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Abstract 

Open-globe injury is a common cause of blindness clinically caused by blunt trauma, 
sharp injury, or shock waves, characterised by rupture of the cornea or sclera and 
exposure of eye contents to the environment. It causes catastrophic damage to the 
globe, resulting in severe visual impairment and psychological trauma to the patient. 
Depending on the structure of the globe, the biomechanics causing ocular rupture can 
vary, and trauma to different parts of the globe can cause varying degrees of eye injury. 
The weak parts or parts of the eyeball in contact with foreign bodies rupture when 
biomechanics, such as external force, unit area impact energy, corneoscleral stress, and 
intraocular pressure exceed a certain value. Studying the biomechanics of open-globe 
injury and its influencing factors can provide a reference for eye-contact operations 
and the design of eye-protection devices. This review summarises the biomechanics of 
open-globe injury and the relevant factors.
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Background
Ocular trauma is the leading cause of monocular blindness worldwide [1], with more 
than 55 million cases reported each year, of which 1.6 million result in loss of vision. 
Approximately 200,000 ocular trauma cases are open-globe injury (OGI) [2]. OGI 
include penetrating ocular injuries, perforating ocular injuries, ocular rupture, and 
intraocular foreign bodies [3] and can cause severe damage to intraocular tissue and 
vision. In China, OGI was most commonly found in people aged 47.8 ± 14.1, with more 
male patients than female [4, 5]. In the elderly, falls are the main cause of open-globe 
injuries [6, 7]. In young people, over one-third of all OGI were found to be work related, 
and 89.1%, of these patients had not worn adequate eye protection [8]. In addition, 
children are at high risk for eye injuries. According to previous reports, eye injuries in 
children occur from 6  months to 14.9  years of age and are more common in boys [9, 
10]. The family home is the most common scene of these accidents, and most injuries 
are caused by sharp tools such as knives. Worldwide, penetrating trauma is the most 
common form of OGI in children, accounting for 48.4–83% of all OGI, followed by eye-
ball rupture at 9.9–34% [11]. Research has shown that the vast majority of eye injuries, 
whether in adults or children, are preventable [12–14]. Therefore, particular attention 
should be paid to the prevention of eye injuries in occupations prone to ocular trauma 
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such as farming, and in children [8, 15, 16]. Studying the biomechanics of OGI and its 
influencing factors can provide information useful for the evaluation of OGI risk and for 
prevention.

Search strategy
A systematic literature search was conducted in January 2023. We searched PuMed, 
Web of Science (WOS) and Chinese National Knowledge Infrastructure (CNKI) with 
a hierarchical search strategy by using the following Medical Subject Heading (MeSH) 
terms and text words: "eye injuries, penetrating", "globe rupture", "ocular rupture", "open 
globe injuries", "stress, mechanical", "biomechanical phenomena", "physical stimulation", 
"intraocular pressure" and "rupture/etiology", without limit of date, language and article 
type restriction. Next, we delete duplicate references in the search results and search 
for all references to obtain the full text. Finally, two authors screened the literatures that 
meets the requirements by reading the article title and abstract. The inclusion criteria of 
this review including: (1) the full text of the literatures can be obtained; (2) the literatures 
should be related to open-globe injuries; and (3) the literatures should focus on the bio-
mechanical parameters or numerical simulations of eye injuries.

Ocular structure
The eyeball is composed of a wall and intraocular tissue. The eyeball wall comprises the 
cornea, sclera, choroid, and retina. The intraocular tissues include the aqueous humour, 
iris, crystalline lens, zonular fibres, and vitreum. Compared with the choroid and retina, 
the cornea and sclera play a more important role in maintaining eyeball wall stability 
[17, 18]. Therefore, in studies of OGI, the eyeball wall is described as corneoscleral. The 
thickest parts of the eyeball wall are located at the optic nerve outlet and the corneal 
limbus, with a thickness of approximately 1000  μm. Conversely, the thinnest portion 
is located at the attachment of the rectus muscles, having a thickness of approximately 
300 μm [19, 20]. During blunt trauma, the weaker parts of the eyeball such as the attach-
ment of the extraocular muscles, the corneoscleral limbus, and the equatorial part of 
the eyeball, can rupture due to rapidly increasing intraocular pressure (IOP). Penetrating 
injuries to the eyeball are usually caused by sharp foreign bodies piercing or puncturing 
the eyeball wall, and the wound is usually located at the point of contact between the 
foreign body and the eyeball. These wounds can be divided into penetrating injuries of 
the cornea, corneosclera, and sclera, and usually involve greater damage to the anterior 
segment [21]. In addition to the influence of eyeball structure, the risk and location of 
OGI are also related to certain biomechanical effects.

Biomechanics
Force and unit area impact energy

Threshold force to penetrate the eyeball

Although the cornea and sclera are both part of the eyeball wall, the forces required to 
penetrate them differ. Lovald [21] applied pressure to the central cornea of 36 human 
cadaver eyes at a speed of 1 or 5 mm/s using flat-headed probes of different diameters to 
measure the force required to penetrate the cornea. The force required positively corre-
lated with the probe diameter. The force was 30.5 ± 5.5 N using a 1-mm-diameter probe, 
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40.5 ± 8.3 N using 1.5 mm, and 58.2 ± 14.5 N using 2 mm. However, the rupture of eye-
ball is independent of the speed of the probe. The forces of penetration through different 
regions of the sclera differ because of different wall rigidities. Rigidity is the ability of a 
material to resist deformation; the greater the rigidity, the greater the ability to resist 
deformations caused by external forces. Fan [22] used a 1-mm flat-headed probe to exert 
pressure on porcine scleras at a speed of 1 mm/min. The force required to penetrate the 
sclera differed between areas, being 35.26 ± 4.72 N at the anterior sclera, 30.71 ± 3.91 N 
at the equatorial sclera, and 26.14 ± 3.28 N at the posterior sclera. This result is consist-
ent with the variations in the rigidity of the different parts of the sclera. For example, the 
rigidity of the anterior sclera was greatest at 0.91 ± 0.21 MPa, that of the equatorial sclera 
less at 0.6 ± 0.16 MPa, and that of the posterior sclera least at 0.39 ± 0.13 MPa (Fig. 1). In 
addition to stiffness, the force required for a foreign object to penetrate the eyeball wall 
is closely related to its sharpness and inversely to its diameter. When the contact area 
between the foreign object and eyeball decreases, the force required to pierce the eye-
ball wall also decreases. Compared with Fan’s results, Park [23] significantly reduced the 
minimum sclera-penetrating force by replacing the flat-head probe with a slanted-head 
probe; the force required for puncturing the porcine anterior sclera using a 1.1-mm-
diameter scleral puncture needle was found to be only 1.25 N. In human scleras, the 
penetration force of the same diameter of needle was significantly less than in the por-
cine eye. Matthews [24] used an 18G oblique needle with a diameter of approximately 
1.21 mm to pierce each area of the human eye in vitro. The forces required were 0.75 
N at the limbus, 0.95 N at the front of the sclera, 0.7 N at the equator of the sclera, and 
1 N at the posterior pole of the sclera. The reason for the lower forces may be that in 
the human eye, the thickness of the sclera is less, being approximately half that of its 
porcine counterpart [25]. The data in Table 1 reflect the force required to puncture the 
sclera at a distance of 3 mm from the corneal margin using puncture needles of various 
diameters. From this it can be seen that foreign objects with smaller diameters can pen-
etrate the eyeball wall more effectively and require less force. However, the force meas-
ured using needles of the same diameter to pierce the same experimental eye fluctuate 

Fig. 1 The rigidity and penetrating force of different parts of Scleral
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within a certain range. Park [23] used 27G and 30G puncture needles to pierce the por-
cine eye and measured greater forces than did Christensen [26]. The reasons for this 
may include age differences in the experimental animals, whether the experimental eye 
had been frozen, and human factors. For example, Park [23] used porcine eyes that were 
detached for 7 h but Christensen [26] used porcine eyes that were detached for less than 
3 days. In addition, these investigators used regularly shaped puncture needles; however, 
the morphology of the wounds seen clinically in sharp-instrument open-eye injuries is 
mostly irregular. Therefore, further experiments are required to simulate realistic injury 
environments. Finally, the use of animal eyes is prevalent in the literature owing to the 
scarcity of human eye donors, which is another limitation. Nonetheless, we expect that 
the data in Table 1 can provide a reference for constructing eye-injury prediction models 
and conducting eye-injury simulation experiments.

Effect of force and unit area impact energy on the eyeball

In addition to penetrating injury to the eyeball, ocular rupture caused by blunt impact is 
also very common. Many patients suffer from ocular injury or even blindness owing to 
the impact of bombs, air gun projectiles, or metal objects [28]. Kennedy [29] impacted 
the FOCUS head mould (Facial and Ocular Countermeasure Safety head form) with a 
4.5-mm BB projectile to determine the risk standard for ocular rupture. These research-
ers found that the force causing a 50% risk of ocular rupture was 107 N. In addition to 
force, the degree of eye injury was positively correlated with the energy of the impac-
tors. Sponsel [30] impacted porcine eyeballs with polyethylene glycol-filled gelatin cap-
sules (’paintballs’) having 2–13.5 J (J) of energy and found that the pathological changes 
increased with increasing energy. Two joules of energy caused lens dislocation and cho-
roidal detachment, 4 J caused anterior dislocation of the lens, 7 J caused the iris and cili-
ary body root to tear, and 10 J caused eyeball rupture. However, in addition to regularly 
shaped objects such as paintballs and BBs, clinicians encounter injuries due to many 
types of irregular impactors, including wooden sticks, fists, and blunt metal objects [31]. 
The geometries and masses of these impactors vary significantly. Therefore, the unit area 
impact energy (E/a) has been proposed as a predictor of eye injury. E/a is the ratio of 

Table 1 The force required for puncturing the sclera 3.5–4 mm from the limbus of cornea with 
different diameters

Study Eyeball Needle Diameter Force (N)

Park et al. [23] Porcine 27G 0.40 1.30 ± 0.30

30G 0.30 0.90 ± 0.30

33G 0.20 0.75 ± 0.21

Christensen et al. [26] Porcine 19G 1.10 1.25

25G 0.50 0.89

27G 0.40 0.91

30G 0.30 0.45

32G 0.23 0.44

Pulido et al. [27] Human eye 27G 0.40 0.61

30G 0.30 0.23

31G 0,25 0.29

Matthews et al. [24] Human eye 18G 1.20 0.95
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the energy of the impactor to the impact area. Researchers believe that the E/a value 
can predict the degree of eye injury and tissue lesions more accurately than can the 
energy of the impactor alone and is the best predictor of eye injuries [32]. Research has 
shown that the E/a values of a 50% risk of corneal contusion, lens dislocation, hyphema, 
retinal injury, and ocular rupture are 1503 J/m2, 19,194 J/m2, 20,188 J/m2, 30,351 J/m2, 
and 23,771 J/m2, respectively, indicating that the degree of eye injury increases with an 
increase in E/a [30]. To measure the E/a value of ocular rupture, Kennedy [33] impacted 
porcine and human eyeballs with objects such as BBs, aluminium rods, foam, and base-
balls. They found that human and porcine eyeballs had a 50% risk of rupture at impact 
kinetic E/a values of 35,519  J/m2 and 71,145  J/m2, respectively, indicating that the E/a 
required for porcine ocular rupture was approximately twice that of human eyes. The 
structural differences between porcine and human eyes resulted in differences in the 
parameters of eye trauma. Because of the scarcity of human eye donors, these differ-
ences should be considered when using porcine data to perform numerical simulation 
tests of eye injuries in humans. Marshall [34] impacted a porcine eye with metal and 
plastic marbles of different diameters, and calculated that the E/a threshold of corneal 
rupture was approximately 45,500 J/m2. As the best factor for predicting eye injury, we 
hope that the E/a value in Table 2 can provide a reference for clinicians to judge the risk 
of eye injury and help predict the risk of eye injury by consumer products.

Rupture stress

Stress refers to the interaction forces between various parts of an object when 
deformed by an external force. In the absence of stress, the collagen fibres of the 
eyeball wall appear curled under an electron microscope [35]. When the eyeball is 
impacted by a blunt object, the IOP increases rapidly and the eyeball wall expands 
towards the equator or the front and rear poles. During this process, the curled col-
lagen fibres gradually straighten and the stress on the eyeball wall increases. The rup-
ture stress refers to the maximum stress that a material can withstand. If the stress 
exceeds this value, the material is destroyed. When the eyeball is injured, the stress 
gradually increases, reaches its ultimate limit, and rupture ensues. Table  3 lists the 
ultimate stresses acting on eyeball walls. Presently, in vitro simulation experiments on 
eye injuries mainly depend on eyeball models and animal eyes. Data on the ultimate 

Table 2 The energy required for causing different types of eye damage

Study Method Eyeball Result

Sponsel et al. [30] Eyeball impacting Porcine Lens dislocation and choroidal detachment (2 J), 
anterior lens dislocation (4 J), iris and ciliary body 
root detachment (7 J), eyeball rupture (10 J)

Porcine 50% risk of eye injury: corneal contusion (1503 J/
m2), lens dislocation (19,194 J/m2), hyphema 
(20,188 J/m2), retinal injury (30,351 J/m2), eye 
rupture (23,771 J/m2)

Kennedy et al. [33] Human eyeball 50% risk of injury Ocular rupture (35,519 J/
m2)

Porcine Ocular rupture (71,145 J/
m2)

Marshall et al. [34] Porcine Corneal rupture (45,500 J/m2)
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stress of eyeball wall rupture can help experimenters select suitable model materials 
and design numerical eyeball models. These models will permit biomechanical eye 
experiments to be performed in simulation to obtain more realistic and reliable data.

IOP

IOP refers to the pressure produced by the contents of the eyeball on the eyeball wall. 
Its stability depends on the balance between eyeball content and eyeball volume. 
The normal IOP is 10–21  mmHg. When the eyeball is impacted, its volume is rap-
idly compressed, leading to a sharp increase in the IOP. When the pressure exceeds 
a certain range, the eyeball ruptures. The most common rupture position in tests is 
close to the equator of the sclera because the impact position is usually the centre 
of the eyeball, and the eyeball, thus, expands towards the equator of the sclera and 
the posterior pole of the eye [39]. The IOP of ocular rupture is usually measured by 
intraocular compression. These data are shown in Table 4. It can be seen that the rup-
ture IOP increases with the rate of increase of the IOP, indicating that the threshold 
IOP of rupture is not only related to the structure of the eyeball itself, but also to the 
force and speed of the impactor. The greater the force and speed, the faster the vol-
ume of the eyeball changes and the higher the IOP of the ocular rupture. Bispinghoff 
[40] applied 36.5  MPa/s of pressure to the inner part of the eyeball to simulate the 
severe impacts sustained by the eyeball during traffic accidents and movement. The 
IOP at ocular rupture did not change significantly with a sharp increase in the com-
pression rate, indicating that the IOP at rupture only increased with an increase in 
the compression rate within a certain range. The IOP of ocular rupture can not only 
be used by clinicians to determine the safety and effectiveness of surgery, but can also 
be used to predict the risk of eyeball rupture or to verify a laboratory eyeball model. 
For example, when the rate of IOP rise is 0.02 ± 0.01 MPa/s, the risk function predicts 
that the eyeball has a 50% risk of rupture when the IOP is 0.35 MPa. When the rate 
of IOP rise is 2.77 ± 0.58 MPa/s, the eyeball has a 50% risk of rupture when the IOP 
is 0.90 MPa [39]. However, it should be noted that the pressure of eyeball rupture is 
related to species. Table 4 shows that the static and dynamic rupture pressures of the 
porcine eye are higher than those of the human eye, which should be borne in mind 
when conducting human-relevant experiments or clinical modelling.

Table 3 Rupture stress required for ocular rupture

Study Method Eyeball Rupture stress (MPa)

Bisplinghoff et al. [36] Intraocular compression Human eyeball Corneal 13.89

Takahashi et al. [37] Eyeball impact Human eyeball 
model

Corneal 9.45

Sclera 9.49

Stitzel et al. [38] Eyeball impact VT-WFU eyeball 
model

23
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Factors affecting the biomechanics of ocular rupture
Impact location

Several types of clinical eye injuries can occur, both indirect and direct. When the eye-
ball is directly injured, the location determines whether the impacting object causes an 
ocular rupture. Research has shown that if an impact on the central cornea causes rup-
ture, the same impact on a deviated position may not [21]. The explanation may be that 
when the central cornea is impacted, the eyeball can only expand towards the equator 
and posterior pole of the eyeball, and the eye axis is extremely compressed. However, 
when the impact site deviates from the central cornea, the eyeball expands towards the 
equator and both anterior and posterior poles. The degree of eyeball compression is 
therefore low, and the possibility of eyeball rupture is reduced under these conditions.

Indirect ocular injury is caused by the shock wave of a craniocerebral trauma being 
transmitted to the eyeball. Research has shown that when the head is impacted, the fron-
tal bone transmits most of the kinetic energy to the eyeball, accounting for 86.8% of the 
total kinetic energy of the impactor, followed by the eyebrow (73.3%), temporal bone 
(62.3%), and zygomatic bones (40%) [42]. The energy delivered to the eyeball by the fron-
tal bone is more than twice that of the zygomatic bone, suggesting that the possibility of 
ocular rupture is greater when the frontal bone is the impact site in head trauma [43].

Eye structure

Reportedly, with each year of age of the eye donor, the force threshold for corneal pen-
etration decreases by 0.42 N [21]. This may be caused by a gradual hardening of the cor-
nea, reductions in compliance, and a weakening of mechanical-stress buffering effects 
with advancing age. However, corneal stress-bearing capacity is also related to the 
eyeball diameter. Each 1-mm increase in the diameter of the eyeball reduces the force 
threshold for corneal rupture by 3.39 N [21]. This may be because the larger the diam-
eter of the cornea, the smaller the thickness of the central and peripheral areas [44]. In 
addition to physiological and structural changes, pathological changes such as myopia 
and corneal refractive surgery affect the stress-bearing capacity of the eye. The axis of 
the eye is a hypothetical line from the centre of the cornea to the optic nerve and fovea 
of the retina. The length of the eye axis gradually increases as myopia progresses. Taka-
hashi [37] studied the degree of damage to eyeballs with different axial lengths caused by 
BBs of different speeds and found that impact at a speed of 60 or 75 m/s on the eyeball 

Table 4 Ruptured IOP of eyeball

Study Method Eyeball Pressurization 
rate (MPa/s)

Ruptured 
IOP (MPa)

Kennedy et al. [39] Intraocular compression Human eyeball 2.77 ± 0.58 0.91 ± 0.29

0.02 ± 0.01 0.36 ± 0.20

Porcine 2.77 ± 0.58 1.64 ± 0.32

0.02 ± 0.01 1.00 ± 0.18

Bisplinghoff et al. [40] Intraocular compression Human eyeball 36.50 ± 15.35 0.97 ± 0.29

Burnstein et al. [41] Intraocular compression Human eyeball 0.006 0.46 ± 0.12

porcine 0.53 ± 0.10
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may cause corneal tears. The longer the axial length, the greater is the deformability of 
the eyeball and thus the volume compression, suggesting that the risk of eyeball rupture 
is positively correlated with the severity of myopia. Uchio [45] studied the biomechan-
ics of eyeball rupture caused by the high-speed impact of airbags after corneal refractive 
surgery and found that, compared with normal eyes, the bearing capacity of the oper-
ated eye was significantly reduced, and the risk of intraocular structural damage caused 
by the blunt contusion of an airbag was greater than that of normal eyes. The reason for 
the decrease in corneal endurance after corneal refractive surgery may be that eyeball 
strength after radiation keratotomy is significantly reduced, and the force that causes 
rupture of the operated eye is only 50–70% of that of a normal eye [46]. Finally, habitual 
rubbing of the eyes is a risk factor for keratoconus, a pathological state of the cornea 
[47]. Reportedly, long-term eye rubbing can cause the cornea to become thinner and 
reduce its stiffness, which may ultimately lead to a decrease in the ability of the cornea to 
resist external forces, resulting smaller forces to cause corneal rupture [48].

Eye appendages

The accessory organs of the eye, including the eyelid, conjunctiva, lacrimal apparatus, 
extraocular muscles, and orbit, support and protect the eye. When the eyeball is stim-
ulated by trauma or a foreign body, the orbicularis oculi muscle contracts instantly to 
close the eyelids and prevent injury [49]. Research has shown that the most common 
site of periocular tissue tears in open-eye trauma is the eyelid, and more commonly the 
upper eyelid [50]. Of eye trauma cases, 44% were associated with eyelid injuries [51]. In 
addition, six extraocular muscles are attached around the eyeball: the upper, lower, inner, 
and outer rectus muscles, as well as the upper and lower oblique muscles. The eyeball 
rotates to different directions depending on the contraction and relaxation of different 
extraocular muscles. The eyeball wall is thinnest at the attachments of these muscles. 
Some researchers have studied the protective effect of the extraocular muscles against 
eyeball injury and found no difference in the degree of injury when the extraocular 
muscles are removed or retained [52], indicating that the protective effect of extraocu-
lar muscles in eye injury is small. The orbit is the supporting structure of an eyeball. It 
has been reported that the smaller the horizontal diameter of the orbital opening, the 
more the eyebrow arch protrudes, the less the eye protrudes, and the more the eye is 
protected [53], indicating that when the eye is traumatized, the possibility of an object 
directly impacting the eyeball to cause eyeball rupture is reduced. However, research has 
shown that the larger the scope of the orbit around the eyeball, the greater is its ability to 
inhibit the propagation of shock waves to the eye, leading to a greater protective effect 
[54].

Injury type

The causes of ocular trauma can be various. Compared to eye-contact injury type, the 
non-contact eye injury is also common, such as blast wave. Patients with ocular trauma 
caused by blast waves are common in clinical practice [55]. Military operations and holi-
day celebrations are common injurious scenes [56, 57]. Blast wave is characteristic of 
high conduction velocity and pressure-rise speed. The IOP rapidly increases dramatically 
and may exceed the threshold of the IOP of ocular rupture when the eye contacts the 
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blast wave. Alireza [58] used the VT-WFU eyeball model and different weights of IED 
(improvised explosive devices) to simulate the damage of blast wave. Results shown that 
the higher the IED, the faster the increase in IOP. IOP elevation of 2900 and 2700 mmHg 
were observed after the blast for the IEDS weight of 2 kg and a victim distance of 2 m in 
front and side blasts, respectively. The rate of IOP increase is the fastest when the weight 
of the IED is 2  kg and 2  m away from the eyeball. And the stress of explosives in all 
directions is concentrated on the temporal sclera behind the equator of the eyeball. The 
reason may be that the temporal sclera lacks protection from the orbital bone compared 
to the nasal side. In addition, compared to IED placed off the ground, the blast waves 
caused by IED placed on the ground cause greater damage to the eyeball [59]. Because 
the blast wave generated by the IED on the ground will rebound through the ground 
[60], the rebound and enhanced shock wave will further increase the stress and strain of 
the sclera and increase the risk of eyeball rupture.

In addition to ocular rupture caused by ocular trauma, iatrogenic ocular rupture 
has also been reported, which should be prevented [61]. For example, the anesthetic is 
accidentally injected into the eyeball during retrobulbar anesthesia, resulting in ocular 
rupture caused by rapidly increased IOP. Bullock [62] simulated this condition by inject-
ing physiological saline into rabbits’ eye. The results showed that the rupture spot of 
the rabbit eyes was located at the corneal limbus, sclera, and posterior pole. Besides, 
the anterior segment was normal in four of five of ruptured rabbit eyes in accordance 
with previous clinical cases. The required IOP for ocular rupture caused by accidental 
intraocular injection is between 2800 and 6400  mmHg, and it is easier to achieve the 
level using a 3 ml syringe than a 10 ml [63]. Therefore, it is necessary to measure the 
IOP for ocular rupture, which can also help prevent iatrogenic ocular rupture, such as 
using relatively large volume syringe, massaging the eyes during anesthesia, and manu-
ally evaluating IOP.

Innovation points
Rupture of the eyeball is one of the most critical diseases in ophthalmology and often 
occurs in high-activity scenarios such as sports, military exercises, and car accidents. 
Rupture of the eyeball is a common cause of visual impairment, causing a serious eco-
nomic burden to society and patients, as well as serious psychological problems for the 
patient. Biomechanics is an important aspect of open-eye injury, and many researchers 
have studied some of the eye’s biomechanical parameters; however, no relevant litera-
ture review has appeared to date. Therefore, this article considers the biomechanics of 
eye rupture as a starting point to analyse and summarise a series of parameters required 
to cause open-eye trauma, such as force, standardised energy, intraocular pressure, 
and stress, and analyses the factors that affect these parameters, such as the site of eye 
trauma, eye structure, eye accessory organs, iatrogenic parameters, and eye diseases.

Summary
Quantifying the biomechanical conditions of eyeball rupture has significant clinical and 
societal value. First, these parameters can provide intuitive data for clinical physicians 
and can be used to: (1) analyse the relationship between the biomechanical conditions 
of eye injury and the degree of injury to provide a reference for formulating standards 
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for eye injury; (2) provide a reference for the force exerted by instruments on the ocu-
lar surface during eye surgery (such as external scleral pressure and scleral puncture) 
to avoid iatrogenic damage. Second, common toy guns, slingshots, and other consumer 
products are prone to causing eye damage owing to excessive firing energy. The biome-
chanical parameters of eye rupture can also provide a reference for designing the diam-
eter, weight, initial velocity, and energy of the projectiles fired by toy guns, as well as for 
designing eye protection. However, owing to the scarcity of donated human eyeballs and 
the limiting factors of the age of the eyeball donor, the diameter of the eyeball, the thick-
ness of the eyeball wall, a history of eye surgery, and the experimental eye having been 
frozen, shortcomings in the study of human eye-related parameters remain. It is hoped 
that in the future, researchers building on the present foundation will be able to continu-
ously improve the experimental parameters, measure more accurate and reliable data, 
and provide high-quality and valuable guidelines for preventing eye-rupture injuries.
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