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Abstract 

Blood flow and pressure calculated using the currently available methods have shown 
the potential to predict the progression of pathology, guide treatment strategies 
and help with postoperative recovery. However, the conspicuous disadvantage of 
these methods might be the time-consuming nature due to the simulation of virtual 
interventional treatment. The purpose of this study is to propose a fast novel physics-
based model, called FAST, for the prediction of blood flow and pressure. More specifi-
cally, blood flow in a vessel is discretized into a number of micro-flow elements along 
the centerline of the artery, so that when using the equation of viscous fluid motion, 
the complex blood flow in the artery is simplified into a one-dimensional (1D) steady-
state flow. We demonstrate that this method can compute the fractional flow reserve 
(FFR) derived from coronary computed tomography angiography (CCTA). 345 patients 
with 402 lesions are used to evaluate the feasibility of the FAST simulation through a 
comparison with three-dimensional (3D) computational fluid dynamics (CFD) simula-
tion. Invasive FFR is also introduced to validate the diagnostic performance of the FAST 
method as a reference standard. The performance of the FAST method is comparable 
with the 3D CFD method. Compared with invasive FFR, the accuracy, sensitivity and 
specificity of FAST is 88.6%, 83.2% and 91.3%, respectively. The AUC of  FFRFAST is 0.906. 
This demonstrates that the FAST algorithm and 3D CFD method show high consistency 
in predicting steady-state blood flow and pressure. Meanwhile, the FAST method also 
shows the potential in detecting lesion-specific ischemia.

Keywords: Coronary computed tomography angiography, Fractional flow reserve, 
Computational fluid dynamics, Physics-based fast model

Introduction
Coronary artery disease (CAD) is the dominant reason for cardiovascular disease (CVD) 
death, with a mortality rate of 43.2% [1]. Invasive coronary angiography (ICA) [2] and 
non-invasive coronary computed tomographic angiography (CCTA) [3] are commonly 
used for evaluating coronary stenosis in traditional anatomy, whereas they have limita-
tions when quantitatively assessing the myocardial ischemia caused by stenosis [4]. As 
a functional index for estimating coronary blood flow, fractional flow reserve (FFR) has 
been considered the “gold standard” for assessing coronary ischemia [5]. However, the 
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application of FFR is still relatively low since it relies on invasive and costly catheteriza-
tion that can possibly induce trauma by use of adenosine injection for hyperemia [6]. 
Due to the possibility of adoption of the computational fluid dynamics (CFD) method in 
diagnosing disease and guiding treatment options, patient-specific modeling of hemody-
namics has been getting widely discussed for its importance [7–9]. The simulation meth-
ods have the potential to predict the progression or regression of lesions and provide 
guidance of treatment in pre- or post-operation when combined with anatomical and 
functional information [10]. Considering the cost of healthcare, it would be great if this 
process could be implemented for the cardiac catheterization laboratory procedures. At 
the same time, the diagnostic results can be achieved very efficiently with a low compu-
tational cost.

In recent years, the interest in the investigation of blood flow in the human arterial 
system using reduced-order models has been growing. One-dimensional (1-D) Navier–
Stokes (NS) equations or variants of the equations were applied to solve the blood flow in 
synthetic or simplified arteries with various traditional schemes [11–13]. Since periph-
eral compliances and resistances significantly influence blood flow in arteries, patient-
specific lumped parameter networks or zero-dimensional (0-D) models were coupled 
in the boundaries of 1-D models to simulate the microcirculation [14, 15]. However, a 
relationship between pressure and area is required to close the 1-D NS equations, which 
will introduce a set of coefficients accounting for physical and mechanical characteristics 
of the vessel. These parameters depend on the particular mechanical model chosen and 
vary as the targeted vessel changes. Additionally, these investigations place more empha-
sis on the normal blood flow and pressure in a reduced system rather than on clinical 
index and hemodynamics features caused by lesions in arteries. With the increase in the 
number of CAD patients in recent years, the fast and accurate prediction of blood flow 
in the coronary artery is getting imperative.

Recently, coronary artery blood flow modeling has emerged, starting from the analyti-
cal model to the machine-learning method. Huo et al. [16] proposed an analytical model 
derived from energy conservation to calculate the energy loss along stenosis in a tube-
like model while measuring the blood flow as an input variable. Schrauwen et al. [17] 
made a pressure-drop prediction based on geometrical features about a few segments 
of coronary arteries using a plug flow velocity profile as an inlet boundary. In a subse-
quent study, Schrauwen et al. [18] proposed another method to quickly and accurately 
calculate pressure drop on the basis of a geometry and axial velocity profile assumed to 
be parabolic. They validated this method on straightened coronary arteries. However, 
for both studies, the velocity profiles on patient-specific models might be significantly 
different. Itu et al. [19] developed a patient-specific coronary flow model coupled with a 
lumped heart model and a physiological model for the microvascular bed. This reduced-
order model enabled the on-site computation of blood flow; furthermore, the applicabil-
ity of this model in FFR prediction has been validated in several investigations [20–24]. 
Instead of coupling one arterial segment directly to a terminal Windkessel, Boileau et al. 
[25] proposed an open-loop model where the systemic circulation was replaced with 
two 1D components coupled together through a lumped compartment and terminated 
with the usual peripheral three-element Windkessel model. The performance was vali-
dated using six cases with measured quantities from the published paper. In a new study 
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carried out by Boileau et al. [26], intramyocardial pressure and material properties of the 
arterial wall were considered for a reduced-order model. The performance was assessed 
on a virtual cohort of 30 coronary artery stenoses. Although some order-reduced tech-
niques simplify the sophisticated three-dimensional (3D) CFD simulation, they are still 
time-consuming. Meanwhile, the performance of a portion of models was not validated 
in patient-specific coronary arteries, or the number of validation cohorts was limited. 
More recently, Itu et al. [27] offered a machine-learning (ML) based approach to predict 
the index of myocardial ischemia. The model was trained using an extensive database of 
synthetically generated coronary anatomies, and the performance was assessed by com-
paring the predictions against the reduced-order model and against invasively meas-
ured FFR for 125 lesions. From then on, the machine-learning methods were gradually 
applied to predict the functional severity of lesions [28–30]. With these methods, the 
computation time is dramatically shortened. However, the data-driven model is usually 
questioned for the limited training datasets and lack of physical constraints. To over-
come the aforementioned shortcomings and concerns, a physics-based fast model would 
be very valuable for quickly calculating blood flow, pressure, and other useful hemody-
namic metrics in clinical practice.

In this study, a fast novel physics-based model is proposed to predict the blood flow 
and the pressure on-site, which is called FAST for convenience. This fast physics-based 
framework can be convenient for diagnosing coronary disease since the clinician can 
acquire the clinical index of concern before invasive procedures by relying on exten-
sive clinical experience in medical imaging and little professional knowledge in fluid 
mechanics. The clinical quantity calculated is FFR measured from a guide wire-based 
procedure that can accurately measure blood pressure across coronary artery stenosis. 
FFR is a time-averaged pressure drop-related parameter and is defined as the ratio of 
pressure distal to a stenosis to the pressure proximal to the stenosis. Non-invasive CCTA 
derived FFR (CT-FFR) based on 3D CFD methods has shown advantages in determining 
myocardial ischemia, guiding therapeutic strategies, and providing prognostic assess-
ment [31]. Thus, the 3D CFD-based approach FFR  (FFRCFD) is computed to validate 
the feasibility of our FAST algorithm [32]. More importantly, invasive FFR was intro-
duced to validate the diagnostic performance of the FAST method in detecting lesion-
specific ischemia as a reference standard. The framework we proposed derives from the 
basic principle of the viscous fluid flow on a 1D round pipe and can quickly predict the 
blood flow and pressure with lower hardware requirements. The physics-based fast FFR 
 (FFRFAST) is presented to assess the severity of myocardial ischemia induced by coronary 
stenosis. This method is expected to significantly reduce the calculation time and even 
to realize real-time calculation.

The paper is organized as follows. In “Results” section, we demonstrate the feasibility 
of FAST prediction against 3D CFD simulations over a quantity of patients’ data. We 
further validate the performance of FAST method with invasive FFR values among 402 
lesions. In “Discussion” section, we discuss the differences of our proposed method from 
other studies with regard to a few considerable points. In “Conclusions” section, a con-
clusion of this work is provided. In “Methods” section, we present the method of the 
physics-based fast model. We describe the patient-specific microcirculation resistance 
model and build the ideal coronary model which is used to replace the diseased artery 
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when a lesion appears in the bifurcation position, especially in the proximal portion of 
daughter vessels.

Results
Validation protocol

For each patient, a constant mean aortic pressure of 100 mmHg was applied to model 
the inlet pressure of a coronary artery at rest [33–35]. Thus, the hyperemic aortic pres-
sure that was used to estimate FFR turned to 90 mmHg. The patient-specific left ventric-
ular myocardial mass (LVMM) was used to estimate the blood flow of a coronary artery 
at rest. This blood flow was further adopted to determine the patient-specific hyperemic 
resistance at the outlet. The values of the myocardial mass and blood flow are listed in 
Table 1 statistically.

3D CFD simulation was performed for all of the included patients. Then, multiple sets 
of CFD results were used to build the correction factors of pressure loss in the FAST 
method. The convergence curves can be seen in Fig. 1. Overall, it took 361 ± 174 itera-
tions to enable the residuals of objective function to be less than 1e−6. It was found 
that the factors turned relatively stable after the number of CFD results reached 20. We 
tested the overall average pressure drop in 402 cases using seven sets of parameters, 

Table 1 LVMM quantification from CCTA 

Reported values are mean ± standard deviation for both male and female patients

LVMM (g) TCBF (L/min) LCBF (L/min) RCBF (L/min)

Male (n = 250) 139 ± 30 0.2186 ± 0.0692 0.1530 ± 0.0484 0.0656 ± 0.0218

Female (n = 95) 121 ± 31 0.1970 ± 0.0709 0.1379 ± 0.0496 0.0591 ± 0.0213

Right dominance (n = 241) 132 ± 32 0.2013 ± 0.0727 0.1227 ± 0.0424 0.0876 ± 0.0303

Left or co-dominance (n = 104) 128 ± 29 0.2055 ± 0.0675 0.1599 ± 0.0525 0.0457 ± 0.0150

Fig. 1 The convergence curves of six correction factors with the increase of CFD samples
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including CFD samples of 20, 25, 30, 35, 40, 45 and 50. The absolute errors among the 
result calculated using correction parameters with 20 CFD data and the results calcu-
lated from the other sets of parameters are all less than one percent. Furthermore, in 
order to use more data to assess the performance of the FAST method, the factors cor-
rected by 20 CFD data were adopted and given in Table 2. Among 20 data, there are 13 
results with  FFRCFD > 0.8 and 7 results with  FFRCFD ≤ 0.8.

As a result, a total of 345 patients with 402 coronary lesions were available for compar-
ative study. The mean age of the 345 patients was 61 (34–82) years and 243 (70%) were 
male. Among 402 vessels, 269 were left anterior descending (LAD) arteries, 9 were diag-
onal (D) arteries, 57 were left circumflex (LCx) arteries, 2 were obtuse marginal (OM) 
arteries, 62 were right coronary arteries (RCA) and 3 were posterior descending arteries 
(PDA). Among 402 coronary arteries, 137 vessels (34.1%) were identified as hemody-
namically significant with invasive FFR of ≤ 0.8. Patient baseline characteristics are listed 
in Table 3. The performance of the FAST algorithm was evaluated by using both CFD 
results and invasive FFR.

As is known, the drop of pressure in a coronary artery mainly arises from the size 
reduction of the luminal cross-section. Still, the contribution of the other terms is not 
distinct. In order to demonstrate the impact of each term, the contribution of each 
term to total pressure loss is counted. The stenotic region is always accompanied by the 
segments of constriction and expansion. Therefore, the pressure drops caused by con-
striction and expansion were added together to account for the effect of stenosis. The 

Table 2 Correction factors in six pressure loss terms

Correction factor C1 C2 C3 C4 C5 C6

Value 0.4544 2.5681 2.5681 0.0025 0.1169 0.9138

Table 3 Baseline characteristics of the patients (n = 345)

Values are mean ± standard deviation or n (%)

Characteristic Value

Age (yrs) 61 (34–82)

Gender M:F 250:95

Diabetes 93 (27.0%)

Hypertension 210 (60.9%)

Hyperlipidemia 126 (36.5%)

Current smoker 142 (41.2%)

Body mass index (kg/m2) 25.4 ± 3.0

Overall: 402 vessels FFR ≤ 0.8: 137 vessels

 LAD: 269 107

 LCx: 57 14

 RCA: 62 14

 D: 9 2

 OM: 2 0

 PDA: 3 0
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pressure loss at bifurcation regions was also counted. A total of 402 cases with 393,834 
points were available and were used to evaluate the contribution.

FFRCFD was evaluated at the downstream position far enough from the lesion to be 
considered irrelevant to the pressure recovery. Then,  FFRFAST was assessed at the same 
location. The diagnostic performance of  FFRFAST was estimated for all patients using 
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive 
value (NPV), and with use of the area under the receiver’s operating characteristic curve 
(AUC) with a corresponding 95% confidence interval (CI) and a 0.8 threshold in both 
 FFRCFD and invasive FFR. Continuous variables were presented as mean ± standard 
deviation, and categorical variables were presented as totals or percentages. Because all 
samples were subject to non-normal distribution after the normality test, the Spearman 
correlation coefficient was used to assess the degree of correlation. Bland–Altman sta-
tistics were adopted to evaluate the difference. The error distribution was tested using 
the Shapiro–Wilk test. A pair-sample t-test was used to test the equivalence in bias. The 
standard deviation was tested using Chi-squared test. All statistical analyses were per-
formed with the R programming language.

Pressure loss of each term

A comparison of pressure drop among five loss terms is presented in Table  4. For 
402 cases, the overall average pressure loss is 15.91 ± 65.59  mmHg. The average 
pressure loss for viscosity diffusion, cross-sectional area stenosis, vessel bifurca-
tion, vessel bending and flow convection is 2.13 ± 3.59  mmHg, 11.91 ± 20.94  mmHg, 
0.13e−4 ± 0.17e−3 mmHg, 0.04 ± 0.11 mmHg and 1.83 ± 62.38 mmHg, respectively. The 
ratio of pressure loss for five terms accounting for the overall pressure loss can be found 
in Fig. 2. The pressure drop resulting from stenosis reaches its highest, with a value of 
74.85%, including constriction loss of 38.61% and expansion loss of 36.24%. The terms 
of viscosity diffusion and convection lead to a proportional pressure loss, corresponding 
to 13.41% and 11.48%. The pressure loss caused by morphological bending continues to 
decrease, with a small ratio of 0.26%. The effect of vessel bifurcation on overall pressure 
loss is negligible since the ratio is close to zero. The pressure loss accounts for 7.15% and 
1.15% of bifurcation and bending in all local junction regions, while other pressure loss 
terms still make the most contributions to the pressure loss at those local regions.

Performance by comparison with  FFRCFD

Correlation between  FFRFAST and  FFRCFD is 0.9234 (95% CI 0.9052 to 0.9373) 
(P < 0.000001), and the slope and intercept are 0.9420 and 0.0439, respectively. The bias is 
0.0044 with a standard deviation of 0.0381 (95% limits of agreement: − 0.0703 to 0.0790) 

Table 4 The total pressure loss and pressure loss of each term

Reported values are mean and standard deviation

Type �Ptotal �Pdiffusion �Pstenosis �Pbifurcation �Pbend �Pconvection

Mean (mmHg) 15.91 2.13 11.91 0.13e−4 0.04 1.83

Standard deviation 
(mmHg)

65.59 3.59 20.94 0.17e−3 0.11 62.38
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in the Bland–Altman analysis, as shown in Fig.  3. The p-values are both < 0.001 when 
using the pair-sample t-test for bias and the Chi-squared test for standard deviation.

The performances of  FFRFAST on a per-vessel level assessment are listed in comparison 
with  FFRCFD in Table 5. The numbers of true positives, false positives, true negatives and 
false negatives are 119, 18, 250 and 15, and the diagnostic accuracy, sensitivity, specific-
ity, PPV and NPV are 91.9% (95% CI 0.886–0.942), 88.8% (95% CI 0.819–0.934), 93.3% 
(95% CI 0.894–0.959), 86.9% (95% CI 0.798–0.918) and 94.3% (95% CI 0.906–0.967). The 
AUC is 0.967 (95% CI 0.951–0.983).

Based on stratification by lesion severity [36], the lesion among (0,100) is divided 
into four buckets: very mild < 30, mild [30, 50), moderate [50, 70) and obstructive ≥ 70. 
Table  6 summarizes the performance of the FAST algorithm in each bucket. For very 
mild lesions, the number of cases is 25. The bias in this bucket is 0.0020, and the standard 

Fig. 2 The ratio of pressure loss for five terms accounting for the overall pressure loss. The pressure drop 
resulting from stenosis reaches its highest level, with a value of 74.85%. In contrast, the effect of vessel 
bifurcation on overall pressure loss is negligible since the ratio is close to zero

Fig. 3 A Scatter plot of  FFRFAST and  FFRCFD with a correlation of 0.9234 (95% CI 0.9052 to 0.9373) 
(P < 0.000001). B Bland–Altman analysis plot of  FFRFAST and  FFRCFD with a mean difference of 0.0044 (95% 
limits of agreement: − 0.0703 to 0.0790)
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deviation of error is 0.0300. For 144 mild lesions, a bias of 0.0099 and a standard devia-
tion of error of 0.0370 are observed. For 158 moderate lesions, the bias is 0.0032 with 
a standard deviation of error of 0.0382. For 75 obstructive lesions, bias and standard 
deviation of error are − 0.0032 and 0.0414, respectively. Figure 4 demonstrates the error 
properties of the  FFRFAST in different lesion severity. The overall distribution of error is 
centered close to a positive mean value of < 0.01 (Fig. 4A). The error in the range of very 
mild lesions is more concentrative than the error in other lesions, and the maximum 
error of FFR in this range is 0.06 (Fig. 4C). The errors show the normal distribution in 
both very mild and obstructive lesions (P > 0.05).

Furthermore, according to the therapeutic strategies guided by the FFR value, the 
value from 0 to 1 was partitioned into five ranges. Figure 5A shows the performance 
of the FAST method in different ranges, in which the number of  FFRFAST occurrences 
was counted and the error bar was given. The mean error and the standard deviation 
are the smallest in the range of [0.85, 1], with a corresponding value of − 0.0028 and 
0.0324 but with the largest number of cases of 209. The mean error and the stand-
ard deviation are the highest in the smallest [0, 0.7) range, with values of 0.0245 and 
0.0477, respectively. The smallest number of cases is 31 in the range of [0.7, 0.75), 
with a bias of 0.0119 and a standard deviation of 0.0425. In the range of [0.75, 0.8), 
bias is 0.0060 and standard deviation of error is 0.0405, with a case number of 53. 
In the range of [0.8, 0.85), bias is 0.0093 and standard deviation of error is 0.0387, 
with a number of cases of 67. Figure 5B illustrates the discrete distribution proper-
ties of error in various scopes. The distribution of  FFRFAST in the range of [0, 0.7) 

Table 5 Performance of  FFRFAST in patients on a per-vessel level in comparison with  FFRCFD (n = 402)

FFRFAST ≤ 0.80 95% CI

True positive, no. 119 –

False positive, no. 18 –

True negative, no. 250 –

False negative, no. 15 –

Accuracy (%) 91.9 (88.6, 94.2)

Sensitivity (%) 88.8 (81.9, 93.4)

Specificity (%) 93.3 (89.4, 95.9)

PPV (%) 86.9 (79.8, 91.8)

NPV (%) 94.3 (90.6, 96.7)

Table 6 Performance of the proposed method categorized by lesion severity

Bias, standard deviation and 95% confidence intervals are reported along with the sample size

Lesion severity Sample size Bias Standard 
deviation

95% CI

Very mild 25 0.0020 0.0300 (− 0.0568, 0.0608)

Mild 144 0.0099 0.0370 (− 0.0625, 0.0824)

Moderate 158 0.0032 0.0382 (− 0.0716, 0.0781)

Obstructive 75 − 0.0032 0.0414 (− 0.0844, 0.0780)

Overall 402 0.0044 0.0381 (− 0.0703, 0.0790)



Page 9 of 28Hu et al. BioMedical Engineering OnLine           (2023) 22:56  

appears with the maximum errors with the value of 0.15. It demonstrates that the 
FAST algorithm has a relatively large disparity in FFR prediction compared to the 3D 
CFD method. Error distribution shows a normal distribution in the ranges of [0, 0.7), 
[0.7, 0.75) and [0.75, 0.8). Outliers can be observed in the range of ≥ 0.75.

Generally, it takes around 3  min from imaging loading to FFR results for a single 
patient in the FAST algorithm. Specifically, it takes around 1.5 min to reconstruct the 
coronary artery model; for coronary artery discretization, it normally takes less than 
1 min; for left ventricular myocardial mass calculation, it takes about 0.5 min; for the 
final step of calculating pressure distribution, which is the key step of the FAST algo-
rithm, it statistically takes 2.79 ± 2.76 s based on all test cases. In contrast, only the 

Fig. 4 Illustration of error properties between  FFRFAST and  FFRCFD in different lesion severity groups. A The 
overall distribution of error. B Shows error distribution in different ranges. C to F Show the frequency of error 
in range of very mild < 30, mild [30, 50), moderate [50, 70) and obstructive ≥ 70, respectively

Fig. 5 Illustration of error properties between  FFRFAST and  FFRCFD in different ranges of FFR values. A The 
number of  FFRFAST cases in different ranges and their error intervals. The errors of FFR are 0.0245 ± 0.0477, 
0.0119 ± 0.0425, 0.0060 ± 0.0405, 0.0093 ± 0.0387 and − 0.0028 ± 0.0324 in different ranges of [0, 0.7), [0.7, 
0.75), [0.75, 0.8), [0.8, 0.85), and [0.85, 1], respectively. B Error distribution in different ranges
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computing time of the 3D CFD simulation is at least 1 h, considering computational 
time with four Inter (R) Xecon(R) CPU E3-1240 v5 processors for calculating blood 
flow and pressure.

Validation against invasive data

In order to demonstrate the effectiveness in clinical practice, the FAST method was also 
validated using invasive FFR among 402 lesions, as shown in Table 7. The numbers of 
true positives, false positives, true negatives and false negatives are 114, 23, 242 and 23, 
respectively. The diagnostic accuracy, sensitivity, specificity, PPV and NPV are 88.6% 
(95% CI 0.849–0.914), 83.2% (95% CI 0.757–0.888), 91.3% (95% CI 0.871–0.943), 83.2% 
(95% CI 0.757–0.888) and 91.3% (95% CI 0.871–0.943). The AUC is 0.906 (95% CI 0.875–
0.936). Similarly, the AUC of  FFRCFD is 0.920. As we can see from AUC, the performance 
of  FFRFAST is comparable to that of  FFRCFD (P < 0.000001). Figure 6 displays a representa-
tive example of  FFRFAST results compared to invasive FFR for a 60-year-old man with 
multivessel CAD. Two mild lesions were found in the LAD artery, and one moderate 
lesion was discovered in the D1 artery. In the LCx artery, a long serial lesion can be seen 
in the middle section. Three invasive FFR values were acquired behind the stenosis. 
If the value of invasive FFR is less than 0.8, it will be defined as significant ischemia. 
 FFRFAST shows non-significant ischemia, with a computed value of 0.83 in the LAD. ICA 
also demonstrates non-significant ischemia in LAD, with a measured FFR value of 0.84. 
 FFRFAST indicates significant ischemia with a computed value of 0.79 in the D1, but the 
ICA shows non-significant ischemia with a measured FFR value of 0.82. Both  FFRFAST 
and ICA demonstrate significant ischemia, with a computed value of 0.73 and a meas-
ured FFR value of 0.75, respectively. The corresponding values of invasive FFR,  FFRFAST 
and  FFRCFD can be found in Table 8.

Discussion
The current study proposed a novel physics-based pressure drop approach combined 
with a microvascular resistance model for identifying the patient-specific hemodynam-
ics information on site and in nearly real time. The total pressure loss along the coronary 
artery was estimated to be a linear combination of the pressure loss caused by viscos-
ity diffusion, minor loss, and flow convection at each coronary artery part. Although a 

Table 7 Performance of  FFRFAST in patients on a per-vessel level against invasive FFR (n = 402)

FFRFAST ≤ 0.80 FFRCFD ≤ 0.80 P value

True positive, no. 114 114 –

False positive, no. 23 20 –

True negative, no. 242 245 –

False negative, no. 23 23 –

Accuracy (%) 88.6 [84.9, 91.4] 89.3 [85.8, 92.1] 0.60

Sensitivity (%) 83.2 [75.7, 88.8] 83.2 [75.7, 88.8] 1.00

Specificity (%) 91.3 [87.1, 94.3] 92.5 [88.4, 95.2] 0.49

PPV (%) 83.2 [75.7, 88.8] 85.1 [77.6, 90.4] 0.50

NPV (%) 91.3 [87.1, 94.3] 91.4 [87.2, 94.4] 0.94
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slight systematic bias of  FFRFAST can be seen from the Bland–Altman analysis,  FFRFAST 
shows decent consistency with  FFRCFD. It demonstrates that the FAST algorithm shows 
greater accuracy compared to the 3D CFD method. More importantly, it illustrates 
that the performance of the FAST algorithm is nearly equivalent to that of the 3D CFD 
method in predicting hemodynamically significant information. The performance of the 
FAST method was further validated by dividing the lesion severity into four intervals. 
The smallest bias can be observed in the very mild interval.  FFRFAST appeared to under-
estimate  FFRCFD in very mild to moderate lesions, while it overestimated that in obstruc-
tive lesions to a large extent. Furthermore, performance of the FAST algorithm was also 
verified in different ranges of FFR values. The maximum bias was observed in a range 
of [0, 0.7). The previous work also showed the same phenomena [37]. This might result 
from the limited sample size in this particular region. Besides, the diagnostic perfor-
mance of  FFRFAST in detecting lesion-specific ischemia was validated using invasive FFR 
as a reference standard. This work demonstrates the applicability of  FFRFAST for evaluat-
ing myocardial ischemia in a clinic. Meanwhile, this work straightforwardly illustrates 

Fig. 6 A Multiplanar reformat of CCTA demonstrates obstructive stenosis (red arrow) in the proximal portion 
of the D1 artery (a) and the middle portion of the LAD artery (b); computed  FFRFAST points to the distal of 
LAD and D1 (c); ICA and measured FFR in both LAD and D1 (d). B Multiplanar reformat of CCTA demonstrates 
obstructive stenosis (red arrow) in the middle portion of the LCx artery (a); computed  FFRFAST points to the 
distal of LCx (b); ICA and measured FFR (c)

Table 8 A representative comparison of values obtained with  FFRFAST,  FFRCFD and invasive FFR

FFR FAST algorithm 3D CFD method Clinical 
measurement

LAD 0.84 0.83 0.84

D1 0.79 0.81 0.82

LCX 0.73 0.74 0.75
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that the FAST algorithm is comparable to that of the 3D CFD method in predicting 
hemodynamically significant information.

CCTA-based reduced-order algorithm and ML algorithm have also been applied to 
assess the functional significance of coronary ischemia in previous studies. With the use 
of reduced-order algorithm, the trials have shown an increase in accuracy from 74.6 to 
83.9%, sensitivity from 77.8 to 87.5%, specificity from 59.3 to 86.8% and AUC from 0.83 
to 0.88 in determining the hemodynamic significance of coronary stenosis [20, 22, 38]. 
For ML algorithm, diagnostic performance gradually has an improvement in accuracy 
from 82.0 to 91.8%, sensitivity from 61.0 to 97.6%, specificity from 76.7 to 94.0% and 
AUC from 0.86 to 0.96 [28–30, 39]. However, the sensitivity and specificity cannot show 
great results simultaneously in all researches. All of the aforementioned statistics were 
acquired on a per-vessel basis. Indeed, sensitivity and specificity discussion are always 
difficult in the presence of a referral bias where only patients undergoing the invasive 
measurement were included. The bias might increase false negative representation. 
However, this is a retrospective and analytical study. We have taken into consideration 
the referral bias in the design stage of our study. On a per-vessel level, our findings show 
a comparable result using  FFRFAST with accuracy of 88.6%, sensitivity of 83.2%, specific-
ity of 91.3% and AUC of 0.906. This demonstrates that  FFRFAST is reliable and feasible as 
a promising tool for detecting lesion-specific ischemia.

The coronary artery model for 3D CFD computation can be obtained after the coro-
nary artery was modeled and processed in the FAST algorithm, but this process is only a 
small part of the calculation for the 3D CFD method. More importantly, the luminal sur-
face needs to be modified, and the mesh has to be generated before 3D CFD computa-
tion, which is time-consuming. Normally, the computation time for the 3D CFD method 
takes hours, which depends mainly on the number of processors. The approximate time 
taken to execute the FAST algorithm was much less with lower hardware requirements, 
which is almost a real-time process for FFR computation. It means that our FAST algo-
rithm for blood flow prediction is potentially well-suited for a clinical setting since it can 
reduce the cost and improve the efficiency of clinical diagnoses at the same time. This 
technique has started a trial for clinical application in multiple centers in China.

The FAST algorithm for blood flow prediction was built based on a few key points. 
The first key point was that the physics-based fast model was derived from the differ-
ential equation of 1D viscous fluid motion. Six pressure loss terms, four terms related 
to morphological structure and two terms related to flow, were considered to depict the 
blood flow in a coronary artery. The coronary artery in this work was represented by 
the centerline which was composed of the successive micro-flow elements expressed by 
points and stored 3D coronary geometric information. As a result, the pressure drop 
was computed on each point through the superposition of pressure loss caused by 
each term. The total pressure drop was an integration of all the pressure loss of small 
short pipes along the centerline of the coronary arteries. Analogous with the method 
proposed in our method, an analytical model [16] was proposed for FFR computation 
derived from the conservation of energy, which considered various energy losses along 
the length of a factitious stenosis, namely the convective and diffusive energy losses as 
well as energy loss due to sudden constriction and expansion in the lumen area. This 
approach is similar to the present work; however, there are still some great differences. 
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Firstly, the coronary artery tree is divided into many small vessel segments along the 
centerlines in FAST, and the pressure-loss model is applied to each vessel segment in 
the current work. The analytical model was validated by constructing constrictions in 
isolated arteries in vitro experiments and coronary arteries of eight swine in vivo experi-
ments. Secondly, more factors causing pressure loss are considered in our approach, 
which is believed to be more sophisticated in estimating the pressure drop. Although 
the pressure drops caused by vessel bifurcation and bending are slight compared to total 
pressure loss, their contribution cannot be neglected for pressure loss in local regions. 
For example, the ratios of pressure loss are 7.15% and 1.15% for bifurcation and bend-
ing, respectively, when blood flows through the junction area mentioned in this paper. 
Thirdly, a boundary condition of microvascular resistance is applied to optimize pres-
sure as a whole. It means that the present method can meet the patient-specific bound-
ary conditions of the coronary artery. However, the analytical model needs to measure 
the flow velocity or give an empirical flow value. At last, the weighting coefficients of the 
FAST method are optimized from the dataset of high-fidelity 3D CFD results, which is 
more practicable for the computation of blood flow than the empirical coefficients used 
in the analytical model. In another work, the artery was modeled as a combination of 
tapered, stenosed, and curved models [17]. A formally uniform second-order polyno-
mial of mean velocity with different fitting parameters was applied to characterize the 
pressure drops in each model. The total pressure drops were obtained by adding three 
independent pressure drops together. This method needed to provide mean velocity 
at the inlet of a coronary as a boundary condition as well. Then, an empirical formula 
acquired from previous studies was applied as the basic expression of pressure drop. The 
total pressure was then estimated through algebraic solving under a uniform boundary 
condition. In contrast, we expressed the pressure drop in a coronary artery based on the 
basic principle of the 1D viscous fluid flow. The pressure drop was predicted iteratively 
with patient-specific boundary conditions. Similarly, a zero-dimensional model was put 
forward [40] for the pressure drop across the stenosis, considering its geometric charac-
teristics and flow rate. The results of this study showed similarities with 3D CFD simula-
tion results, but the pressure drop caused only by stenosis and curvature was estimated 
by introducing the empirical relation and ML method. Our results demonstrate that the 
convection loss also dramatically impacts the pressure drop in the total coronary artery 
tree. Apart from occurring in the stenosis region, the convection loss could be triggered 
in the areas of bifurcation and bending. In addition, stenosis with irregular shapes might 
emerge in a coronary artery at any place [26]. For stenosis appearing at the bifurcation 
area, we indicate that the total pressure drop will be more accurate if the loss of bifurca-
tion, loss of convection, and loss of bending caused by bifurcation could be taken into 
consideration.

Additionally, a patient-specific resistance boundary was applied to model the micro-
circulation of a coronary artery. A hyperemic aortic pressure was used as the inlet 
boundary condition of a coronary artery during estimation of FFR. According to Mur-
ray’s law in this paper, the total coronary blood flow was estimated while at rest based on 
LVMM and distributed to the branches. These two baseline coronary flow determination 
methods have been extensively used [41, 42]. Although different methods have different 
impacts on FFR prediction, none of the proposed methods in the study of Müller et al. 
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resulted in a significant improvement of prediction error standard deviation [34]. In par-
ticular, the total volume of blood flow in left and right coronary arteries in this study was 
initially distributed based on the ratios of left and right coronary blood flow accounting 
for the total coronary blood flow. These two proportions were estimated from the meas-
ured coronary blood flow volume of a large sample of patients [43]. Despite the ratios 
being not patient-specific, they are critical for addressing the distribution of blood flow 
in left and right coronary arteries when the mathematical relationship between vessel 
size and flow rate, such as Murray’s law, is apparently not suitable for this circumstance. 
Therefore, they were applied to split the total coronary blood flow into both left and 
right coronary arteries in this work. In particular, the proportions affect the flow dis-
tribution at each coronary outlet while at rest and further have an influence on micro-
circulation resistance. The previous study showed that the hyperemic factor was the 
most influential parameter for FFR prediction [44], but the study result obtained by Wil-
son et  al. had been widely adopted to estimate the distal resistance reduction of each 
artery [45]. In the algorithm, therefore, coronary blood flow at each outlet was initially 
computed, and then patient-specific resistance at hyperemia was acquired at the cor-
responding outlet of the coronary artery. Furthermore, the flow was distributed at each 
bifurcation based on the root diameter of daughter vessels in this paper. Previous similar 
research utilized the average diameter computed over vessel nodes that were not marked 
as belonging to stenoses or bifurcation areas to split the flow at bifurcations [34, 46]. 
However, the diameters might be underestimated entirely if long stenosis had happened 
in an entire branch. In this case, hyperemic resistance at the outlet could be further mis-
led since resistance was estimated from the flow of the outlet. Therefore, to model the 
appropriate boundary condition, an ideal vessel was also built to split the blood flow. The 
lesion occurrence could be anywhere in a coronary artery. The original stenotic vessel 
should be replaced by an ideal vessel to get a more reasonable distribution of flow if the 
stenosis appears in the proximal position of daughter vessels. For constructing the ideal 
vessel, two practical situations were considered. For a daughter vessel, the ideal diameter 
was first derived from its original diameter profile. The constructed ideal vessel might 
not be veritable because of the diversity of morphology and the difference caused by the 
ratio of lesion length to vessel length. On the other hand, the size of the daughter vessel 
is subject to the father vessel as well. Therefore, the ideal diameter was further optimized 
according to its father vessel. The ideal geometry can also be used to simulate the situ-
ation after a virtual percutaneous coronary intervention (PCI) procedure [37]. The ste-
nosis can be located and identified based on the ideal diameter and original diameter. By 
replacing the diameter of the lesion position using the ideal one, the FAST method can 
provide an optional method to assess the blood flow condition before the interventional 
cardiologist performs the invasive procedure.

Regarding data-driven optimization of the algorithm, the ML-based model [27] is a 
net data-driven approach for predicting FFR as an alternative to the physics-based 
approach. This approach uses geometric features alone to estimate FFR without explic-
itly solving the hemodynamic equations. In order to train this model, a large synthetic 
database is generated using a reduced-order CFD model for quickly calculating the flow 
and pressure distribution for each coronary tree. In the FAST method, we also use 3D 
CFD results to optimize the weighting coefficients. This is a data-driven step taken to 



Page 15 of 28Hu et al. BioMedical Engineering OnLine           (2023) 22:56  

improve the accuracy and flexibility of our physics-based model. Different from the ML-
based model, the FAST method needs a limited dataset for optimizing solutions. This 
database can be generated using a high-accuracy 3D CFD simulation. Thus, compared 
to the ML-based model, our FAST method introduces the physical information and con-
straints about coronary arteries to build the computational model and only needs a lim-
ited dataset to solve the unknown parameters simultaneously, which is more practicable 
and reproducible. Consequently, 20 CFD data were finally applied to solve the six free 
parameters in the FAST algorithm used in our approach. Despite a large number of CFD 
data that could be applied to regress those parameters, the correction parameters started 
to converge when the number of CFD samples reached 20. This phenomenon dem-
onstrated that the physics-based model had a small dependency on the 3D CFD data. 
Admittedly, the parameters still have a small variation with the increase of the number 
of CFD samples, but the variation barely affects pressure estimation. These parameters 
were solved by the Trust-region-reflective (or other optimization algorithms) until they 
were converged to stable values. Then, the rest of the 345 CT data were used to validate 
this model. The great agreement among  FFRFAST,  FFRCFD and invasive FFR shows that 
the FAST framework has good clinical applicability.

In the other aspects of the FAST method, the study showed that laminar flow was a 
reasonably good pattern for coronary blood flow. Meanwhile, CT-FFR estimated by the 
laminar flow model was closer to its invasive FFR [47]. Therefore, the laminar friction 
coefficient was chosen in this study. In addition, the steady-state simulation was fulfilled 
in the current study. The computation method cannot fully simulate the pulsatile coro-
nary hemodynamics. However, invasive FFR gives a constant value computed as a ratio 
of the mean distal intracoronary pressure to the mean aortic pressure at the stage of the 
maximal hyperemia. Therefore, clinically practicable CT-based FFR normally follows the 
strategy of using steady approximation, which has been proved acceptable on its accu-
racy [46, 48]. This process can dramatically reduce the computation time. Consequently, 
the FAST method may provide a great convenience for FFR estimation in a real-time 
clinic. The previous study showed that the impact of prescribed inlet pressure, including 
pressure measured non-invasively, pressure acquired during invasive FFR measurement, 
and a fixed value of 100 mmHg, on FFR prediction frameworks is of little importance 
[34]. In the other two studies regarding the virtual functional assessment of coronary 
stenosis, a mean aortic pressure of 100  mmHg was also imposed at the inlet of coro-
nary artery for CFD calculations [33, 35]. As a result, both virtual hemodynamic assess-
ment models showed high diagnostic performance in detecting lesion-specific ischemia 
using invasive FFR as a reference standard. All studies illustrate that the statistical per-
formance of  FFRFAST might not be changed in this paper even if patient-specific pressure 
was used. Therefore, a constant mean aortic pressure of 100  mmHg was used in this 
paper. Nevertheless, the patient-specific mean aortic pressure is recommended for the 
clinical setting to get more accurate results for a single patient in the future study.

One of the main limitations of this work is that the equivalent diameter in the cen-
terline was applied to model the 3D coronary artery. The equivalent diameter cannot 
characterize the irregular configurations very well, especially the structure pattern in 
the stenotic region. It means that the pressure loss caused by these irregular shapes is 
neglected in FAST algorithm at present. In addition, a constant pressure loss coefficient 
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of bifurcation is applied to the whole coronary tree. It will be more reasonable if the 
bifurcation-specific pressure loss coefficient can be used. Therefore, future work will 
focus on further optimizing the FAST algorithm to make it comparable with the 3D CFD 
method. Overall, according to the performance of the FAST algorithm compared with 
the traditional 3D CFD method and invasive FFR measurements, the usage of the fast 
novel physics-based model for the computation of FFR has achieved the purpose of tak-
ing the study further and to a larger extent.

Conclusions
This work provides an alternative method to compute the blood flow of a coronary 
artery on site and almost in real time. The hemodynamic indexes we can obtain through 
this FAST framework include blood flow rate, pressure and FFR, which can offer a cri-
terion for disease diagnosis and guide the treatment strategy. In addition to prognosis, 
the future work we can do is to simulate the hemodynamics after PCI or coronary artery 
bypass graft (CABG) using the FAST framework, which is helpful for a clinician when 
making therapeutic schedules and monitoring the postoperative recovery state. More 
importantly, the method we developed is suitable for predicting blood flow in the coro-
nary artery and can be easily applied to other vascular systems with a large aspect ratio 
to model the patient-specific blood flow and predict the hemodynamic metrics.

Methods
The morphological model of a coronary artery is reconstructed to simulate the blood 
flow using medical imaging data. The NS equations are used for 3D blood flow simula-
tions to obtain the hemodynamic parameters, such as blood flow and pressure [9]. The 
equation of viscous fluid motion is applied to acquire the appropriate parameters for fast 
prediction of blood flow [49]. In this study, both 3D CFD blood flow simulation and the 
FAST prediction employ a pure microvascular resistance boundary condition for its cal-
culations. More detailed information can be discovered in the following sub-sections.

Study population

This is a retrospective and analytical study. Patients who had undergone both CCTA and 
invasive FFR measurements are included in this study. The retrospective analytical study 
protocol is approved by the Institutional Review Board (or Ethics Committee) of the Jin-
ling hospital, and the requirement for written informed consent is waived. The identi-
fication of patients has been made anonymous. CCTA is performed using CT scanner 
platform (SOMATOM Definition Flash/Force and Definition AS+, Siemens Health-
ineers, Forchheim, Germany) with ≥ 64 detector rows. All CT images are reconstructed 
with a slice thickness of 0.6–0.75 mm and an increment of 0.5 mm. The major inclusion 
criteria were: (1) at least one stenosis in a major coronary artery with ≥ 2.0 mm diam-
eter; (2) no occlusion in major coronary arteries; (3) no prior coronary stenting in major 
coronary arteries; (4) no prior CABG surgery in major coronary arteries; (5) no > 30% 
stenosis in left main coronary artery; (6) no serious image artifact in CCTA. A total of 
365 patients are included in this study.
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Morphological model

CCTA images are processed using an in-house image processing algorithm. The main 
steps for the determination of the coronary artery are as follows:

• According to the first grey threshold, two seed points of the left and right coro-
nary arteries are determined;

• Using a region growing algorithm, the ascending aorta and coronary artery tree 
comprised by a points cloud are segmented from CCTA images [50];

• The points cloud is corroded and inflated in sequence to detach the aorta from the 
integral model and to get the coronary artery model;

• Luminal surface of the coronary artery is generated and pre-processed as an 
input for CFD calculation. The centerline of the coronary artery is automatically 
extracted using the centerline extraction algorithm for the computation of the 
FAST algorithm [51]. In particular, the centerline is composed of discrete points 
which contain spatial coordinates and several coronary morphological informa-
tion, such as diameter, cross-sectional area, curvature radius, etc. A bifurcation 
area is represented by one point connecting the parent and daughter points.

Principle of pressure loss

Viscous fluid flow follows the differential equation of viscous fluid motion. If the flow 
is only subject to gravity and has an incompressible and steady-state flow, the dif-
ferential equation can be integrated into Eq. 1 to depict the hydraulic loss in the flow 
direction of a 1D round pipe [49]:

where i = 1, 2 represent two different cross-sections along a segment of the pipe, U1 and 
U2 are flow velocity, P1 and P2 are pressure, Z1 and Z2 are the position head, which is 
considered equal in a horizontal pipe, ρ is the fluid density, g is the acceleration of grav-
ity, �hL is hydraulic loss.

In addition to the Moody-type friction loss hl along the pipe, flow in a pipe also 
includes the local loss variable hm caused by the change of pipe shape, disturbance 
of flow velocity and direction, etc. Generally, hl is expressed by the Darcy–Weisbach 
equation for a pipe with a uniform flow:

where �P is pressure loss, U is average velocity, � is the friction coefficient along the 
pipe, l is the length of the pipe and d is the equivalent diameter of the pipe. For laminar 
flow, �=64
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where ς is the local loss coefficient. Based on the superposition principle of hydraulic 
loss, each loss term is considered separate without interference. Therefore, the total 
pressure loss as fluid flows through a pipe can be written as:

where the right-side terms represent the pressure loss caused by viscosity diffusion, 
minor loss, and flow convection, respectively.

Physics‑based fast model

For the fast blood flow model, the key is to accurately estimate the pressure drop along the 
centerline of coronary arteries. In the present study, a long artery is supposed to comprise a 
number of successive discrete points. Two adjacent points are regarded as the start and end 
of one vessel part, which resembles a short pipe. In other words, the entire coronary artery 
tree consists of many consecutive short pipes. The length of the pipe is around 0.3 mm, 
which is the distance between two pixel points. Therefore, the total pressure loss, �P , is an 
integration of all the pressure loss, �Pi , of the small short pipes along the centerline of the 
coronary arteries, and the subscript i indicates the index of small short pipes. The pressure 
at the jth point of the centerline Pj is expressed as:

where P0 is the pressure at the inlet of the coronary artery. In fluid mechanics, the 
pressure loss along the pipe can be estimated as a linear combination of the pres-
sure loss caused by viscosity diffusion ( �Pi,diffusion ), cross-sectional area constric-
tion ( �Pi,constriction ), cross-sectional area expansion ( �Pi,expansion ), vessel bending 
( �Pi,bend ) and flow convection ( �Pi,convection ). For bifurcation areas, except for account-
ing for the pressure loss similar to that along the pipe, loss caused by vessel bifurcation 
( �Pi,bifurcation ) is introduced to sub-branches represented by separate pipes. A schematic 
description of six different pressure losses is shown in Fig. 7.

Therefore, the �Pi of a short pipe cell can be written as:

The empirical formulas of the right-hand terms in Eq. (6) are given in Eqs. (7) to (12):
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The parameters li , di and Ui , respectively represent the length, average diam-
eter, and mean velocity of the ith local vessel segment, Ui,outlet and Ui,inlet are the 
outlet and inlet mean velocities at the ith vessel segment, ρ is the density of blood, 
the parameters �i , ς2i , ς3i , ς4i and ς5i are the standard pressure loss coefficients, and 
{C1,C2,C3,C4,C5,C6} are the correction factors of pressure drop. The pressure loss 
coefficient �i is relative to the local Reynolds number. ς2i , ς3i , ς4i and ς5i relate to the 
geometric parameters (Table 9) [52]. Although the formulas are similar among differ-
ent works, the coefficients in the equations are slightly different [49, 52, 53]. In this 
work, we modified the coefficients of some equations based on our tests.
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Fig. 7 Illustration of six different types of flow patterns which are extracted from a 3D coronary model and 
applied in a coronary centerline for the computation of blood flow. Four flow patterns are in connection with 
geometric structure, and the other two occur as blood flows. d represents the diameter of vessel, A represents 
the cross-sectional area, and P is the pressure. In particular, θb is defined as the amount of change in the angle 
of directional vector of centerline. θc and θe are, respectively, representing the changing degrees of the vessel 
diameter with constriction and expansion, which is determined by the diameters of two adjacent points and 
the distance between them
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Patient‑specific microcirculation

The circulation of a coronary artery consists of an epicardial coronary artery, pre-arte-
riolar vessel and arteriolar vessel. Normally, the coronary artery that can be observed 
through CCTA includes epicardial coronary arteries and a fraction of pre-arteriolar 
vessels. The majority of microcirculation vessels are covered by the myocardium. The 
reconstructed vessel seen in vitro by imaging data includes only the epicardial coronary 
arteries as well. The boundary condition is essential for numerical simulation; therefore, 
a lumped parameter network (Windkessel boundary condition) is generally used for 
modeling the flow–pressure relationship in the microvasculature of the coronary system 
[9, 54].

Because FFR is computed as a ratio of the mean distal intracoronary pressure to the 
mean aortic pressure at steady-state maximal hyperemia [2, 55, 56], pressure drop of 
blood flow through a coronary artery can be estimated at a steady state for both 3D CFD 
simulation and FAST prediction [57]. Therefore, the pressure at the inlet of the coro-
nary artery could be set to a mean aortic pressure measured by the coronary catheter or 
estimated from the brachial arterial pressure of the patient. In general, pressure at the 
ostium in a coronary artery is considered to be equal to the aortic pressure. However, 
the pressure at the inlet of a coronary artery is reduced during hyperemia [45, 58, 59]. In 
our work, therefore, we account for this effect during FFR estimation in the algorithm, 
namely

where Pa,h is the aortic pressure at hyperemia, Pa,r is the aortic pressure at rest, and ω is a 
hyperemic reduction parameter and set to be 0.9.

A patient-specific microvascular resistance model is adopted to characterize the pres-
sure of the outlets at hyperemia. The pressure at the outlets Pk ,h is modeled as:

(13)Pa,h = ωPa,r,

(14)Pk ,h = Qk ,hRk ,h + Pv,

Table 9 The detailed formulas for different kinds of pressure loss
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where Qk ,h and Rk ,h are the flow and microvascular resistance related to the kth coronary 
branch at a hyperemic state and Pv is the distal pressure of coronary microcirculation 
(central venous pressure). The critical step of the outlet boundary condition is how to get 
patient-specific Rk ,h at each outlet of the coronary artery.

According to allometric scaling laws, total coronary blood flow is proportional to left 
ventricular myocardial mass under resting conditions [60]. Therefore, total coronary blood 
flow was first estimated based on left ventricular myocardial mass. Then the proportions of 
left and right coronary blood flow accounting for the total coronary blood flow under dif-
ferent coronary artery dominances were used to straightforwardly distribute the total blood 
flow to the left and right coronary arteries [43]. The mathematical relationship between 
flow rate and vessel diameter can be expressed by Q ∝ d3 under certain conditions, such as 
constant wall shear stress and homeostatic level, based on Murray’s law [61], where Q is the 
flow rate through a blood vessel at a resting state and d is its diameter. This flow–diameter 
relationship can also be comprehended by Poiseuille’s law. Blood flows from the coronary 
entrance to the downstream arteries, and the distribution of blood flow for each vessel fol-
lows the rule (see Eq. 15) when it flows through bifurcation:

where p represents the attribute of the parent vessel, s represents the number of sub-
branches, and n is an integral number. For daughter vessels, d is the healthy diameter 
extracted from the first point in the centerline of the branch. Blood flow in all coronary 
branches can be distributed in this way while at rest.

Under resting conditions, blood flow is forced through each branch into the myocardium 
and reaches the right atrium by veins following the relationship:

where �P′
k ,r is the pressure difference between the distal of the epicardial conductive 

coronary artery and central vein, and Rk ,r is myocardial microcirculation resistance at 
rest. The pressure difference is formulated as:

where Pa,r is the mean aortic pressure at rest and Pv is set to 6.5 mmHg [62].
When the pressure difference and the blood flow in all coronary branches are identified, 

the resistance at rest can be determined based on Eq. 14. Wilson et al. [45] showed that cor-
onary resistance at maximum hyperemia is reduced by 0.24 of the resting value. Therefore, 
patient-specific Rk ,h at hyperemia can be formulated by

Ideal model for a diseased artery

A lumped parameter network as a sophisticated model is applied to simulate the 
blood vascular system. The procedures used to get the reasonable value of parameters 

(15)Qpn = Qp

d3pn
s
∑

n=1

d3pn

(s ≥ 2),

(16)�P′
k ,r = Qk ,r · Rk ,r,

(17)�P′
k ,r = Pa,r − Pv,

(18)Rk ,h = 0.24Rk ,r.
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using this model, like the boundary resistance in our paper, is crucial for the predic-
tion of hemodynamic parameters. In general, Murray’s law is used to depict the rela-
tionship between vessel size and blood flow. However, the flow allocation could lead 
to error if the reduction of the diameter occurs in the initial position of the daughter 
vessels [63]. One of the highlights of our work is building an ideal geometry (healthy 
profile) of a coronary artery to replace the diseased segment that appeared in the 
proximal region of the daughter vessels to model the rational resistance boundary 
condition for both 3D CFD simulation and the FAST prediction.

There are many paths for a coronary tree to have, from the ostium to the ends. One 
individual route comprised a few segments partitioned by the bifurcation. Different 
vessel segments in different paths are labeled in the algorithm. Taking a coronary tree 
as an example, the ideal shape of each independent path is built. The ideal diameter 
profile dideal,j is initially obtained by linearly fitting the original diameter profile dorig,j 
using the least square method. Subsequently, the final ideal model is optimized glob-
ally through a nonlinear programming approach. In general, the diameter size in the 
current branch is subject to its parent branch, which is neither larger than the size of 
its parent branch nor smaller than that of its sub-branches. For each coronary artery 
segment, additionally, the diameter of the ideal model is regarded as monotonically 
non-increasing from the beginning to the end position [37]. Therefore, these two con-
straints (Eqs. 21 and 22) are introduced to correct the current branch diameter.

Overall, the ideal diameter should be closest to and not less than the original diam-
eter profile. Therefore, the ideal diameter in one path of the coronary artery tree is 
automatically constructed using a minimum objective function and formulated math-
ematically as:

such that

where αj is a coefficient, χj−1,j and χj,j+1 are slopes of the diameter profile for each vessel 
segment. Consequently, the ideal diameter for one path can be found when αj is opti-
mized. The ideal diameter in each track can be obtained by traversing all paths using this 
optimization algorithm. For a vessel segment that appeared in multiple courses, the larg-
est diameters among all are applied to determine the final ideal size.

Based on the original diameter and the ideal diameter, the stenosis rate Sj can be 
computed. The original diameter will be replaced using a repaired diameter during 
flow distribution when stenosis ( Sj ≥ β , a threshold β can be set to 5%) is detected in 
the first point of daughter vessels. Figure 8 displays a hybrid model superimposed by 
the ideal model, the patient model and the diameter profile of corresponding models.

(19)min f
(

αj
)

=
∑

j

√

αj · dideal,j − dorig,j ,

(20)αj > 0,

(21)αjdideal,j > αj+1dideal,j+1,

(22)χj−1,j = χj,j+1, if j − 1 to j + 1 belong to an individual segment,
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3D CFD model

Using the open‐source library snappyHexMesh, a 3D mesh representing the coronary 
artery tree is generated with millions of vertices and elements as the computing model. 
For 353 left coronary arteries, the average number of mesh elements is 1.46 ± 0.37 mil-
lion. The average number is 0.89 ± 0.23 million for 69 right coronary arteries. Patient-
specific boundary conditions are coupled on the boundary of the 3D model as well. 
The vessel wall is assumed to be rigid with a no-slip boundary condition. Blood in the 
coronary artery is considered an incompressible Newtonian fluid, and flow is assumed 
laminar. Blood flow is numerically simulated by solving the Navier–Stokes equations in 
a steady state using the open-source library OpenFOAM v18.04. Navier–Stokes equa-
tions are discretized by the finite volume method (FVM) and numerically solved by the 
‘SIMPLE’ method in an iterative manner. The second-order implicit method is used to 
discretize the formulation. Among the 3D CFD results, a small part (5% of total) is used 
to correct pressure loss, and a large proportion (95% of total) is applied for assessing the 
performance of the FAST algorithm.

Overall modeling and solving

The overall modeling and solving process is illustrated in Fig.  9. 3D CFD blood flow 
simulations and FAST predictions share a pure microvascular resistance boundary con-
dition used for calculations in this work. The core of our FAST framework includes cen-
terline extraction of the coronary artery, boundary condition modeling, and application 
of the physical-based fast model to the centerline. The last step before the establishment 
of the FAST algorithm is to compute the correction factors {C1,C2,C3,C4,C5,C6} . These 
factors are modeled by solving an optimization problem according to 3D CFD simula-
tion results, which implies that the CFD-based hemodynamic data are used to decide the 
overdetermined physical constraints to close the modeling by optimizing the parameters 
{C1,C2,C3,C4,C5,C6} . After extracting the parameters of li , di , Ui , Ui,outlet , Ui,inlet , �i , ςi 
and Pi at each point of the centerline from CFD-based results, a Trust-region-reflective 
algorithm [64] is used to solve the unknown variables {C1,C2,C3,C4,C5,C6} . A group 
of CFD results is randomly selected from them to determine correction factors of pres-
sure loss in the FAST algorithm. The correction factors do not change during iterative 
computation after being determined. The Levenberg–Marquardt algorithm [65] is used 

Fig. 8 (Left) A partial vessel with a long lesion (solid) and ideal lumen (transparent), which are involved with 
the father vessel (0) and one of the daughter vessels (1). (Right) The corresponding diseased diameter (green) 
and ideal diameter (dashed red)
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to address the flow of each branch by satisfying the boundary conditions during calcula-
tion, as shown in Fig. 10. The detailed process is as follows:

• Use a constant value (1e−6  m3/s) to initialize the branch flow Qk;
• Use Eqs. (5) to (12) to calculate the pressure at each point of the coronary tree;
• Use Eq. (14) to calculate the residual of the boundary conditions;

Fig. 9 A flowchart representing the steps involved in building a FAST framework. First, a luminal surface 
model and the centerline of the coronary artery are extracted from the CCTA for the 3D CFD simulation and 
FAST prediction of blood flow, respectively. Then, an ideal model is constructed to model the appropriate 
boundary condition. After the 3D CFD calculation is finished, a small part of the result is used for the 
optimization of correction factors. Next, the FAST method is established by applying the physics-based fast 
model to the centerline of the coronary artery, combining the boundary condition and corrected factors. 
Finally, the FAST framework (red frame) can be used to predict hemodynamics by inputting CCTA 

Fig. 10 An optimization algorithm flow diagram showing the steps to solve the flow of each branch
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• Use the Levenberg–Marquardt algorithm to update the branch flow Qk and mini-
mize the residual;

• Repeat steps 2–4 until the residual is less than the given threshold.

After the calculation is converged, the blood flow and pressure can be acquired at 
each point of the coronary centerline. Subsequently, the other quantities can be derived 
according to the solved blood flow and pressure as well, such as FFR.
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