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Abstract 

Background: Motor impairment is a common consequence of stroke causing dif-
ficulty in independent movement. The first month of post-stroke rehabilitation is the 
most effective period for recovery. Movement imagination, known as motor imagery, 
in combination with virtual reality may provide a way for stroke patients with severe 
motor disabilities to begin rehabilitation.

Methods: The aim of this study is to verify whether motor imagery and virtual reality 
help to activate stroke patients’ motor cortex. 16 acute/subacute (< 6 months) stroke 
patients participated in this study. All participants performed motor imagery of bas-
ketball shooting which involved the following tasks: listening to audio instruction only, 
watching a basketball shooting animation in 3D with audio, and also performing motor 
imagery afterwards. Electroencephalogram (EEG) was recorded for analysis of motor-
related features of the brain such as power spectral analysis in the α and β frequency 
bands and spectral entropy. 18 EEG channels over the motor cortex were used for all 
stroke patients.

Results: All results are normalised relative to all tasks for each participant. The power 
spectral densities peak near the α band for all participants and also the β band for 
some participants. Tasks with instructions during motor imagery generally show 
greater power spectral peaks. The p-values of the Wilcoxon signed-rank test for band 
power comparison from the 18 EEG channels between different pairs of tasks show a 
0.01 significance of rejecting the band powers being the same for most tasks done by 
stroke subjects. The motor cortex of most stroke patients is more active when virtual 
reality is involved during motor imagery as indicated by their respective scalp maps of 
band power and spectral entropy.

Conclusion: The resulting activation of stroke patient’s motor cortices in this study 
reveals evidence that it is induced by imagination of movement and virtual reality sup-
ports motor imagery. The framework of the current study also provides an efficient way 
to investigate motor imagery and virtual reality during post-stroke rehabilitation.
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Background
Stroke is a brain lesion which generally causes disability and even death [1, 2]. Motor 
impairment is a common consequence of stroke affecting stroke patients’ ability to live 
independently [3, 4]. The major mechanism behind post-stroke recovery is neuroplasticity 
which rewires the neural network of the brain [5, 6]. Early motor rehabilitation is essen-
tial to effectively restore motor function of stroke patients because neuroplasticity is most 
active within the first month post-stroke [2, 6, 7]. Initially, mobility of stroke patients is min-
imal; often they are not able to instigate any movement [2, 8]. There are six Brunnstrom 
motor recovery stages (BMRS) which describe different levels of mobility[2]. Stroke patients 
who cannot initiate any movement from affected body parts are classified in stage 1 of the 
BMRS [2]. Conventional post-stroke rehabilitation that relies on physical movement may 
be ineffective during the early stage of post-stroke motor recovery because stroke patients 
are often severely paralysed and unable to participate in physical rehabilitation [2, 8, 9].

Motor imagery (MI) is the mental representation of a body movement [6]. In MI, a 
patient is required to mentally rehearse a movement without its physical execution [3, 4]. It 
was suggested that MI could promote recovery of the lesioned brain areas using functional 
and other neuronal networks; hence, MI appears to be an effective alternative therapy for 
early post-stroke motor rehabilitation [5, 7]. However, MI requires training and may be 
challenging particularly for stroke patients [10].

It was shown that observing an action may activate the motor cortex and promote motor 
learning; thus, facilitating neural recovery [3, 11]. This is due to the mirror neurons being 
activated during both action execution and observation [3, 11]. The mirror neuron system 
assists the observer to imitate an observed action; hence, there may be an overlap between 
action observation (AO) and the process of performing a physical movement [3, 11]. It was 
also reported that AO via virtual reality (VR) technology could assist stroke patients to 
focus on MI tasks by visually simulating real movements within an immersive environment, 
minimising distractions from the surroundings, thus, potentially reducing the difficulty 
of conventional MI [10, 12]. VR technology has also been shown to assist stroke patients 
in a minimally conscious state to perform MI [9]. As a result, combining MI and AO for 
performing the same movement may enhance activation of the motor cortex and facilitate 
motor recovery of stroke patients, especially in stage 1 of the BMRS [4, 5, 10]. Despite there 
being positive evidence of VR-assisted MI in post-stroke rehabilitation, the experimental 
protocol of different studies is not standardised and involves various VR machineries [8, 10, 
12]. The findings of different VR-MI studies are not conclusive though promising.

Physiological measure of MI recorded by electroencephalogram (EEG) provides a rela-
tively accessible and objective way to measure brain signals induced by MI with a high tem-
poral resolution [10, 12–16]. In this study, we apply filters as well as both EEG spectra and 
entropy analyses to investigate whether MI and VR may help to activate the brain areas 
responsible for motor functions; thus, potentially promoting motor recovery.

Results
The 18 EEG channels covering the motor brain areas shown in Fig. 5 are considered 
in computing the periodograms and band powers for stroke patients as movement 
processes mainly involve the motor cortex [8, 10]. Figure 1 shows all subjects’ epoch-
averaged periodograms normalised with respect to the subjects’ own experimental 
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tasks in this study: VOICE, MI after VOICE, VR+MI, and MI after VR, with 1 = the 
maximum and −1 = the minimum. Table  1 presents the p-values of the Wilcoxon 
signed-rank test for comparing the α and β band powers associated with different 
pairs of tasks performed by the stroke patients. Figures 2 and 3 are, respectively, the 
normalised α and β band power scalp maps relative to all classes in Experiment 1 for 
stroke patients 2 and 3 and in Experiment 2 for stroke patients 8 and 10. Figure  4 
shows the spectral entropy scalp maps normalised to all classes in Experiments 1 and 
2, respectively.

Table 1 Results of the Wilcoxon signed-ranked test between different tasks in the α and β 
frequency bands from the 18 EEG channels on the motor brain areas of stroke subjects

Statistically significant results with a p-value < 0.01 are indicated in bold

No. VOICE VOICE VOICE MI after VOICE MI after VOICE VR+MI
MI after VOICE VR+MI MI after VR VR+MI MI after VR MI after VR

α ; Subject

 1 0.899 <0.001 <0.001 <0.001 <0.001 0.154

 2 0.196 <0.001 <0.001 <0.001 0.002 0.442

 3 0.640 <0.001 0.130 0.024 0.099 0.551

 4 1 0.034 0.039 0.024 0.060 0.417

 5 0.014 <0.001 0.001 <0.001 <0.001 0.009
 6 0.054 <0.001 0.001 <0.001 <0.001 0.030

 7 0.024 <0.001 0.001 <0.001 <0.001 0.671

 8 0.671 – 0.001 – 0.048 –

 9 0.002 – <0.001 – 0.369 –

 10 0.229 – 0.671 – 0.021 –

 11 0.012 – <0.001 – <0.001 –

 12 0.081 – 0.006 – 0.551 –

 13 0.001 – <0.001 – <0.001 –

 14 0.081 – <0.001 – <0.001 –

 15 <0.001 – <0.001 – 0.043 –

 16 0.108 – <0.001 – <0.001 –

β ; Subject

 1 0.734 <0.001 <0.001 <0.001 <0.001 0.265

 2 0.016 <0.001 <0.001 <0.001 <0.001 0.054

 3 0.018 0.002 0.060 0.932 0.495 0.865

 4 0.016 <0.004 0.393 0.468 0.119 0.016

 5 0.021 <0.001 <0.001 0.001 0.001 0.001
 6 0.039 0.001 <0.001 <0.001 <0.001 0.167

 7 0.027 <0.001 <0.001 <0.001 <0.001 0.766

 8 0.054 – 0.014 – <0.001 –

 9 0.030 – 0.090 – 0.001 –

 10 0.060 – 0.417 – 0.012 –

 11 0.001 – <0.001 – <0.001 –

 12 <0.001 – <0.001 – 0.304 –

 13 <0.001 – <0.001 – 0.001 –

 14 0.265 – 0.229 – 0.018 –

 15 <0.001 – 0.212 – 0.012 –

 16 <0.001 – <0.001 – <0.001 –
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Fig. 1 Periodograms for each of the subjects from Experiment 1 (a–g) and Experiment 2 (h–p) showing their 
normalised power spectral densities ( PSD′ ) across frequencies 1 to 40 Hz. The legend for all plots is shown at 
the bottom right of this figure
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Discussion
The experiments of this study aim to guide participants to mentally perform a basket-
ball shooting movement which they cannot perform physically. Bimanual basketball 
shooting is selected as the MI task to mimic a sport activity involving the upper limbs. 
Mentally performing a sport involving both hands may actively promote both hemi-
spheres of the brain to be activated, maximising brain activity of the motor cortex, 
especially for non-experts [3, 6, 17–21]. An upper limb MI is chosen because a larger 
area of the motor cortex is activated to control upper limbs, thus has been shown to 
be more effective in motor function recovery than that of lower limbs [3, 6, 22]. The 

Fig. 2 α band power scalp maps of stroke patients 2, 3, 8 and 10 (top row to bottom row) showing the 
intensity variations normalised relative to all classes from Experiments 1 and 2, respectively. Red is 1 = 
maximum; blue is −1 = minimum
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basketball shooting instruction provided in the current study prompts participants 
to activate their motor cortex by gradually guiding them to imagine the movement 
in a few steps. Stroke patients have suffered brain damage, so movement instruction 
should be relatively straightforward and simulate physical movement as much as pos-
sible to make the MI task practical [6, 9, 23–27]. A sport exercise shown via video is 
used to induce a sense of embodiment and self-esteem from the stroke patients by 
attempting to trigger the neural pathways for motor processes through the patients’ 
imagination of performing a physical task that appears to be impossible [6, 8, 17, 18, 
21, 28–30]. The activation intensity distribution of the brain can be studied by power 

Fig. 3 β band power scalp maps of stroke patients 2, 3, 8 and 10 (top row to bottom row) showing the 
intensity variations normalised relative to all classes from Experiments 1 and 2, respectively. Red is 1 = 
maximum; blue is −1 = minimum
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spectral density (PSD), band power and spectral entropy of the EEG data that have 
been preprocessed [8, 31–33].

Power spectral density

Activation of the motor cortex is expected to induce signal peaks predominantly in the 
alpha (8–12 Hz) and beta (13–30 Hz) frequency bands as they correspond to motor-
related processes [10, 33–38]. Periodograms illustrate how each subject’s spectral power 

Fig. 4 Spectral entropy scalp maps of stroke patients 2, 3, 8 and 10 (top row to bottom row) for frequencies 
1–40 Hz showing the intensity variations normalised relative to classes from Experiments 1 and 2, 
respectively. Red is 1 = maximum; blue is – 1 = minimum
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distribution changes across different frequencies. A larger magnitude of intensity of 
spectral power peaks in the periodograms indicates a greater brain activation at the cor-
responding frequencies. For stroke subjects, there are peaks in the α and β frequency 
bands for all of the tasks. A power peak in either the α or the β band detected from the 
motor cortex can itself be used as an indicator of motor-related processes [10, 33–38]. 
There is a peak in the 20–25 Hz range within the β band in all classes as illustrated in 
Fig. 1a–p. The spectral power peaks in the α band are greater for MI after VR than those 
of other classes for subjects 8, 9, 13 and 14, indicating VR assistance for MI. In Experi-
ment 2, there is no assistance provided to subjects performing MI after VR for approxi-
mately 5 min; hence, distractions and fatigue may affect some subjects’ MI ability. MI 
after VOICE shows a distinctively greater peak in the 20–25Hz range than that of both 
VOICE and MI after VR for subjects 11, 15 and 16, as shown in Fig. 1k, o and p.

VR+MI in Experiment 1 provided visual and audio instructions in 3D while stroke 
patients perform MI. There is a more prominent peak in 20–25 Hz for VR+MI and MI 
after VR than that of other tasks for subjects 3 and 4 as shown in Fig. 1c and d. VOICE 
may only be helpful for subjects 5–7 from Experiment 1 as illustrated by their PSD′ peaks 
in the β band. MI after VOICE shows no assistance for half of the subjects in Experiment 
1 as indicated by its broad and flat power spectrum as illustrated in Fig. 1a–g. This may 
again due to attention deficiency when no cues for MI are given at all.

Band power

Band powers provide an overall representation of PSD patterns. Greater α and β band 
powers correspond to more intense motor-related brain activation[10, 33, 34]. The Wil-
coxon signed-rank test is non-parametric which is ideal for comparing two conditions 
for the same participants without assuming normality of samples[39]. The results indi-
cate that there is a 0.01 significance of rejecting the null hypothesis that VR+MI (or MI 
after VR) and MI after VOICE have the same band powers for almost all stroke sub-
jects; however, VOICE and MI after VOICE have more similar band powers. Similarly, 
VR+MI and MI after VR also have more similar band powers as indicated by their p-val-
ues not reaching the 0.01 significance level.

Stroke patients 2, 3, 8 and 10 are illustrative of the types of responses seen in all 
patients. A higher value of band power (red) corresponds to more intense brain activa-
tion. The other stroke patients from Experiment 1 show similar brain activity to stroke 
patients 2 and 3. Most Experiment 1 stroke patients’ brain activities are similar to stroke 
patient 2’s, with the motor cortex being less active during MI+VR and MI after VR, as 
shown in the first row of Figs.  2 and 3, and Additional file  1: Figures  S1 and S2. This 
could be attributed to some stroke patients performing visual imagery (VI) because of 
their lack of understanding of MI, therefore decreasing activity in the motor cortex. 
Stroke patient 2 may not be able to focus on MI even with VR assistance; whereas, the 
motor cortex of stroke patient 3 is more active during MI after VR and MI after VOICE 
in Experiment 1. Performing MI after VR is present appears to help stroke patient 3 to 
activate the motor cortex near channel C4 as illustrated by more intense α band power.

Stroke patients 8 and 10 share similarities with the other stroke patients from Experi-
ment 2. The motor cortex of stroke patient 8 during MI after VR in Experiment 2 is over-
all more activated in the α and β bands compared to other classes without VR as shown 
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in Figs. 2 and 3. Stroke patient 10 does not reflect any assistance of VR in MI induced 
brain activation in the motor cortex compared to MI without VR as shown in Figs. 2 and 
3.

Stroke patients 3 and 8 are illustrative of most stroke patients’ brain activities in the 
α and β bands, achieving maximum band power for conditions involving VR; whereas, 
a small number of stroke patients have similar band power scalp maps as stroke patient 
10, not activating the motor cortex during MI after VR as illustrated in Additional file 1: 
Figures S1–S4.

Spectral entropy

Entropy in a biological process measures the complexity of a physiological signal [40–
45]. Brain activation is associated with peaks in the α and β band of a power spectrum; 
hence, spectral entropy is used to study brain activation by analysing power spectral 
patterns. A power spectrum with a pattern identical to that of a single frequency com-
ponent such as a sinusoid has the smallest spectral entropy [31, 32]. On the contrary, 
a flat power spectrum having all frequency component s with equal power like that of 
white noise corresponds to the greatest spectral entropy [31, 32]. A higher value of spec-
tral entropy represents a more uniform and flatter power spectrum distribution [31, 46, 
47]. Spectral entropy is a measure of the regularity of a power spectrum which should 
be interpreted together with spectral power analysis. A lower value of spectral entropy 
(blue) is associated with more intense brain activity if the associated band power is 
closer to maximum.

Most stroke patients’ brain patterns are similar to stroke patients 3 and 8 having the 
lowest spectral entropy values for VR-assisted MI; whereas, some stroke patients are 
similar to stroke patient 10 with higher spectral entropy values for VR-assisted MI as 
shown in Additional file 1: Figures S5 and S6. VR potentially assists most stroke patients 
to activate their motor cortex during MI, but is ineffective for some stroke patients as 
indicated by Figs. 2, 3 and 4.

Conclusions
MI may activate the motor brain areas of stroke patients as deduced by their normalised 
PSD, band power and spectral entropy computed in this study. The PSD′ peaks, maxi-
mum band power and minimum spectral entropy are present in the motor-related α and 
β frequency bands for most of the 16 (acute/subacute) stroke patients’ motor cortices 
during VR-assisted MI indicating more intense brain activation than that of MI alone. 
The p-values of the Wilcoxon signed-rank test associated with α and β band powers 
between the conditions in Experiments 1 and 2 of this study, respectively, achieve a 0.01 
significance for most stroke patients indicating that MI tasks involving VR and without 
VR do not have the same brain activation pattern. VR is potentially an effective tool for 
assisting MI performance. MI in combination with VR could be particularly beneficial 
for stroke patients without other rehabilitative options because of their severe motor 
impairment. Future research may investigate the effects of fatigue and sensory distrac-
tions during shorter or longer MI experiments [26, 27, 48–52]. Nonetheless, the results 
and framework of this study are useful for future work which may provide new insights 
in the applicability of MI and VR in stroke rehabilitation.
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Methods
Experimental protocol

Participants

Experiments on stroke patients were conducted at Jiaxing 2nd hospital in China in April 
and July 2021 [53]. These experiments were approved by the Ethics Committee of Jiaxing 
2nd Hospital Rehabilitation Centre in accordance with the Declaration of Helsinki. All 
stroke patients gave informed consent before participating in the study. The experiment 
could be terminated whenever the participants felt unwell with symptoms such as nau-
sea. An initial assessment of upper limb mobility of stroke patients based on the BMRS 
and the mini-mental state examination (MMSE) for cognitive function were performed 
by medical doctors. All participants’ demographics are shown in Table 2 according to 
the following enrolment criteria: 

i Subjects were over 18 years old.
ii Subjects were in stage I, II or III of the Brunnstrom stages of stroke recovery.

Table 2 Demographic information for the (Experiments 1 and 2) stroke participants

Subject Gender Age Affected Stroke Brunnstrom Post-stroke MMSE
No. Side Condition Stage (months) Score

Experiment 1

 1 Male 74 Right Left basal ganglia haemorrhage I 4 26

 2 Male 46 Right Left basal ganglia haemorrhage III 5 30

 3 Male 52 Right Left basal ganglia haemorrhage II 2 30

 4 Male 70 Left Right basal ganglia haemorrhage 
and parietal ventricular cerebral 
infarction

II <1 30

 5 Male 71 Left Right basal ganglia and parietal 
ventricular foci of encephalomalacia

II 1 30

 6 Male 70 Left Right cerebral peduncle foci infarc-
tion

I 1 30

 7 Female 63 Right Left basal ganglia and parietal 
ventricular multiple scattered foci 
infarction

III 5 30

Experiment 2

 8 Female 52 Left Right basal ganglia cerebral haem-
orrhage

II 4.5 30

 9 Male 58 Right Left basal ganglia ventricular 
haemorrhage

II 2.5 30

 10 Male 48 Left Brain stem and right corpus callo-
sum cerebral infarction and bilateral 
paraventricular foci ischaemia

I 1.5 30

 11 Female 50 Left Right basal ganglia haemorrhage I 2 30

 12 Male 68 Right Bilateral paraventricular and lacunar 
foci ischaemia

I 2 13

 13 Male 61 Right Bilateral lateral ventricular foci 
ischaemia

I 1 30

 14 Male 37 Right Left basal ganglia foci infarction I 1 30

 15 Female 86 Right Left lateral thalamic haemorrhage II 1 16

 16 Female 76 Right Left basal ganglia lacunar infarction I 1 30
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iii Subjects have normal vital signs and with sufficient vision and hearing to follow 
instructions as determined by medical doctors using the MMSE assessment with a 
minimum threshold score of 10 [9, 54, 55].

Only adult stroke patients with stable vitals were recruited by clinicians to minimise 
unforeseen paediatric medical complications. MI is most beneficial for stroke patients 
with no or minimal physical movement which persists through the first 3 BMRS. Most 
stroke patients in this study achieve either a MMSE score corresponding to normal cog-
nitive function, i.e. above 25 or even 30, the maximum. Only stroke patients 12 and 15 
have a MMSE score in the range 10 to 19 indicating potentially moderate, but not severe, 
cognitive impairment [9, 54, 55].

Data collection

A g.HIamp (from g.tec, Austria) with 80 wet electrode channels arranged in the stand-
ard international 10–10 configuration at a sampling rate of 1200 Hz were used to record 
EEG data from all stroke patients. Figure 5 shows the following 18 EEG channels used 
for this study covering the motor brain areas: FC1, FC2, FC3, FC4, FC5, FC6, C1, C2, C3, 
C4, C5, C6, CP1, CP2, CP3, CP4, CP5, and CP6. The reference channel is attached to the 
left earlobe and Cz is the ground channel.

The EEG collected from each task of the experiment were saved as 1-min files where 
each file corresponded to 1 trial for stroke patients. The number of trials for stroke 
patients is shown in Experiments 1 and 2 of Fig. 6.

Experimental design

Subjects wore the EEG devices and were lying down on a bed during the experiments. 
The current study consists of 2 experiments as shown in Fig. 6 illustrating the periods 
of EEG measurement and their associated experimental tasks. The break period is 1 day 

Fig. 5 Diagram showing the electrode position distribution for stroke subjects
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for Experiment 1 and 15–20 min for Experiments 2. The (Mandarin Chinese) audio and 
video instructions, designed by Shantou University using Assembly-CSharp API from 
Unity[56], were given in a few steps as shown in Fig. 7. For tasks involving VR (in 3D), 
subjects wore a head-mounted display centred in a VR environment made by HTC VIVE 
PRO EYE with the helmet-mounted display (HMD) of 1440×1600 resolution per eye and 
110◦Field of view. Further details of the respective tasks of the experiments are provided 
in the following:

VOICE The subject wears headphones and listens to the voice instructions (in Chi-
nese) which describes a sequence of movements for the purpose of shooting a basketball 
with both hands, i.e. hands reaching and holding the ball, lifting the ball, increasing arm 
strength, then shooting the ball. The voice instruction is played three times, each time 
lasts for 1 min and it is the same audio used in the video instruction from cues (a) to (d) 
shown in Fig. 7. Three trials were performed for all experiments.

Fig. 6 Flowcharts showing the schematic of the experiments outlining the tasks performed by the subjects, 
with each trial lasting 1 min in duration. There are four tasks in Experiment 1: VOICE, MI after VOICE, VR+MI 
and MI after VR. There are three tasks in Experiment 2: VOICE, MI after VOICE and MI after VR

Fig. 7 Flowchart showing the timing of the video for the VR+MI task. a–d are four cues, the colours of the 
cues are consistent with the corresponding colours of the times at which they occur in the experimental 
process
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MI after VOICE The subject was asked to imagine the movement associated with the 
voice instruction immediately after the end of the voice instruction. All experiments had 
2 trials performed.

VR+MI In addition to the voice guidance, the subject wore the head-mounted display 
and observed the animation corresponding to the voice instruction for shooting a bas-
ketball while imagining the associated movement simultaneously. Figure 7 illustrates the 
timeline of the video instruction with cues showing the general structure of the whole 
video. Firstly, there is a text instruction which lasts for 1 min. Secondly, a 3-2-1 count-
down appears, then the video is played in sync with the voice instruction having another 
3-2-1 countdown before shooting the basketball from cues (a) to (d) of Fig. 7. Finally, a 
congratulatory message follows the basketball shooting. There were 3 trials for VR+MI 
as only text instruction was presented in the first minute of EEG recording as shown in 
Experiment 1 of Fig 6.

MI after VR In this task, the subject performs MI of shooting the basketball after 
watching the corresponding 3D video from the head-mounted display. Each minute of 
EEG recording is considered 1 trial as depicted in Fig. 6.

Data preprocessing

Figure 8 shows the general procedure for processing EEG data in the current study. Raw 
EEG is extracted as input data. At the beginning of each trial, the EEG recordings con-
tain noise interference caused by the machinery or other sources; furthermore, trial 
recordings do not contain exactly the same number of samples. As a result, only samples 
from the first 6th second to the 51st second of each trial are considered for noise removal 
and consistency. The data are shaped as 1-s epochs × channels × samples for efficiency 
[33].

The samples for stroke patients are downsampled from 1200 Hz to 200 Hz to reduce 
computational complexity as usual human neural activities and the damping effects of 
the skull are at frequencies less than 200 Hz [57, 58]. A 5th order Butterworth bandpass 
filter removes non-motor-related frequency components of the signal outside 1 to 40 Hz 
as this range includes all relevant frequencies for motor processes [59–61]. The flatness 
response of the Butterworth filter is suitable for preserving the desired frequency range 
and eliminating irrelevant parts of the signal such as power-line at 50 or 60 Hz [60, 62].

Wavelet filter

The automatic tunable artifact removal (ATAR) algorithm is designed to remove arte-
facts of a signal that does not rely on expert knowledge or manual identification of noisy 

Fig. 8 Pipeline for EEG data preprocessing (green) and analysis (blue) applied in this study
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EEG components like ICA [63]. The ATAR algorithm provides a relatively objective way 
to remove artefacts from the EEG data by utilising the EEG signal’s intrinsic parameters 
[63, 64]. The EEG signal is first deconstructed into sets of wavelet coefficients by applying 
a discrete wavelet transform (DWT) using the Daubechies wavelet 4 (db4) [61, 63, 64]. The 
decomposition level is 3 for stroke patients to produce coefficients that are approximately 
associated with the frequency range: 1 to 35 Hz. db4 is relatively smooth which is effective 
for detecting EEG variations [64]. A linear attenuation filter is applied to either remove or 
adjust wavelet coefficients that are large according to the following threshold functions [63, 
64].

and ψB = 2ψA,

where r is the interquartile range of ω . B=0.1 is the attenuation constant (steepness) 
between 0 and 1. A higher value of β makes the ATAR algorithm more aggressive in arte-
fact removal. β=0.1, the default setting, is close to 0 which prevents loss of signal. k1 = 8 
Hz and k2 = 35 Hz are the lower and upper frequency bounds to narrow the motor-
related components, respectively [61, 63, 64]. The interquartile range of wavelet coef-
ficients, r, applied in the threshold function effectively reduce the outliers outside of r 
and retain the core features of the signal [61, 64]. The linear attenuation filter function is 
given by

where sgn (·) is the signum function. Finally, the filtered wavelet coefficients are used to 
reconstruct the signal by using the inverse wavelet transform.

The attenuation filter function, �α , involves the lower and upper bounds on the threshold 
value: k1 and k2, respectively[63, 64]. β is the attenuation constant (steepness). k1=8 Hz 
and k2=35 Hz. r is the interquartile range of wavelet coefficients[61, 63, 64]. Finally, the first 
set of the wavelet coefficients is chosen to reconstruct the signal as it is best corresponded 
with the frequency range: 1 to 40 Hz [61, 63, 64].

Data analysis

Periodograms of the stroke patients are, respectively, averaged over all epochs for each of 
the different experimental tasks and are normalised by the minimum–maximum feature 
scaling function

with respect to the tasks shown in Fig.  6: VOICE, MI after VOICE, VR+MI, and MI 
after VR, with 1 = the maximum and –  1 = the minimum. Power spectral densities 

(1)ψA(r, k1, k2) =

{

fB(r), if fB(r) ≥ k1
k1, otherwise

(2)fB(r) = k2e
B
(

100r
2k2

)

,

(3)�a(ω, r, k1, k2) =











ω, |ω| ≤ ψA

sgn (ω)ψA

�

1− |ω|−ψA
ψB−ψA

�

, ψA < |ω| ≤ ψB

0, otherwise,

(4)x′ = 2
x − xmin

xmax − xmin
− 1,
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of the preprocessed signal across frequencies is computed by Welch’s method using a 
Hamming window with zero padding to smooth the output. Simpson’s rule was used 
to calculate the band powers in the α and β bands by summing the PSD in the respec-
tive frequency range [65]. The Wilcoxon signed-rank test was used to compare different 
pairs of tasks performed by stroke patients with the associated p-values given in Table 1 
for the α and β bands. The Python MNE library is used to compute the scalp maps for 
the α and β band powers of each stroke patient [66]. The band powers are normalised 
by Eq. 4, the minimum–maximum feature scaling function, where band powers from all 
tasks shown in Fig. 6 are considered for each experiment, respectively.

The Python package: antropy is used to compute spectral entropy [67]. Spectral 
entropy utilises Shannon entropy and the signal’s power spectrum to compute the regu-
larity of the time series corresponding to the uniformity of power spectrum distribution 
as shown in Eq. 5 [31, 32, 41, 46, 68]:

where p(f) is the power spectral density; p̂(f ) is the normalised power spectral density; f0 
and fn are, respectively, the first and last frequencies of the integrated frequency range; 
the logarithmic base is 2 and the spectral entropy is in units of bits. The Python MNE 
library and Eq. 4 are applied to compute the normalised spectral entropy relative to the 
experimental tasks specified in Fig. 6 for each stroke patient.
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