k ,l] = hc[k ,l],[H−k+s,W−l+t], ∀s ∈ [0,H),t ∈ [0,W )

(5)ad[k ,l] = hd[k ,l],[H−k+s,W−l+t], ∀s ∈ [0,H),t ∈ [0,W )

(6)rk =

⌊
e(ς ·(1−Zi

k ))
⌋
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Without the loss of generality, we take the general aggregation method of pooling layer 
as the example for the illustration of the backpropagation process. The output of pooling 
layer W is:

where WN
i  and WN−1

j  indicate the feature element of layer N  and layer N − 1 , respec-
tively, and j was employed to point the all position of pooling window at the position i . 
ηj denotes the weight of feature in the specific position. In the backpropagation stage, the 
gradient of relative element is calculated as:

According to Eq. (8), both the weight of feature ηj and the number of elements n in the 
receptive field together have determined gradients of training samples. There are only a 
few elements in the high importance region, so the backpropagation process will give the 
feature elements in this region a larger gradient, that is, the more important the region 
will maintain a higher resolution, so that the feature elements in the region will get more 
attention. Therefore, FP has the capacity to extract robust and discriminative features 
through stochastic gradient descent (SGD) in the semantic segmentation network. In 
this way, FP can effectively aggregate the pixel-level semantic information and dynami-
cally control the receptive field size, so that the input features that directly contribute to 
the segmentation result remain high resolution, while the no-local contextual informa-
tion is responsible for by the large receptive field region.

H‑Ghost backbone

GhostNet is an impressive alternative backbone designed to decrease computational 
costs of the generic convolutional layer while preserving the similar ability of fea-
ture extraction to original convolutional layer. The key assumption of the GhostNet is 
embracing feature redundancy and generating redundancy through the cheaper linear 
operation on the intrinsic feature maps. In practice, given the input data X ∈ Rc×h×w , 
where c is the number of channels and h and w are the height and width of the input 
data, respectively. The operation of the primary convolution layers for producing m 
intrinsic feature maps I ∈ Rm×h′×w′ can be formulated as I = X ∗ f + b , where ∗ is the 
convolution operation, b is the bias term, f ∈ Rc×k×k×m is the convolution filters in a 
specific layer and k × k is the kernel size of f  . To further increase the feature redun-
dancy, a series of fast linear transformations on each intrinsic feature I i is performed:

where I i is the i th intrinsic feature map in I, and the �i,j is the j th linear transformation 
for generating the j th ghost feature map yij . However, if GhostNet is directly used as the 
backbone, although it can generate feature maps with redundant features through cheap 
linear operations, it is not suitable as an encoder for segmentation networks directly. 

(7)WN
i =

1

n

∑

∀j∈�i

ηjW
N−1
j

(8)
∂WN

i

∂WN−1
j

=
1

n
ηj

(9)yij = �i,j(I i), ∀i = 1, . . .m, j= 1, . . . , s
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On one hand, in the case of the complex, variable LNM to be segmented, the limited 
number of intrinsic features can’t guarantee the full mining of semantic information. 
On the other hand, the process of generating intrinsic features in GhostNet only uses 
normal convolution layers, which can’t ensure the heterogeneity among features, and 
seriously affects the segmentation results of the entire network. Hence, learning the suf-
ficient and redundant intrinsic feature representations more efficiently will be beneficial. 
Information theory underlying much research on deep learning as well as neuroscience 
offers an effective way to address this issue. HSIC is the Hilbert–Schmidt norm of the 
cross-variance operator between the distribution in Reproducing Kernel Hilbert Space 
(RKHS), which is widely used as a dependency measurement of representations in the 
deep learning literature [24]. The formulation of HSIC is:

where kX and kY are kernel functions. H and G are the Hilbert spaces, and EXY is the 
expectation over X and Y.

In the above intuition, we incorporate the normalized HSIC and proposed H-Ghost-
Net to learn the discriminative and complementary representations, which made the 
original GhostNet more efficient and unchallenged by adding a regularization term 
of HSIC. It imposes the orthogonal constraint on learned intrinsic features and leaves 
room for more redundancy in the cheap operation. Let D :=

{
(x1, y1), . . . (xm, ym)

}
 

denotes m independently identical distribution samples draw from PXY  , where xi ∈ Rdx 
and yi ∈ Rdy . Then, Eq. (10) leads to the following empirical expression:

where KX ∈ Rm×m and KY ∈ Rm×m both have entries KXij = k(xi, xj) and KYij = k(yi, yj) , 
and H ∈ Rm×m is the centering matrix H = Im − 1

m1m1
T
m . In this paper, we devise a loss 

function LnHSIC:

Where Ii ∈ Rs× p is the representation within the intrinsic feature maps, with p neu-
rons, evaluated on the same s samples. We use the normalized-HSIC (nHSIC) that is 
the normalized Hilbert–Schmidt independence criterion based on the normalized cross-
covariance operator, given by

where K̃ Ii = K Ii(K Ii + εmIm)
−1 and K̃ Ij = K Ij (K Ij + εmIm)

−1 . K Ii and K Ij denote cen-
tered kernel matrices, and ε is a small constant. In this way, the proposed H-GhostNet 
can extract the comprehensive and distinct intrinsic feature representations towards 
LNM diagnosis while reducing the computational burden.

(10)
HSIC(PXY ,H ,G) =�CXY � = EXYX ′ Y ′ [kX (X ,X

′)kY ′(Y ,Y
′)]

+ EXX ′ [kX (X ,X
′)]EY ′ [kY ′(Y ,Y

′)]

− 2EXY [EX ′ [kX (X ,X
′)]EY ′ [kY ′(Y ,Y

′)]

(11)HSIC (D,H ,G) = (m − 1)−2 tr(KXHKYH)

(12)LnHSIC = α
∑

∀i,j∈[1,m], i �=j

nHSIC (Ii, Ij)

(13)nHSIC = tr (K̃Ii K̃Ij )



Page 18 of 20Liu et al. BioMedical Engineering OnLine           (2023) 22:74 

Loss function

In the actual cancer segmentation task, there is a highly imbalance distribution between 
the tumor and non-tumor regions, which leads to the poor performance of segmenta-
tion network. Therefore, a suitable loss function is crucial to alleviate the above problem.

Focal loss [38] is taken to alleviated the problem, along with the similarity loss:

where � is empirically set to 0.75. The Focal loss function is computed as follows:

where pt = p if y = 1 , pt = 1− p if y = 0 . at is used to restrain the imbalance between 
the number of positive and negative samples, and γ to control the imbalance of hard or 
easy samples.
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