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Abstract 

Background: Since myocardial work (MW) and left atrial strain are valuable for screen-
ing coronary artery disease (CAD), this study aimed to develop a novel CAD screening 
approach based on machine learning-enhanced echocardiography.

Methods: This prospective study used data from patients undergoing coronary angi-
ography, in which the novel echocardiography features were extracted by a machine 
learning algorithm. A total of 818 patients were enrolled and randomly divided into 
training (80%) and testing (20%) groups. An additional 115 patients were also enrolled 
in the validation group.

Results: The superior diagnosis model of CAD was optimized using 59 echocardio-
graphic features in a gradient-boosting classifier. This model showed that the value of 
the receiver operating characteristic area under the curve (AUC) was 0.852 in the test 
group and 0.834 in the validation group, with high sensitivity (0.952) and low specific-
ity (0.691), suggesting that this model is very sensitive for detecting CAD, but its low 
specificity may increase the high false-positive rate. We also determined that the false-
positive cases were more susceptible to suffering cardiac events than the true-negative 
cases.

Conclusions: Machine learning-enhanced echocardiography can improve CAD 
detection based on the MW and left atrial strain features. Our developed model is 
valuable for estimating the pre-test probability of CAD and screening CAD patients in 
clinical practice.

 Trial registration: Registered as NCT03905200 at ClinicalTrials.gov. Registered on 5 April 
2019.

Keywords: Coronary artery disease, Myocardial work, Machine learning, Left atrial 
strain

Introduction
Early diagnosis of coronary artery disease (CAD), a leading cause of death worldwide 
[1], is an effective strategy to decrease the mortality of CAD patients and improve their 
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prognosis. In recent years, several novel non-invasive imaging techniques have been 
applied in diagnosing CAD, including electrocardiogram, CT and cardiac MRI [2–6], 
but echocardiography is still a first-line diagnostic tool for CAD [7] owing to its feasi-
bility and reliability. Nevertheless, the gold standard for CAD diagnosis in the clinic is 
coronary angiography [7], but this common imaging modality is complicated and costly 
and has side effects. Therefore, developing high-sensitivity models that can be used for 
the clinical screening of CAD patients, especially those with the integration of artificial 
intelligence (AI) and noninvasive imaging techniques, is urgently needed.

The myocardial work (MW) is one of the newly developed noninvasive techniques for 
CAD diagnosis, which has an assessment function of deformation and afterload that 
provides incremental value to the evaluation of cardiac function [8–10]. It also has bet-
ter sensitivity and accuracy in detecting cases with single- or multivessel CAD, as com-
pared to left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) 
[11], in particular the close correlation of MW and invasive coronary angiography in 
the measurement of coronary stenosis severity [12]. MW might be a new and sensitive 
tool for screening patients with CAD. Previous studies revealed that left atrial (LA) dys-
function is an early event of CAD, based on the observation that left ventricular (LV) 
diastolic dysfunction may occur before LV systolic dysfunction in case of ischemia [13]. 
Moreover, the fibrotic processes in the LA could cause LA functional alterations in CAD 
patients. LA dysfunction appears in the early stage of CAD [14, 15]. Therefore, echocar-
diography has a better diagnostic value for detecting LA dysfunction than conventional 
methods [16].

Although the novel noninvasive tools hold new promise for screening CAD patients, 
they are not perfect, because they lack the computational models that can combine these 
new methods to improve diagnostic performance in their clinical application. AI tech-
nology has been widely used to diagnose, treat, and manage different diseases [17–23]. 
Therefore, it is necessary to develop novel diagnostic models for non-invasive tools using 
AI technology. Machine learning (ML) algorithm may solve the problem, demonstrating 
its influence on diagnostic decision-making [24–31]. Nevertheless, more investigations 
in this field are still needed to improve the combination of ML algorithms with new 
clinical approaches. Previous AI studies did not focus on noninvasive and novel ultra-
sound tools, most of which only included conventional ultrasound parameters. Moreo-
ver, much data related to MW have not been analyzed in previous studies. To this end, 
this study aimed to establish an effective ML model based on novel echocardiography 
features, which may enable the procedure of CAD diagnosis to be more sensitive, accu-
rate, and simplified, because we believe that the MI-based models can extract the echo-
cardiography features more effectively for improving the accuracy of echocardiography, 
reducing the input of experts, saving both cost and time, and ultimately providing high-
quality services for patients. Furthermore, it would be appealing to evaluate the diagnos-
tic value of CAD using this machine-learning model.

Methods
Patients

This prospective clinical trial (NCT03905200, registered on 5 April 2019) included 
958 cases diagnosed as clinically suspected CAD by coronary angiography in Beijing 
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Hospital, Beijing, China. The patients with CAD were diagnosed by coronary angiogra-
phy, which showed  ≥ 50% stenosis in one or more coronary arteries [32]. The inclusion 
criteria used for this study included (1) patients with typical myocardial ischemia-related 
symptoms (such as shortness of breath, chest tightness, chest pain, and palpitation) 
or positive results of examinations; (2) 18 years and above; (3) with sinus rhythm. The 
exclusion criteria were patients with (1) obstruction or pressure gradient between the 
aorta and LV; (2) severe valvular heart disease or arrhythmia; (3) other extremely severe 
organ illnesses; (4) echocardiographic images with poor quality for speckle tracking. 
Finally, 818 patients were recruited in this study, approved by the Beijing Hospital eth-
ics committee (reference number: 2020BJYYEC-021-02), and followed the Declaration 
of Helsinki.

Echocardiography

The instruments for echocardiography included Vivid E9 and Vivid E95 ultrasound sys-
tems (GE Vingmed Ultrasound, Horten, Norway). The baseline echocardiography for 
the admitted patients was implemented prior to their coronary angiography. The origi-
nal data of echocardiography images were stored in DICOM format. EchoPac software 
(EchoPAC 204, GE Vingmed Ultrasound) was used to analyze conventional, MW, LA 
indices offline. The performance guidelines of echocardiography were the American 
Society of Echocardiography guidelines [33, 34]. The cardiac images of the echocardio-
gram, having the best visualization of the myocardium, were used for further analysis. 
Biplane Simpson’s method was used for calculating LVEF. Echocardiographic GLS is an 
important parameter indicating the left ventricle deformation in the longitudinal direc-
tion [35]. Echocardiography is helpful in evaluating LV function, especially using the LV 
MW parameters, including the global myocardial work index (GWI), global constructive 
work (GCW), global wasted work (GWW), and global work efficiency (GWE).

MW indices were determined by the EchoPAC software, which had a pressure–strain 
loop area module made from non-invasively estimated LV pressure curves and LV strain. 
Peak systolic LV pressure was assumed to be equal to the peak brachial cuff systolic 
blood pressure that was measured simultaneously at the echocardiography examination, 
which has been reported previously [36–40]. Moreover, the GWI, which can be calcu-
lated by the EchoPAC software, represents MW inside the pressure–strain loop area, a 
novel parameter to assess LV performance. The EchoPAC software can also calculate the 
additional parameters as follows: the GCW, an MW for shortening during ventricular 
systole and lengthening during isovolumic relaxation; the GWW, an MW for lengthen-
ing during ventricular systole and shortening during isovolumic relaxation; the GWE, 
the percentage of myocardial constructive work in total MW [GCW/(GCW + GWW)]. 
Other MW parameters can also be obtained using EchoPAC, such as the global posi-
tive work (GPW), the global negative work (GNW), the global systolic constructive 
work (GSCW), and the global systolic wasted work (GSWW). Other parameters were 
calculated using MW software based on the standardized myocardial segmentation pre-
viously published [33, 41, 42], including 18-segment values of GWI, GWE, construc-
tive work (ConsW), wasted work (WastedW), positive work (PositiveW), negative work 
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(NegativeW), systolic constructive work (SysConsW), systolic wasted work (SysWast-
edW), and peak systolic strain (PSS).

In addition, the measurement of LA strain was performed using the instrument of 
AFI LA (EchoPAC 204, GE Vingmed Ultrasound), in which zero strain was defined by 
the automatic R-wave trigger on the electrocardiogram. EchoPac 204 is equipped with a 
software package for evaluating LA strain based on the strain values in three phases: res-
ervoir strain in systole (LASr), conduit strain in early diastole (LASct), and contraction 
strain in late diastole (LAScd).

Features and data process

A flow diagram of this study is illustrated in Fig. 1. A total of 818 subjects received an 
echocardiography examination 1  day before their angiography. Among 818 patients, 
only 497 were diagnosed with CAD by coronary angiography (with  ≥ 50% luminal ste-
nosis in one or more major epicardial coronary arteries).

To explore the echocardiographic features for the diagnosis of CAD, the assessment of 
LV function by MW technology was performed in this study, including the MW method 
and standard 18-segment model [33, 42, 43]. The MW parameters of the myocardium 
in 18 segments can be individually calculated. The region of interest thickness could be 
determined by the LA shape and the thickness of the LA myocardium, thereby avoiding 
the strong signals of the pericardial tissue. LA strain was measured as GLS of the entire 
wall, but the segmental LA strain was not considered [44]. As shown in Table  1, 242 
features were extracted for predicting the risk of CAD, including MW and LA strain-
related features, clinic features, and conventional echocardiographic data. These features 
included conventional and novel indices. After removing the cases which contained 

Fig. 1 Study flowchart. All patients who underwent coronary angiography were divided into a data set of 
818 patients for model training and classifier testing and a validation data set of 115 patients for validating 
the efficiency of the predictive model. AUC  Area under the curve, ROC Receiver operator characteristics
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more than 10% of missing data in the process of extracting features, 793 patients and 235 
features were reserved for establishing the ML model.

ML classifiers

Recently, ML-based research methods have been widely used in clinical diagnostic 
studies [45]. This study focused on a ML model which can be used for CAD screen-
ing with echocardiography features. In this study, different kinds of ML classifiers were 

Table 1 242 features chosen for predicting CAD*

BMI body mass index, BP blood pressure, CAD coronary artery disease, ConsW constructive work, DM diabetes mellitus, 
FPG fasting plasma glucose, GCW  global constructive work, GLS global longitudinal strain, GNW global negative work, 
GPW global positive work, GSCW global systolic constructive work, GSWW global systolic wasted work, GWE global work 
efficiency, GWI global work index, GWW  global wasted work, LA left atrial, LAScd left atrial longitudinal strain during conduit 
phase, LASct left atrial longitudinal strain during contraction phase, LASr left atrial longitudinal strain during reservoir phase, 
LDL_C low-density lipoprotein cholesterol, LVEF left ventricular ejection fraction, MW myocardial work, NegativeW negative 
work, PositiveW positive work, PSD peak strain dispersion, PSS peak systolic strain, SysConsW systolic constructive work, 
SysWastedW systolic wasted work, TDI tissue doppler imaging, WastedW wasted work
* 7 variables with missing data > 10%, left 235 variables for training model

MW and LA strain-related features (202)

MW features (170)

GWE GWI GCW GWW GPW GNW GSCW GSWW

MW (18 
segments)

GWE (18 
segments)

ConsW (18 
segments)

WastedW 
(18 seg-
ments)

PositiveW 
(18 seg-
ments)

NegativeW 
(18 seg-
ments)

SysConsW 
(18 seg-
ments)

SysWastedW 
(18 seg-
ments)

PSS (18 seg-
ments)

MW-related features (LV strain features 23)

PSD Peak 
systolic 
longitudi-
nal strain 
(APLAX/
A4C/A2C)

GLS GLS (18 
segments)

LA strain features (9)

LASr (A4C/
A2C/avg)

LAScd           
(A4C/A2C/
avg)

LASct (A4C/
A2C/avg)

Clinic features (21)

Age Hyperten-
sion

Hyper-
lipemia

Family his-
tory

Uric acid Creatinine Homocyst-
eine

BMI

Gender DM Smoking Heart rate LDL-C FPG HbA1c Electrocar-
diogram

Systolic BP Diastolic BP Height Weight Body sur-
face area

Conventional echocardiographic data (19)

Regional 
wall motion 
abnormali-
ties

Aortic sinus 
diameter

Ascend-
ing aorta 
diameter

Left atrial 
diameter

Inter-
ventricular 
septum 
end-
diastolic 
thickness

LV end-
diastolic 
diameter

LV posterior 
wall end-
diastolic 
thickness

LV end-
diastolic 
volume

LVEF Right ven-
tricular end-
diastolic 
diameter

Mitral A 
wave

Mitral E 
wave

Mitral E/e’ 
septal aver-
age ratio

Tricuspid A 
wave

Tricuspid E 
wave

Peak aortic 
valve veloc-
ity

s’ Septal TDI e’ Septal TDI a’ Septal TDI
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applied, such as logistic regression (logistic regression, softmax, and dummy), naïve 
bayes, k-neighbors, linear classifier (ridge and support vector machine), quadratic dis-
criminant analysis, decision tree bagging (random forest and extra trees), and gradient 
boosting (catBoost, AdaBoost, light gradient boosting, gradient boosting, and Xgboost) 
classifiers. Moreover, blend and stack models were established and tested with the five 
best classifiers. The gradient boosting algorithms demonstrated high efficiency in CAD 
predictive learning using echocardiography features. The gradient boosting method is a 
system of joint weak learners (tree- or linear-based learners) that can minimize the loss 
function in each step of the iterative model. Usually, a superior classifier has been identi-
fied to build a training model.

Model training

The tenfold cross-validation test was also applied for the model training. The CAD data 
set was randomly divided into two parts (80% training data set and 20% testing data set). 
A model for CAD prediction was built by extracting the imaging and clinical features 
with ML methods.

Feature selection

The imaging and clinical features were reduced and selected using different strategies to 
overcome the problem of model overfitting. The importance of variables was evaluated 
in each classifier. For example, the correlation coefficients (r value) between CAD and 
each feature were calculated. To obtain the best combinations of independent features, 
235 candidate variables were screened by the collinearity diagnostics method using the 
software SPSS v26. The mean decrease accuracy (MDA) of each variable was calculated 
using the R package “random forest (v4.6-14)”. The rank of the variables was determined 
by the descending order of the MDA values. The important features derived from differ-
ent classifiers were gradually combined to promote the model’s accuracy. The relation-
ship between decreasing classification accuracy and the increasing number of features 
was evaluated by a tenfold cross-validation test.

Training data set optimization

Since the randomly divided training data sets also influence the classifier accuracy, we 
selected a group of high-performance training data sets after hundreds of cross-vali-
dation tests. The intersection of various training data sets with an accuracy of around 
80 ~ 85% was selected as a standard to build the final training data set for CAD detec-
tion. The framework of the proposed model for diagnosing CAD is illustrated in Fig. 2.

Model validation

Additional 115 patients recruited from September 2021 to July 2022 were enrolled as the 
validation data set (out from the cross-validation test), which was used for selecting clas-
sifiers and validating the model performance.
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Fig. 2 Framework of the proposed model for diagnosing CAD. A stepwise workflow to optimize the 
predictive learning model by screening and recomposing features, selecting superior classifiers, and 
identifying the convergent training data set. AUC  Area under the curve, ROC Receiver operator characteristics



Page 8 of 19Guo et al. BioMedical Engineering OnLine           (2023) 22:44 

Prognostic follow-up

The follow-up information was obtained through clinical visits or telephone calls by an 
investigator blind to clinical factors and coronary angiography data. All-cause mortality 
and cardiovascular hospitalization composited the study endpoint. The death documen-
tation was obtained from hospital medical records and phone conversations with fam-
ily members. Furthermore, the cause of death was adjudicated by a review of medical 
records. The follow-up data were obtained up to June 2022. The overall completeness of 
follow-up was 74.9%. The mean follow-up time was 2.6 years (0.8–3.5 years).

Statistical analysis

The data of the continuous variables with normal distribution were expressed as 
mean ± standard deviation, and those without normal distribution were expressed as 
median (interquartile range). Chi-square or Fisher’s exact tests was used for compar-
ing the difference between categorical variables, while the comparison of continuous 
variables was performed using the t test or Mann–Whitney U test. The diagnostic per-
formance of all measures was evaluated based on the exact 95% confidence intervals. 
Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic 
accuracy of parameters. The intraclass correlation coefficients were used for assessing 
the intra- and inter-observer variabilities of the MW and LA strain parameters. The test 
results with P < 0.05 were considered statistically significant. SPSS 26.0 software was 
used for the statistical analysis of all data in this study.

Results
Clinical and echocardiographic information of CAD patients

A total of 818 patients (mean age, 64.1 ± 9.7 years; 515 men) were enrolled in this study. 
Among 818 patients, 497 (60.7%) were diagnosed with CAD by coronary angiography. 
As shown in Table 2, according to the invasive coronary artery angiography, two groups 
of patients had different echocardiographic characteristics (< 50% or ≥ 50% stenosis of 
the coronary artery). There were significant differences in the echocardiographic fea-
tures between the two groups (P < 0.05), including GLS, peak strain dispersion (PSD), 
GWE, GWI, GCW, GPW, GSCW, GSWW, LASr (Avg), and LAScd (Avg), as well as in 
the clinical features: gender, diabetes, smoking, systolic BP, uric acid, creatinine, electro-
cardiogram (suspected myocardial ischemia), and LVEF. For MW and LA strain-related 
features, GWI, GCW, GWE, and LASr (Avg) were significantly higher in non-CAD 
patients when compared to the CAD patients (P < 0.001).

The correlation among MW, LA strain parameters, and other numerical features was 
evaluated. Results showed moderate correlations of GWI, GCW, GPW, and GSCW 
with systolic BP, LVEF, and PSD (r = 0.379 ~ 0.476, 0.432 ~ 0.444, and −0.259 ~ −0.358, 
all P < 0.01). GWE was also correlated with LVEF and PSD (r = 0.369 and −0.612, 
both P < 0.01). This study also found weak correlations between MW parameters with 
most serum biochemical indicators and other conventional echocardiographic indices 
(P < 0.05). The LA strain parameters analysis showed mild correlations of LASr with age, 
LA diameter, and LVEF (r = −0.302, −0.231, and 0.231, P < 0.01).
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Building CAD risk prediction model

First, all 235 variables were used for training the model with different classifiers, but the 
training performance was not satisfied, because the ROC area under the curve (AUC) of 
18 classifiers was under 75%, ranging from 49.5% (with quadratic discriminant classifier) 

Table 2 Summary of clinical and echocardiographic characteristics of the subjects

BMI body mass index, BP blood pressure, CAD coronary artery disease, DM diabetes mellitus, FPG fasting plasma glucose, 
GCW  global constructive work, GLS global longitudinal strain, GNW global negative work, GPW global positive work, 
GSCW global systolic constructive work, GSWW global systolic wasted work, GWE global work efficiency, GWI global work 
index, GWW  global wasted work, LA left atrial, LAScd left atrial longitudinal strain during conduit phase, LASct left atrial 
longitudinal strain during contraction phase, LASr left atrial longitudinal strain during reservoir phase, LDL_C low-density 
lipoprotein cholesterol, LVEF left ventricular ejection fraction, MW myocardial work, PSD peak strain dispersion
** P < 0.01, ***P < 0.001, compared to negative subjects. Data are expressed as mean ± SD for continuous data or number 
(percent) for categorical data

Characteristic Total Coronary Artery Disease (CAD) P value

Negative (n = 321) Positive (n = 497)

Age, year 64.1 ± 9.7 64.2 ± 9.3 64.1 ± 9.9 0.877

Female, n (%) 303 (37.0) 167 (52.0) 136 (27.4)  < 0.001***

Family history of CAD, n (%) 246 (30.1) 90 (28.0) 156 (31.4) 0.346

DM, n (%) 312 (38.1) 93 (29.0) 219 (44.1)  < 0.001***

Smoke, n (%) 381 (46.6) 111 (34.6) 270 (54.3)  < 0.001***

Hyperlipoidemia, n (%) 587 (71.8) 223 (69.5) 364 (73.2) 0.276

Hypertension, n (%) 547 (66.9) 206 (64.2) 341 (68.6) 0.215

BMI, kg/m2 25.9 ± 4.8 25.7 ± 3.6 26.1 ± 5.4 0.274

Systolic BP, mmHg 131.6 ± 15.6 134.2 ± 16.3 129.9 ± 14.9  < 0.001***

Diastolic BP, mmHg 76.7 ± 10.6 77.9 ± 10.8 75.9 ± 10.0 0.505

Electrocardiogram (Suspected myocar-
dial ischemia), n (%)

158 (19.3) 45 (14.0) 113 (22.7) 0.003**

Creatinine, μmol/L 71.7 ± 25.5 67.2 ± 15.9 74.5 ± 29.8  < 0.001***

FPG, mmol/L 6.1 ± 2.7 5.9 ± 3.6 6.2 ± 2.0 0.181

Uric acid, μmol/L 346.7 ± 85.9 335.1 ± 84.5 354.3 ± 86.1 0.002**

LDL-C, mmol/L 2.3 ± 0.9 2.3 ± 0.7 2.3 ± 1.0 0.831

HbA1c, % 6.5 ± 1.0 6.2 ± 0.8 6.6 ± 1.1  < 0.001***

Homocysteine, μmol/L 12.5 ± 6.4 12.2 ± 5.5 12.7 ± 6.9 0.838

LVEF, % 62.6 ± 6.4 64.0 ± 3.8 61.8 ± 7.5  < 0.001***

Left atrial diameter, mm 35.1 ± 4.6 35.0 ± 4.6 35.2 ± 4.5 0.512

Mitral E/e’ ratio 12.1 ± 4.1 12.0 ± 3.7 12.2 ± 4.3 0.652

LV end-diastolic diameter, mm 46.1 ± 4.5 45.7 ± 4.2 46.4 ± 4.7 0.126

Regional wall motion abnormalities, n 
(%)

87 (10.6) 16 (5.0) 71 (14.3)  < 0.001***

GLS, % −16.6 ± 3.1 −17.9 ± 2.7 −15.9 ± 3.1  < 0.001***

PSD, ms 69.5 ± 33.9 64.5 ± 28.3 72.8 ± 36.8  < 0.001***

GWI, mmHg% 1798.6 ± 419.2 1995.2 ± 393.7 1671.6 ± 385.1  < 0.001***

GCW, mmHg% 2020.2 ± 432.4 2220.8 ± 407.2 1890.5 ± 397.5  < 0.001***

GWW, mmHg% 131.6 ± 101.4 124.7 ± 88.1 136.1 ± 108.9 0.099

GWE, % 0.9 ± 0.1 0.9 ± 0.0 0.9 ± 0.1  < 0.001***

GPW, mmHg% 1981.7 ± 412.9 2178.8 ± 391.4 1854.4 ± 374.9  < 0.001***

GNW, mmHg% 170.1 ± 106.8 166.7 ± 97.3 172.2 ± 112.5 0.459

GSCW, mmHg% 1940.3 ± 420.0 2139.3 ± 394.0 1811.8 ± 385.0  < 0.001***

GSWW, mmHg% 90.3 ± 90.3 85.2 ± 78.3 93.5 ± 97.3 0.181

LASr (Avg), % 28.9 ± 9.3 30.6 ± 9.0 27.8 ± 9.3  < 0.001***

LAScd (Avg), % −13.8 ± 6.4 −15.0 ± 6.4 −13.0 ± 6.4  < 0.001***

LASct (Avg), % −15.1 ± 5.9 −15.4 ± 5.5 −14.9 ± 6.2 0.188
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to 75.0% (with catBoost classifier). To overcome the model overfitting and promote the 
diagnostic performance, a selection of features and classifiers was performed, in which, 
according to correlation coefficients, 33 top-related variables associated with CAD 
(|r|> 0.3) were selected. Meanwhile, a panel of 14 relatively independent variables was 
left after collinearity diagnostics. Moreover, a panel of 27 top-high MDA variables with 
the lowest cross-validation error rate was ascertained, and a panel of 39 most important 
variables was identified across all the tested classifiers. Therefore, the final pool of the 
selected features included 106 variables, all used to establish the prediction model.

A stepwise strategy was adopted for the model optimization, which included feature 
selection, classifier selection, and training seed optimization. First, features were gradu-
ally added into the classifiers to identify a high-performance feature combination. Fifty-
nine features were finally selected based on the criterion: ROC AUC should be over 
80% in six decision tree classifiers, i.e., catBoost (82.9%), random forest (81.6%), gradi-
ent boosting (81.6%), extra trees (80.5%), light gradient boosting (80.4%), and Xgboost 
(80.4%). The distribution curve of ROC AUC for different feature combinations is shown 
in Fig.  3. Fifty-nine features include the clinical features: age, gender, hypertension, 
hyperlipemia, diabetes, family history, smoking, uric acid, creatinine, body mass index 
(BMI), low-density lipoprotein cholesterol (LDL_C), fasting plasma glucose (FPG), elec-
trocardiogram, systolic blood pressure, and diastolic blood pressure, as well as the echo-
cardiographic features: LA diameter, LVEF, GWE, GWI, GCW, GWW, GPW, GNW, 
GSCW, GSWW, PositiveW (2 segments), NegativeW (1 segment), PSS (3 segments), 
PSD, peak systolic longitudinal strain (APLAX, A4C, A2C, Avg), GLS (18 segments), 
LASr (A4C), LAScd (A4C), LASr (Avg), LAScd (Avg), and LASct (Avg). The evaluation 
of the importance of the selected features is shown in Fig.  4. Results showed that the 
following parameters, including GPW, GSCW, GCW, GWI, PositiveW (segment), and 
LASr (Avg), had incremental importance over all other parameters (including conven-
tional echocardiographic and clinical parameters) in predicting CAD.

Fig. 3 Changes in the curve of ROC AUC with different feature combinations, including the ten best 
classifiers for each feature combination. Different feature panels screened by MDA (27 features), r coefficient 
(33 features), collinearity diagnostics (14 features), and the importance across all the tested classifiers (39 
features). Stepwise combinations of 5 (overlapped features: GWI, G peak SL Full (Avg), Systolic BP., Diastolic BP, 
LASr R-Wave (Avg)), 30, 44, 59, 69, 79, 106, and 235 features were tested by classifiers



Page 11 of 19Guo et al. BioMedical Engineering OnLine           (2023) 22:44  

Fig. 4 Importance of 59 selected features. BMI body mass index, BP blood pressure, DM diabetes mellitus, 
FPG fasting plasma glucose, GCW  global constructive work, GLS global longitudinal strain, GNW global 
negative work, GPW global positive work, GSCW global systolic constructive work, GSWW global systolic 
wasted work, GWE global work efficiency, GWI global work index, GWW  global wasted work, LAScd left atrial 
longitudinal strain during conduit phase, LASct left atrial longitudinal strain during contraction phase, LASr 
left atrial longitudinal strain during reservoir phase, LDL_C low-density lipoprotein cholesterol, LVEF left 
ventricular ejection fraction, NegativeW negative work, PositiveW positive work, PSD peak strain dispersion, 
PSS peak systolic strain

Fig. 5 Testing accuracy of 18 classifiers using different feature combinations. The increased accuracy and 
superior performance (over 80% accuracy) were observed by the methods of catBoost, extra tree, gradient 
boosting, light gradient boosting, random forest, and Xgboost
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In the multiple circles of cross-validation (> hundreds of times) between the training 
and testing data sets, we observed ROC AUC fluctuating ~ 5%, accompanied by switch-
ing training seeds. Therefore, we evaluated 635 selected training individuals and found 
that the accuracy of the best classifier reached 85.2% (gradient boosting), and the valida-
tion data set achieved 83.4%. The results of comparing different ML classifiers are shown 
in Fig.  5. In addition, the blend and stack models were established and tested for the 
five best classifiers. The performance of the following six ML algorithms is compared in 
Table 3, including catBoost, random forest, gradient boosting, extra trees, light gradi-
ent boosting, and Xgboost. Figure 6 shows the ROC curve of those six models. These 
results suggest that our model had superior diagnostic performance in identifying CAD 
patients. As shown in Fig. 7, the word cloud listed all the key points in the model con-
struction and optimization process.

Table 3 ROC curve analysis of machine learning algorithms for detecting CAD

AUC  Area under the curve, ROC Receiver operator characteristics

Model Sensitivity Specificity ROC AUC 

Gradient boosting 0.952 0.691 0.852

Catboost 0.942 0.682 0.829

Random forest 0.942 0.638 0.817

Extra trees 0.914 0.628 0.804

Light gradient boosting 0.932 0.664 0.824

Xgboost 0.932 0.664 0.824

Fig. 6 ROC curves of the proposed six classifiers with ROC AUC > 80%. Gradient boosting (light green) 
demonstrated the highest diagnostic efficacy among the six classifiers (ROC AUC: 0.852)



Page 13 of 19Guo et al. BioMedical Engineering OnLine           (2023) 22:44  

Clinical outcomes

Our model was very sensitive in identifying the CAD patients, with a high sensitivity 
(~ 95%) and a relatively low specificity (< 70%), suggesting that many non-CAD patients 
might be misclassified as false-positive ones. Their clinical outcomes were followed to 
clarify whether the false-positive patients have a high risk of CAD or a poor progno-
sis. The incidence of the composite endpoint stratified by our model is summarized in 
Table 4. The overall completeness of follow-up reached 74.9%. The composite endpoint 
occurred in 79 patients (13.3%) during this follow-up. The total number of composite 
endpoints was 110 for some reasons, such as the death of some patients, re-hospitali-
zation at different times, or re-hospitalization for two different cardiovascular causes. 
In this study, 18 deaths (15 cardiac and 3 noncardiac deaths) and 92 cardiovascular 
hospitalizations occurred in 79 patients. The causes of death included congestive heart 
failure (8 patients), malignant arrhythmia (3 patients), acute myocardial infarction (2 
patients), sudden cardiac death (2 patients), cancer (1 patient), and others (2 patients). 
Death and cardiovascular hospitalization rates were 3.0% and 10.3% at 2.5 years, respec-
tively. Although the differences in clinical outcomes between the false-positive and other 
groups were not statistically significant, the trends could still be observed, based on the 

Fig. 7 Key items of echocardiographic measurements in the machine learning model for screening CAD

Table 4 Incidence of the composite endpoint stratified by our model

CAD coronary artery disease, CI confidence interval, HR hazard ratio

Group CAD patients Cases with composite 
endpoint

Proportion HR (95%CI)

True-negative group 139 21 15.1 Ref

False-negative group 16 2 12.5 0.84 (0.20–3.59)

False-positive group 37 8 21.6 1.67 (0.74–3.77)

True-positive group 402 79 19.7 1.46 (0.90–2.37)
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data that false-positive individuals (21.6%) suffered more cardiac events than that in 
other groups as follows: true negative (15.1%), false negative (12.5%), and true-positive 
(19.7%) groups (Table 4).

Discussion
This might be the first study on the diagnostic model of CAD using novel echocardi-
ography tools (MW and LA strain) integrated with ML models. This superior CAD 
detection model showed a value of ROC AUC (0.852) with a sensitivity of 0.95 and 
specificity of 0.69 in the test group, while the ROC AUC value was 0.834 in the valida-
tion data set. Our model was very sensitive in detecting CAD patients. We found that 
MW and LA strain-based ML approach has great potential to screen CAD patients.

The application of imaging techniques in clinics plays an important role in the diagno-
sis and prognosis of CAD, reducing the morbidity and mortality of CAD patients. Due to 
its feasibility and reliability, echocardiography is still the most commonly used imaging 
tool for diagnosing heart problems. Traditionally, the conventional echocardiographic 
parameter used to evaluate the presence or absence of CAD has mainly been segmental 
wall motion abnormalities by visualization using nude eye observation, which may miss 
some subtle abnormalities [46], leading to a decrease in the effectiveness of conventional 
echocardiography for CAD diagnosis. MW, a novel imaging tool, has many advantages 
compared to traditional echocardiography and other examination methods. It has been 
reported that the two-dimensional speckle tracking echocardiography can detect coro-
nary stenosis, which may cause persistent myocardial dysfunction at rest [47, 48]. The 
strain index could be considered a marker of systolic function, which is not accurate 
enough (24). MW would be more accurate. The value of MW parameters in diagnosing 
CAD has been evaluated by previous studies [11, 40, 49], suggesting that MW is a sensi-
tive and powerful tool for detecting advanced CAD. We used LV software to analyze LA 
in the past, but now we have professional LA analysis software. The present study per-
formed LA stain analysis using a novel dedicated tracking tool. Therefore, the ML model 
based on the above-mentioned novel echocardiography tools may improve the efficiency 
of echocardiography in CAD diagnosis.

A total of 818 patients were enrolled in this study. The median sample size in the 
previous reports is approximately 350 [50]. There were smaller sample sizes in most 
studies based on echocardiography deformation imaging, because it is time-consum-
ing and laborious to collect raw ultrasound data and perform data analysis. Most CAD 
patients enrolled in our study had impaired myocardial function at rest. Most MW 
parameters were proven to have an excellent diagnostic value for CAD (≥ 50% ste-
nosis). In our study, GWI was a significant predictor for detecting moderate stenosis, 
consistent with previous reports [11, 40]. Studies on the diagnostic value of GPW and 
GSCW for CAD have rarely been reported. The strong features of this study include 
GPW, GSCW, GCW, GWI, Positive W (segment), and LASr (Avg). Our study revealed 
the good diagnostic value of the above-mentioned parameters for CAD. Moreover, 
these parameters (either conventional echocardiographic or clinical parameters) 
related to MW and LA strain were found to be more important in predicting CAD 
than all other parameters. This study has obtained valuable information through a 
deep learning approach. Data analysis showed no statistically significant differences 
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in hyperlipidemia, hypertension, BMI, LDL-C, and others between the patients with 
and without CAD (all P > 0.05). The underlying differences in medication which the 
patients received may influence these factors. Thus, it is necessary to investigate the 
potential causal role of medication in the diagnosis and prognosis of CAD in further 
studies. Assessing the regional wall motion abnormality is very useful for detecting 
significant CAD patients, which has been strongly recommended [51]. In the percent 
study, the assessment of regional wall motion abnormality was  not  adopted in the 
final model due to its high collinearity with MW and LA strain parameters.

Coronary angiography is generally considered a gold standard for CAD diagnosis. 
However, coronary angiography is complex, costly, and has side effects. In contrast, the 
echocardiography-based methods were suitable for almost all patients, but it has been 
rarely reported about the clinical applications of the models that can combine novel 
echocardiographic methods, as mentioned above, to improve diagnostic performance. 
To this end, our ML model provides an approach to solving this problem. Our model 
demonstrated its sensitivity of 0.952 and specificity of 0.691 in the test group and its 
AUC of 0.852. Although the accuracy of our model was similar to that of other studies, 
it is notable that the inclusion criteria in our study were broader than those in the most 
published studies, which were closer to real-world conditions, suggesting a high sensitiv-
ity of our model, which might be used for screening the CAD patients in clinics to allow 
early diagnosis and treatment.

Coronary angiography mainly reflects anatomical stenoses, but it cannot reflect func-
tional problems, while strain can partly reflect functional problems. Strain is mainly a 
reflection of myocardial function rather than the anatomic coronary stenosis itself. In 
clinical practice, many patients had myocardial ischemia without obstructive CAD [52, 
53]. Thus, doctors often misdiagnose noncardiac chest pain based on normal or nearly 
normal coronary arteriograms. Actually, anginal symptoms might be caused by several 
mechanisms, such as coronary spasms and/or microvascular dysfunction [54]. This may 
be the reason for the relatively high false-positive rate in our study when the new model 
test is positive, but the gold standard is negative. Our model promised 0.852 ROC AUC 
with a sensitivity of 0.95 and specificity of 0.69 in the test group, suggesting that it is a 
very sensitive tool to detect CAD, but non-CAD patients may be misclassified (result-
ing in a high false-positive rate) by its low specificity. A total of 74.9% of patients in our 
study completed the follow-up. Even though our median follow-up time is 2.5  years, 
some trends were still determined. Combined with the prognosis, we found that the 
false-positive patients who were identified by the model were more susceptible to suffer-
ing cardiac events than the true-negative patients. Furthermore, compared to the true-
positive patients, the false-positive patients experienced more cardiac events, which may 
be explained by the fact that many of the true-positive patients had already received a 
percutaneous coronary intervention. This study confirmed the potential predictive value 
of the new model on cardiac events. In addition, our model’s potential clinical value is to 
evaluate patients with normal or nearly normal coronary arteriograms.

ML algorithms have been widely used for analyzing medical images [31, 55–57]. Clini-
cal application of our model built by ML algorithms can improve the accuracy of diagno-
sis, reduce the input of experts, save cost and time, and ultimately provide high-quality 
patient services. This model also helps rule out patients without coronary heart disease 
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and avoid unnecessary coronary angiography. Compared with MRI, SPECT, and other 
time-consuming examination methods, the clinical application of this model could pro-
vide diagnostic results in a shorter time. The potential clinical applications of the echo-
cardiography-based ML model have been reported in recent years, but safer and more 
effective methods for diagnosing and assessing the CAD prognosis are still expected. 
Indeed, our method may provide a more efficient and non-invasive way for early screen-
ing and diagnosis of CAD, which may remarkably improve the diagnostic modality of 
non-invasive imaging methods. This technique may also support the pre-test CAD 
probability assessment in outpatient clinics or CAD screening in physical examination 
centers.

Limitations

This study had several limitations. It was a single-center study due to its data collected 
from the same medical system. In this study, we enrolled patients who underwent coro-
nary angiography with typical myocardial ischemia-related symptoms or positive results 
of examinations. In addition, a single echocardiogram vendor and post-processing algo-
rithm were applied. All of those may increase the instability of the model, resulting in 
low generalization of the results. Therefore, further studies with multi-center data will 
be considered, in which the method of an adaptive learning process could be included, 
enabling the model to update when inputting new samples automatically. The semi-
automatic speckle tracking analysis was another limitation of our study. Because of this, 
the different physicians’ subjective opinions may also influence the final prediction. The 
difficulty to recognize the epicardial or endocardial border by EchoPac (in case of pro-
cessing low-quality images) was also a critical issue in our model, which could bring cer-
tain biases to the results. To address this issue, it is necessary to develop an automatic 
image quality control and tracing technique to analyze echocardiogram data. To effec-
tively reduce subjective errors, some efforts should be made to reduce user interven-
tion in image feature extraction and classification analysis. Because our overall follow-up 
time was limited, we have only discovered a few trends thus far. We will continue to 
follow up with these patients. A risk stratification assessment model will be established 
based on the prognosis of those patients.

Conclusions
Our study demonstrated the following benefits of our model in CAD diagnosis: (1) good 
diagnostic performance in screening CAD patients, confirmed in the validation group; 
and (2) the predictive function of our model only requires the non-invasive echocardio-
graphic and some commonly used clinical features. In summary, our novel model could 
provide a more efficient and non-invasive method for screening and diagnosing CAD in 
clinics.
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