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Abstract 

Background: Implantable Collamer Lens (ICL) surgery has been proven to be a safe, 
effective, and predictable method for correcting myopia and myopic astigmatism. 
However, predicting the vault and ideal ICL size remains technically challenging. 
Despite the growing use of artificial intelligence (AI) in ophthalmology, no AI stud-
ies have provided available choices of different instruments and combinations for 
further vault and size predictions. This study aimed to fill this gap and predict post-
operative vault and appropriate ICL size utilizing the comparison of numerous AI 
algorithms, stacking ensemble learning, and data from various ophthalmic devices and 
combinations.

Results: This retrospective and cross-sectional study included 1941 eyes of 1941 
patients from Zhongshan Ophthalmic Center. For both vault prediction and ICL size 
selection, the combination containing Pentacam, Sirius, and UBM demonstrated the 
best results in test sets [R2 = 0.499 (95% CI 0.470–0.528), mean absolute error = 130.655 
(95% CI 128.949–132.111), accuracy = 0.895 (95% CI 0.883–0.907), AUC = 0.928 (95% 
CI 0.916–0.941)]. Sulcus-to-sulcus (STS), a parameter from UBM, ranked among the top 
five significant contributors to both post-operative vault and optimal ICL size predic-
tion, consistently outperforming white-to-white (WTW). Moreover, dual-device com-
binations or single-device parameters could also effectively predict vault and ideal ICL 
size, and excellent ICL selection prediction was achievable using only UBM parameters.

Conclusions: Strategies based on multiple machine learning algorithms for differ-
ent ophthalmic devices and combinations are applicable for vault predicting and ICL 
sizing, potentially improving the safety of the ICL implantation. Moreover, our find-
ings emphasize the crucial role of UBM in the perioperative period of ICL surgery, as it 
provides key STS measurements that outperformed WTW measurements in predicting 
post-operative vault and optimal ICL size, highlighting its potential to enhance ICL 
implantation safety and accuracy.
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Introduction
Implantable Collamer Lens (ICL, STAAR Surgical) surgery has been proven safe, 
effective, and predictable in correcting myopia and myopic astigmatism [1, 2]. The 
proper ICL size selection provides a safe post-operative vault, the distance between 
the center of the posterior ICL surface and the center of the anterior crystalline lens 
surface. The current consensus is that the ideal ICL vault ranges from 250  µm to 
750 μm [3]. Higher and lower post-operative vaults are risk factors for angle-closure 
glaucoma and anterior subcapsular cataracts [4]. To reduce the risk of ICL post-oper-
ative complications, several researchers have proposed statistical regression methods 
to improve the accuracy of vault prediction for ICL sizing [5–8], including the NK [9] 
and KS [10] formulas. However, all these predicting formulas are based on relatively 
few variables and do not reflect practical information about the space, where the lens 
is fixed [5]. Moreover, most formulas rely on linear regression, which is used for find-
ing the linear relationship between the target and one or more predictors. Clinical 
experience suggests that predicting post-operative vault is non-linear and fairly com-
plicated [7, 8, 11]. Therefore, the pre-operative biometric variables may not exhibit a 
simple linear correlation with the post-operative vault, and linear regression has limi-
tations in explaining the relationships between measurements. Consequently, pre-
dicting the vault and ideal ICL size remains technically challenging.

Artificial intelligence (AI) has recently enabled more accurate inference and higher 
efficiency based on extensive training data for medical applications [12, 13]. Machine 
learning (ML), a subset of AI, is used to predict unknown information using algo-
rithms that learn the intrinsic statistical patterns and structures of data. Supervised 
ML algorithms, a sub-category of ML methods, could consider multiple features and 
minimize human variation for clinical decision-making [14]. Several studies have 
suggested that supervised ML methods have great potential for post-operative vault 
prediction and ideal ICL size selection [15–18]. For example, Kamiya et al. and Kang 
et al. demonstrated that ML of pre-operative biometric data obtained by anterior seg-
ment optical coherence tomography (AS-OCT) might be beneficial for predicting the 
actual ICL vault and subsequently selecting the proper ICL size [15, 16]. Yang et al. 
found that ML is applicable for vault prediction and ICL sizing based on Pentacam 
HR metrics [17]. However, these previous studies relied heavily on one specific piece 
of equipment and ignored the fact that different hospitals and clinics have different 
examination instruments and capabilities. Some ophthalmology departments do not 
have Pentacam or have more than one Scheimpflug device, such as Sirius, which com-
bines a Scheimpflug camera with a Placido disk. Whether ML of pre-operative Sirius 
biometric data would benefit ICL-related prediction remains obscure. Moreover, with 
the widespread application of high-frequency ultrasound bio-microscopy (UBM), 
directly measuring the ciliary sulcus-to-sulcus (STS) distance has become possible. 
Previous studies have demonstrated that the STS-based method predicts post-opera-
tive vault significantly better than the traditional white-to-white (WTW)-based for-
mula [7, 19]. Therefore, the predictive potential of using UBM parameters alone or in 
combination with other modal data with the aid of AI still requires further evaluation. 
Current AI studies have not yet explored the potential choices of different instru-
ments and combinations for vault and ICL size predictions.
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In light of the background mentioned above, we developed multiple predictive models 
that incorporate clinical parameters obtained from various ophthalmic devices (UBM, 
Pentacam, Sirius) and combinations to predict the post-operative ICL vault and select 
the optimal ICL size. The current study is academically and clinically meaningful, and 
it might be a critical step toward aiding various hospitals in minimizing the risk of post-
operative complications of ICL implantation.

Results
Demographic characteristics in vault prediction cohort and optimal ICL size prediction 

cohort.

Pre-operative patient demographics are summarized in Table 1. The data set included 
1941 eyes of 1941 patients (1446 females and 495 males) for post-operative vault pre-
diction. Moreover, we further screened 1287 eyes within the ideal post-operative vault 
range (vault ranges from 250  µm to 750  μm) for optimal ICL size modeling. We ran-
domly divided these eyes, allocating 80% to the training and cross-validation set and the 
remaining 20% to the test set.

Machine learning algorithms based on various ophthalmic device combinations could 

accurately predict post‑operative vault.

Most models achieved excellent performance of vault predictions, except for the 
groups that did not depend on UBM, Pentacam, and Sirius (Table  2). The CatBoost 
Regressor and Extra Trees Regressor demonstrated favorable performance in predict-
ing vault for most device combinations within our study. The combination of UBM, 
Pentacam, and Sirius outperformed single-device or dual-device combinations in our 
regression models [validation set: R2 = 0.504 (95% CI 0.480–0.527), MAE = 129.893 
(95% CI 127.758–132.046); test set: R2 = 0.499 (95% CI 0.470–0.528), MAE = 130.655 
(95% CI 128.949–132.111)], and the absence of these three devices resulted in poor 
predictions [validation set: R2 = 0.208 (95% CI 0.175–0.242), MAE = 175.310 (95% 
CI 169.631–181.099); test set: R2 = 0.210 (95% CI 0.181–0.240), MAE = 172.132 (95% 
CI 167.290–176.934)]. These results indirectly showed that the three devices had a 

Table 1 Demographic characteristics of patients regarding vault and ICL size predictions

Characteristic Post‑operative vault prediction Optimal size prediction

Eyes, n 1941 1287

Patients, n 1941 1287

Sex

 Male, n 495 (25.50%) 325 (25.25%)

 Female, n 1446 (74.50%) 962 (74.75%)

Age, years 26.32 ± 5.03 26.43 ± 5.00

Achieved ICL size

 12.1 mm (%) 372 (19.17%) 304 (23.62%)

 12.6 mm (%) 957 (49.30%) 682 (52.99%)

 13.2 mm (%) 525 (27.05%) 267 (20.75%)

 13.7 mm (%) 60 (3.09%) 20 (1.55%)

Post-operative ICL vault, μm 624.58 ± 245.69 525.28 ± 126.31
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substantial contribution to vault prediction. When only parameters from a single device 
were allowed for prediction, the stacking strategy based on Sirius achieved outstanding 
performance.

After comparing the performance of various models based on parameters from vari-
ous instrument combinations, we identified the best-performing model and applied the 
SHAP approach for a more in-depth understanding of the model’s decision-making pro-
cess. This approach enables us to uncover valuable insights into the impact of individual 
features and to improve the transparency and reliability of our model. Figure 1 displays 
the SHAP value summary chart, with the top 5 variables of each combination presented. 
The chart reveals the correlation between the high or low SHAP values and the predic-
tion model. We observed that ACD consistently ranked first, and the high values of ACD 
appeared more on the side of the higher vault in all device combinations (Fig. 1A–G). 
These results indicated that ACD’s contribution to value was the largest of all features, 
and the SHAP values of ACD were positively correlated with the post-operative vault. 
Moreover, among the combinations containing UBM, size-STS, and STS showed signifi-
cant contributions to the vault prediction (Fig. 1A, D, E, G); in the combinations without 
UBM, WTW or size-WTW played essential roles (Fig. 1B, C, F). Notably, AL consist-
ently played an important role in all device combinations’ predictive models, indicating 

Table 2 Performance of the regression models for post-operative vault prediction

cbt CatBoost regressor; et Extra trees regreessor; rf Random forest regressor; gbr Gradient boosting regressor; lgb Light 
gradient boosting machine; MAE mean absolute error; CI Confidence interval

Device (s) Top 3 
algorithms

Validation set Test set

R2 (95% CI) MAE (95% CI) R2 (95% CI) MAE (95% CI)

UBM et 0.398 (0.380 to 
0.416)

145.056 (142.161 
to 147.961)

0.400 (0.382 to 
0.418)

144.856 (141.936 to 
147.709)rf

cbt

Pentacam et 0.369 (0.352 to 
0.387)

149.026 (146.302 
to 151.788)

0.363 (0.345 to 
0.380)

149.174 (146.292 to 
152.051)cbt

rf

Sirius et 0.410 (0.392 to 
0.427)

143.577 (140.580 
to 146.573)

0.404 (0.386 to 
0.422)

144.017 (140.997 to 
147.032)cbt

rf

UBM and Pen-
tacam

et 0.450 (0.426 to 
0.475)

137.316 (134.338 
to 140.143)

0.452 (0.427 to 
0.477)

137.046 (134.078 to 
140.092)cbt

lgb

UBM and Sirius cbt 0.467 (0.439 to 
0.494)

132.698 (129.679 
to 135.779)

0.468 (0.442 to 
0.494)

132.985 (128.982 to 
136.821)et

lgb

Pentacam and 
Sirius

cbt 0.418 (0.402 to 
0.435)

141.930 (138.869 
to 145.154)

0.417 (0.400 to 
0.433)

141.890 (138.807 to 
144.869)et

lgb

UBM and Penta-
cam and Sirius

cbt 0.504 (0.480 to 
0.527)

129.893 (127.758 
to 132.046)

0.499 (0.470 to 
0.528)

130.655 (128.949 to 
132.111)et

lgb

Only other 
devices

et 0.208 (0.175 to 
0.242)

175.31 (169.631 
to 181.099)

0.210 (0.181 to 
0.240)

172.132 (167.290 to 
176.934)rf

cbt
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its relevance in vault prediction (Fig. 1A–G). Furthermore, CLR, a lens-related param-
eter from Sirius, exhibited excellent predictive importance, even ranking third among 
the parameters of all devices used.

Machine learning algorithms based on various ophthalmic device combinations perform 

well on optimal ICL size prediction

As listed in Table 3, most models achieved excellent optimal ICL size prediction perfor-
mance. The combination containing Pentacam, Sirius, and UBM achieved the highest 
ACC [validation set: 0.891 (95% CI 0.879–0.904); test set: 0.895 (95% CI 0.883–0.907)] 
and AUC [validation set: 0.926 (95% CI 0.913–0.939); test set: 0.928 (95% CI 0.916–
0.941)]. As expected, without these three devices resulted in poor predictions of whether 
ACC [validation set: 0.544 (95% CI 0.530–0.558); test set: 0.543 (95% CI 0.539–0.547)] 

Fig. 1 Top five features in best-performing models for vault prediction using data from different devices 
and combinations. SHAP summary plots for the top five features in vault prediction algorithms with data 
from different ophthalmic devices and combinations (A–G), and various devices without UBM, Pantacam, 
and Sirius (H). The higher the SHAP value for each feature, the higher risk of vault increase. SHAP Shapley 
Additive Explanations; ACD central anterior chamber depth; STS_H horizontal sulcus-to-sulcus; STS_V vertical 
sulcus-to-sulcus; ICL Implantable Collamer Lens; AL axial length; Kf flat keratometry; Ks steep keratometry; 
ACV anterior chamber volume; size-STS the difference between ICL size and STS_H; WTW  horizontal 
white-to-white; size-WTW  the difference between ICL size and WTW; CLR crystalline lens rise; SE: spherical 
equivalent; IOP intraocular pressure; UCVA uncorrected distance visual acuity
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or AUC [validation set: 0.636 (95% CI 0.627–0.646); test set: 0.634 (95% CI 0.630–
0.638)]. The UBM-only model performs best among all single-device models [validation 
set: ACC = 0.834 (95% CI 0.828–0.840), AUC = 0.905 (95% CI 0.898–0.912); test set: 
ACC = 0.837 (95% CI 0.830–0.843), AUC = 0.906 (95% CI 0.897–0.914)], and even out-
performs the combination of Pentacam and Sirius.

The weights of features of the classification models for ICL size prediction are shown 
in Fig. 2. Among the combinations containing UBM, STS_H and STS_V were the two 
most crucial features (Fig. 2A, D, E, G); and in the combinations without UBM, WTW 
played an important role in prediction (Fig. 2B, C, F). Moreover, HACD made a signifi-
cant contribution to ICL size prediction in the instrument combinations containing Sir-
ius (Fig. 2C, E–G).

Development of clinician‑friendly software to facilitate the effectiveness and safety of ICL 

surgery

To maximize the clinical potential of our machine learning algorithms for post-operative 
vault and optimal ICL size prediction, we created user-friendly software specifically tai-
lored for clinicians, without requiring an in-depth understanding of the AI algorithms. 

Table 3 Performance of the classification models for optimal ICL size prediction

et Extra trees classifier; rf Random forest classifier; lgb Light gradient boosting machine; cbt CatBoost classifier; xbt Extreme 
gradient boosting; ACC  accuracy; AUC  the area under the curve; CI confidence interval

Device (s) Top 3 
algorithms

Validation set Test set

ACC (95% CI) AUC (95% CI) ACC (95% CI) AUC (95% CI)

UBM et 0.834 (0.828 to 
0.840)

0.905 (0.898 to 
0.912)

0.837 (0.830 to 
0.843)

0.906 (0.897 to 
0.914)rf

cbt

Pentacam et 0.682 (0.667 to 
0.698)

0.803 (0.789 to 
0.817)

0.682 (0.667 to 
0.697)

0.802 (0.789 to 
0.817)lgb

rf

Sirius et 0.701 (0.689 to 
0.713)

0.809 (0.797 to 
0.823)

0.695 (0.682 to 
0.708)

0.808 (0.795 to 
0.821)cbt

lgb

UBM and Penta-
cam

et 0.851 (0.842 to 
0.859)

0.908 (0.898 to 
0.918)

0.855 (0.847 to 
0.864)

0.911 (0.901 to 
0.921)rf

cbt

UBM and Sirius lgb 0.863 (0.855 to 
0.872)

0.915 (0.903 to 
0.927)

0.862 (0.853 to 
0.870)

0.913 (0.901 to 
0.926)cbt

xbt

Pentacam and 
Sirius

et 0.728 (0.714 to 
0.742)

0.816 (0.812 to 
0.819)

0.734 (0.720 to 
0.749)

0.818 (0.814 to 
0.821)rf

cbt

UBM and Penta-
cam and Sirius

cbt 0.891 (0.879 to 
0.904)

0.926 (0.913 to 
0.939)

0.895 (0.883 to 
0.907)

0.928 (0.916 to 
0.941)rf

lgb

Only other devices et 0.544 (0.530 to 
0.558)

0.636 (0.627 to 
0.646)

0.543 (0.539 to 
0.547)

0.634 (0.630 to 
0.638)rf

cbt
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This software is designed to seamlessly integrate the predictive models into the clinical 
workflow, providing a valuable tool for ICL surgery planning.

The graphical user interface is designed with clinicians in mind, offering a streamlined 
and intuitive layout for easy data input and navigation (Fig. 3). After opening the soft-
ware, clinicians can input patient information, such as patient ID, name, gender, date of 
birth, eye, and the ophthalmic devices to be used in the prediction process. By clicking 
the “Sync Patient Data” button, the software retrieves the required data for prediction. 
Clinicians can then click the “Predict Optimal ICL Size” button to obtain the recom-
mended ICL size. In addition, users can input the planned ICL size and post-operative 
days to predict the post-operative vault at specific timepoints.

This software would amplify the real-world applicability of our algorithms. Healthcare 
professionals could make more informed decisions by incorporating various AI predic-
tive models into their decision-making process, ultimately improving patient outcomes.

Fig. 2 Top ranked features in best-performing models for ICL size prediction using data from different 
devices and combinations. Feature importance plots for the top five features in optimal ICL size prediction 
algorithms with data from different ophthalmic devices and combinations (A–G), and various devices 
without UBM, Pantacam, and Sirius (H). ICL Implantable Collamer Lens; STS_H Horizontal sulcus-to-sulcus; 
STS_V Vertical sulcus-to-sulcus; ACD Central anterior chamber depth; AL Axial length; IOP Intraocular pressure; 
WTW  Horizontal white-to-white; ACV Anterior chamber volume; Kf Flat keratometry; Ks Steep keratometry; 
HACD Horizontal anterior chamber diameter; DS Spherical refraction; DC Cylinder refraction
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Discussion
The current study utilized the comparison of multiple algorithms, stacking ensemble 
learning, and data from different ophthalmic devices and combinations to predict post-
operative vault and appropriate ICL size. Compared to other previous studies, our strat-
egies exhibited improved predictive effects in both the validation sets (stratified tenfold 
cross-validation) and the test sets, and our models showed good interpretability.

Our study achieved precise post-operative vault prediction based on features from 
three optional ophthalmic devices. ACD was the most significant factor influencing 
the post-operative vault (Fig.  1), and previously published results support these find-
ings, suggesting that myopic eyes with greater pre-operative ACD are predisposed to 
higher post-operative vaulting [20, 21]. Our findings emphasized the significance of AL 
in predicting post-operative vault, as it consistently contributed to the prediction models 
across all device combinations (Fig. 1). Therefore, AL should be taken into account when 

Fig. 3 Software interface presentation of ideal ICL selection and vault prediction. A Input fields for patient 
information and device selection. B “Sync Patient Data” button, retrieves the necessary data for prediction 
based on the input patient information and selected devices. C “Predict Optimal ICL Size” button, generates 
the recommended ICL size for the patient’s eye based on the algorithm’s prediction. D “Predict Post-operative 
Vault” button, calculates the expected post-operative vault at a specific timepoint after entering the planned 
ICL size and post-operative days
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developing vault prediction models. Our work also confirmed that size-STS, ICL size, 
and size-WTW made essential contributions to vault prediction. Lee et  al. found that 
the contribution of size-STS to the outcomes surpasses that of ICL size [22], which was 
basically consistent with our results. When using only single-device, we found that using 
the parameters of Sirius alone has the most accurate vault prediction, not UBM. We 
speculate that we only obtained limited parameters from the UBM for the accuracy of 
measurement precision, such as ACD, horizontal and vertical STS, and iris cyst-related 
metrics, which implied a lack of parameters related to pupil and cornea. Moreover, to 
improve the accuracy of prediction and the objectivity of measurement, we automati-
cally acquired lens-related parameter CLR from Sirius rather than subjectively identi-
fied and manually measured CLR from UBM. Many studies have also elucidated that 
pupil size and movement [23, 24], corneal keratometry and thickness [19, 25], and CLR 
[21, 26] were critical in vault prediction. Therefore, due to different mechanisms regulat-
ing the vault, Sirius might be more accurate in predicting post-operative vault, because 
it provided more comprehensive parameters than UBM in the current study. There are 
reasons to believe that acquiring more parameters from UBM or directly utilizing image 
data for model training might further improve the accuracy of vault prediction. Note-
worthy, Pentacam was also worse than Sirius in predicting vault. One plausible explana-
tion is that Pentacam lacks CLR, which indirectly reflects the importance of lens-related 
factors in post-operative vault prediction. For a combination of two ophthalmic devices, 
our results showed that UBM combined with Sirius has the best predictive ability. These 
results deduce that the parameters from both UBM and Sirius could fit the shape of the 
anterior chamber and the posterior chamber to a large extent; thus, this combination 
improves the predictive accuracy.

In our study, most device combinations established models with relatively good pre-
diction accuracy for determining optimal ICL size (Fig. 2), which was higher than pre-
vious studies. We found that horizontal STS was always the most crucial factor when 
using data from a single ophthalmic device or multiple devices to select ICL size, as long 
as the input data source contains UBM (Fig. 3A, D, E G). Many previous studies sup-
ported these results. For example, Reinstein et  al.[7] and Wachler et  al.[19] reported 
that the horizontal STS by UBM could provide excellent vault predictability for select-
ing the optimal ICL size, proving our results’ correctness. It is also noteworthy that the 
vertical STS ranked second to the horizontal STS in selecting the appropriate ICL size. 
Since our study removed the effect of multicollinearity, the probable explanation of the 
above results could be that horizontal and vertical STSs would jointly affect the rota-
tional stability of the implanted ICL, rather than vertical STSs being highly correlated 
with horizontal ones. Lin et al. indicated that the physiologic nystagmus of the eyeballs is 
likely to cause ICL rotation toward the direction with the larger diameter [27], and thus 
the larger the vertical STS might cause a greater likelihood of rotating the horizontally 
placed ICL and the greater the vault change. Therefore, ophthalmologists should con-
sider the size of the placed ICL with reference to the STSs in different directions. If only 
Scheimpflug tomographers are used (Pentacam, Sirius, or combination without UBM), 
WTW is the essential parameter determining ICL size selection (Fig. 2B, C, F) which 
is in line with clinical experience. Given that STS was in the top five significant contri-
butions to whether post-operative vault or optimal ICL size prediction and was always 
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better than WTW, and excellent ICL selection prediction could be achieved with only 
the parameters from UBM (Table 3), there is a need for greater attention to UBM in the 
perioperative period of ICL surgery.

In addition, our results demonstrated that in the options of using Sirius’ data (Fig. 2C, 
E–G), HACD contributed to the feature importance in ICL size prediction, indicating 
this feature could not be neglected in clinical practice. HACD is defined as the distance 
between the vertices of iridocorneal angles on the horizontal Scheimpflug image [28], 
and it is also referred to as angle-to-angle distance (ATA). Many studies confirmed that 
ATA correlates strongly with appropriate ICL size [10, 26], which partially explains why 
HACD/ATA was a critical feature in the ICL size selection models.

Despite its strengths, we also acknowledge some limitations. First, our study was based 
on a retrospective data analysis and should be confirmed through further prospective 
studies. Second, our proposed models were based on our single-center data set. We 
anticipate that larger, more diverse ICL cases with multi-center studies should be per-
formed to assess the feasibility of our method. In future studies, we will try to overcome 
the above limitations and improve prediction accuracy and generality.

Conclusions
In summary, applying the multiple supervised ML approaches to multi-modal data 
effectively predicted post-operative vault and ICL sizing. More importantly, consider-
ing equipment conditions differ among hospitals, we developed different ML models to 
suit different devices and device combinations. This study could help ophthalmologists 
in various hospitals and clinics predict vault precisely, thus enabling appropriate selec-
tion of the ICL size and improving the safety of ICL implantation.

Materials and methods
Patients

Patients who underwent routine pre-operative examinations for V4c ICL (EVO ICL, 
STAAR Surgical) surgery between September 2020 and September 2022 were included 
in this cross-sectional study. The essential inclusion criteria were as follows: no preexist-
ing ocular pathology other than refractive error, no previous ocular surgery or trauma, 
and endothelial cell density greater than or equal to 2000/mm2. Finally, 1941 eyes of 
1941 patients (mean age: 26.38 ± 5.07 years) were included in this study.

Measurements

Pre-operative routine examinations were conducted as follows: (1) uncorrected (UDVA) 
and corrected distance visual acuity (CDVA), spherical refraction (DS), cylinder refrac-
tion (DC), manifest and cycloplegic refraction, intraocular pressure (IOP), axial length 
(AL) measurement (IOLmaster 500, Carl Zeiss, Germany) were completed; (2) slit-lamp 
examination, fundus examination, endothelial cell density (CEM-530, NIDEK, Japan) 
were completed; (3) Pentacam HR (Oculus Optikerate, Carl Zeiss, Germany) was used 
for measuring horizontal white-to-white (WTW), central corneal thickness (CCT), 
central anterior chamber depth (ACD), corneal volume (CV), anterior chamber volume 
(ACV), anterior chamber angle (ACA), flat keratometry (Kf), and steep keratometry 
(Ks); (4) Sirius (Costruzione Strumenti Oftalmici, Italy) was used for measuring WTW, 
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CCT, CV, ACV, ACA, ACD, Kf, Ks, photopic/mesopic/scotopic pupil diameter (PD), 
symmetry index front and back (SIf, SIb), keratoconus vertex front and back (KVf, KVb), 
Baiocchi-Calossi-Versaci index front and back (BCVf, BCVb), horizontal anterior cham-
ber diameter (HACD), and crystalline lens rise (CLR); (5) ACD, horizontal STS diam-
eter (STS_H), vertical STS diameter (STS_V), and the number of iridociliary cysts were 
measured using ultrasound bio-microscopy (UBM) (SW-3200L, Suowei, China) by the 
same experienced technician. Three repeated measurements were made to ensure the 
quality of the image, and each scan should display the strongest reflection of the cornea, 
anterior and posterior capsule of the lens, and the widest STS distance. The radial scans 
were captured when zonular fibers and the longest ciliary process were presented simul-
taneously; (6) information on ICL, including DS of ICL, DC of ICL, type of ICL, the 
difference between ICL size and horizontal WTW (size-WTW) or horizontal STS (size-
STS) were included for vault prediction; and (7) the objective vault was measured using 
AS-OCT (RTVue XR, Optovue, the United States).

Surgical procedure

The choice of ICL size was determined through a comprehensive assessment by three 
experts, all of whom were board-certified and had an average of 5 years of experience in 
performing ICL surgery.

The ICL implants were all carried out by the same skilled surgeon, Dr. Yu KM. Prior 
to the procedure, the pupils were dilated using Mydrin-P (a combination of 0.5% tropi-
camide and 0.5% phenylephrine) from Santen in Osaka, Japan. The V4c ICL was inserted 
through a 3.0 mm temporal clear corneal incision with the aid of an injector cartridge 
from STAAR Surgical Co. in Monrovia, CA, USA. After filling the anterior chamber 
with viscoelastic, the ICL was positioned in the posterior chamber and aligned to the 
desired cylinder axis using a modified manipulator. The remaining viscoelastic was then 
removed and replaced with the balanced salt solution. Subsequently, an antibiotic solu-
tion of either Cefuroxime sodium or Vancomycin was injected into the anterior chamber.

Data preprocessing

All the samples did not contain missing values. The data were randomly divided into the 
training set and test set according to the ratio of 8:2. All programs involving the model 
training and testing stages were executed on a workstation with a 32-core NVIDIA Tesla 
V100S GPU and 2 T GB of RAM. We set up the environment with a train-test split of 
0.8 and GPU usage. Data preprocessing techniques, such as removing outliers, multicol-
linearity, and feature selection with a threshold of 0.8, were applied. More specifically, 
outliers were identified through PCA linear dimensionality reduction using the Singular 
Value Decomposition technique, and 0.025 of the values on each side of the distribu-
tion’s tail were dropped from training data; A feature was considered a low variance fea-
ture and removed from the data set if it met two crucial conditions: (count of unique 
values in a feature)/(sample size) < 10%, and (count of most common value)/(count of 
second most common value) > 20 times; When two features were highly correlated with 
each other (threshold ≥ 0.9), the feature that was less correlated with the target vari-
able was dropped; Feature selection (working with selected features instead of all the 
features) reduces the risk of over-fitting, improves accuracy, and decreases the training 
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time [29]; A subset of features was selected using various permutation importance tech-
niques, including Random Forest, Adaboost, and Linear correlation with the target vari-
able. All measurements were repeated three times by skilled physicians, and the average 
value was taken.

Model development

The research procedure is illustrated in Fig. 4. We compared 25 supervised regression 
algorithms (for vault prediction, Additional file 1: Table S1) and 18 supervised classifica-
tion models (for ICL size selection, Additional file 1: Table S1) by the PyCaret library, 
a python-based framework for automating machine learning workflows [30]. Stratified 

Fig. 4 Overall study pipeline. The workflow of predicting post-operative vault ideal ICL size using multiple 
artificial intelligence algorithms, stacking ensemble learning, and data from various ophthalmic devices and 
combinations
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tenfold cross-validation was used for metric evaluation on the training set. The top 
3-performing models were selected for further development. For each of the top three 
models, we used the tune_model() function in PyCaret to optimize their hyperparam-
eters through a random grid search within a predefined search space. The ensemble 
technique, known for improving models by combining several models, was utilized 
to enhance the model’s accuracy and reduce prediction variability. Consequently, we 
adopted a stacking ensemble strategy [31]. In this strategy, the predictions of the three 
optimized models from 9 out of 10 validations were used as input. Logistic regression 
was applied as the meta-model in the second layer for classification experiments, while 
linear regression was used for regression experiments.

Model evaluation

To quantitatively evaluate the prediction performance of the regression models for post-
operative vault prediction, we used two evaluation metrics, mean absolute error (MAE, 
the average absolute difference between the predicted values and the true values) and 
 R2-score (the proportion of variance in the dependent variable that is explained by the 
independent variables in the model). For the classification models of optimal ICL size 
prediction, we adopted two metrics to assess the performance of the stacking ensem-
ble models: accuracy (ACC, the number of correct predictions divided by the total 
number of predictions made) and the area under the curve (AUC, a performance met-
ric for binary classification problems that summarizes the model’s ability to distinguish 
between positive and negative classes). A high score of AUC indicates that the model has 
high quality in differentiating its classes.

Model interpretation

In light of the importance of model interpretability, we employed the SHAP (Shapley 
Additive Explanations) method, a game-theoretic technique for explaining the output 
of machine learning models [32]. SHAP values provide quantified contributions, intui-
tively demonstrating the effect of each feature on shifting the model output from the 
base value [33, 34].
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ACV  Anterior chamber volume
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PD  Pupil diameter
HACD  Horizontal anterior chamber diameter
CLR  Crystalline lens rise
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