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Abstract 

Major trauma is a condition that can result in severe bone damage. Customised 
orthopaedic reconstruction allows for limb salvage surgery and helps to restore joint 
alignment. For the best possible outcome three dimensional (3D) medical imaging 
is necessary, but its availability and access, especially in developing countries, can be 
challenging. In this study, 3D bone shapes of the femur reconstructed from planar 
radiographs representing bone defects were evaluated for use in orthopaedic surgery. 
Statistical shape and appearance models generated from 40 cadaveric X-ray computed 
tomography (CT) images were used to reconstruct 3D bone shapes. The reconstruction 
simulated bone defects of between 0% and 50% of the whole bone, and the prediction 
accuracy using anterior–posterior (AP) and anterior–posterior/medial–lateral (AP/ML) 
X-rays were compared. As error metrics for the comparison, measures evaluating the 
distance between contour lines of the projections as well as a measure comparing 
similarities in image intensities were used. The results were evaluated using the 
root-mean-square distance for surface error as well as differences in commonly used 
anatomical measures, including bow, femoral neck, diaphyseal–condylar and version 
angles between reconstructed surfaces from the shape model and the intact shape 
reconstructed from the CT image. The reconstructions had average surface errors 
between 1.59 and 3.59 mm with reconstructions using the contour error metric from 
the AP/ML directions being the most accurate. Predictions of bow and femoral neck 
angles were well below the clinical threshold accuracy of 3°, diaphyseal–condylar 
angles were around the threshold of 3° and only version angle predictions of between 
5.3° and 9.3° were above the clinical threshold, but below the range reported in clinical 
practice using computer navigation (i.e., 17° internal to 15° external rotation). This study 
shows that the reconstructions from partly available planar images using statistical 
shape and appearance models had an accuracy which would support their potential 
use in orthopaedic reconstruction.
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Introduction
Major trauma due to vehicle accidents or conflict trauma often results in severe bone 
damage. Orthopaedic reconstruction of these cases is especially challenging with large 
defects [46] or amputation. If amputation is not avoidable, the general aim is to preserve 
as much tissue as possible. An example of tissue salvage is in knee disarticulations for 
which there is a higher functional outcome than for trans-femoral amputations [32, 38]. 
This is particularly important for children and adolescents for whom a fusion or loss 
of epiphyseal plate results in a disturbance of growth causing problems in their future 
development and the necessity for many future interventions [20], and for patients from 
developing countries, where aftercare often challenges the patients and their families [3, 
30].

Orthopaedic reconstruction requires knowledge of the premorbid bone shape to 
achieve accurate joint alignment. The shape can be used in pre-surgical planning to cre-
ate cutting guides for implant placements, design patient-specific implants or be used 
in computer-aided systems during surgery (e.g., surgical robots, patient-specific instru-
mentations, augmented reality etc.). In clinical practice, the first choice to predict the 
intact three-dimensional (3D) geometry is to use the geometry of the contralateral side 
extracted from X-ray computed tomography (CT) or magnetic resonance images (MRI) 
[22, 40, 51]. This method is limited to cases that show no obvious asymmetries or bilat-
eral defects and in situations, where there is ready access to costly 3D medical imaging. 
In developing countries and areas of armed conflict such access to MRI or CT facilities 
is limited.

Reconstructions of 3D bone geometry have been studied previously. The methods 
include reconstructions using planar X-ray images [17, 18, 28, 48], and bi-planar X-ray 
systems [10, 19, 41, 52] that morph a bone template to match the contour lines of the 
X-ray image(s). In an intraoperative navigation application, Hurvitz and Joskowicz [24] 
used an active appearance model to reconstruct bone surfaces from calibrated X-ray 
images using a C-arm system. Reconstructing 3D volumes from 2D X-ray image(s) is a 
challenge, and Henzler et al. [21] demonstrated the use of deep learning-based convolu-
tional neural networks for bone reconstruction. However, the reconstruction of a bone 
from a partially available bone has not previously been studied, neither SSM-based nor 
AI-based.

For orthopaedic reconstruction, the prediction of missing parts allows for the accurate 
restoration of joint kinematics in the musculoskeletal system [35]. A method widely used 
in the literature is the prediction of missing bone parts using statistical shape models 
(SSM) [1, 27, 31, 34, 37, 49]. Abler et al. [1] described the reconstruction of the glenoid 
suited for joint reconstructions in the shoulder, Mauler et al. predicted bones of the fore-
arm [31], Krol et al. [27] and Vanden Berghe et al. [49] reconstructed shapes of the pelvis 
and the hip joint.

Not only is the articular shape important, but so is the estimation of the length of long 
bones as this enables the restoration of normal kinematics. The measured anatomic 
parameters are important for pre-operative surgical planning. In forensic and anthropo-
metric science the estimation of bone length from fragments using regression equations 
is frequently used. Prasad et  al. [39] described regression equations on the proximal 
femur for a south Indian population. Solan and Kulkarni [47] related the total femur 
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length to the length of five individual segments of the femur. Ebert et al. [16] success-
fully estimated the bone length from incomplete femurs using a statistical shape model 
presented a method for reconstruction of the bone from incomplete 3D bone, and the 
anatomical geometrical parameters were studied and compared to the ground truth. 
Salhi et al. [43] highlighted the importance to use anatomical measures to describe the 
accuracy of the reconstruction before clinical use. However, a wider range of anatomic 
measurements (e.g., femur anatomic axis, femoral neck angle etc.) were not studied in 
the above-cited studies.

There is currently no study that incorporates a 2D–3D reconstruction that can reli-
ably predict missing parts of a bone shape with evaluations of the anatomical geometri-
cal parameters that can be used for orthopaedic reconstruction and surgical planning. 
Therefore, in this study, the accuracy of reconstruction methods using an error metric 
comparing the contour of planar medical images and an error metric comparing image 
intensities for the shape of the femur bone from simulated planar X-ray images are eval-
uated for use in orthopaedic reconstruction and surgical planning.

Results
Surface accuracy

Median root-mean-square error (RMSE) for reconstructions of geometries with defect 
sizes between 50% and 0% using the contour metric ranged from 3.59 to 1.77 mm for 
reconstructions using AP projections and from 2.59 to 1.59  mm for reconstructions 
using anterior–posterior (AP) and mediolateral (ML) projections. For reconstructions 
using the intensity error metric, median RMSE ranged from 3.03 to 1.92 mm using AP 
projections and 3.37 to 1.99 mm using AP and ML projections. Reconstructions using 
the contour error metric had significantly lower RMSE for reconstructions using AP 
and ML projections than reconstructions only using AP projections (p < 0.0005, Fig. 1a). 
However, for the reconstructions using the image intensity metric, the reconstructions 
using only projections in the AP direction had significantly lower RMSE than 
reconstructions using projections in AP and ML directions (p = 0.05, Fig. 1b).

For a comparison of reconstructions using AP and ML projections over defect levels, 
the reconstructions calculated using the contour metric had significantly lower RMSE 
than reconstructions using the intensity metric (p < 1e−6, Fig. 2).

Fig. 1 Comparison of root-mean-square errors (RMSE) between reconstructed surface and surfaces 
segmented from medical images using either anterior–posterior (AP) or AP and mediolateral (ML) projections, 
for reconstruction from bones with defect levels of 0%, 10%, 20% and 50% and the reconstruction using 
contour line matching (a) and image intensity matching (b)
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Accuracy in anatomical measures

The median errors of the anatomical measures for the angle between anatomical and 
mechanical axes and the bow angle were small (< 2°) for reconstructions using AP and 
ML projections (Fig.  3a, d). For the femoral neck angle and the diaphyseal–condylar 
angle median errors were around 3° with errors from reconstructions using the contour 
metric being slightly smaller (Fig. 3b, c). The median error in version angle ranged from 
5.3 to 9.3° over the various defect levels for reconstructions using the contour metric and 
from 6.0° to 9.1° for reconstructions using the intensity metric (Fig. 3e, f ).

All average errors in anatomical measures comparing differences over different bone 
defect levels and error metrics are listed in Table  1. For mechanical–anatomic axis 
angle and bow angle, the median errors were far below 3°. The median errors for the 
diaphyseal–condylar angle and neck angle were around 3° and the errors increased with 
increasing levels of bone missing (i.e., bone defects exist from 0% and 50% of the whole 
bone); however, when the defects are more than 20% of the whole bone, the median 
error was above 3°. The mean errors for the version angles, using the posterior condylar 
axis (Version PCA) and trans-epicondylar axis (Version TEA) were above 3°.

For the comparison between the number of projections (i.e., AP or AP + ML 
planes) used, for the bow angle, differences were significantly smaller for the contour 
error metric when using AP and ML projections (p < 0.01), but the intensity met-
ric produced statistically significantly smaller errors when using only AP directions 
(p = 0.01). There is almost no significant difference in other anatomic parameters pre-
diction considered in this study using single or double X-rays.

Discussion
This study investigated if a statistical shape and appearance model (SSAM) of 
the femur can be used to reconstruct patient-specific bone shapes from planar 
X-ray images with an accuracy that enables the model to be used for orthopaedic 

Fig. 2 Comparison of root-mean-square errors (RMSE) between surfaces segmented from medical images 
and surfaces reconstructed using contour line matching and image intensity matching using projections in 
anterior–posterior and mediolateral directions for reconstruction from bones with defect levels of 0%, 10%, 
20% and 50%
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reconstruction. Bone 3D geometry was reconstructed from simulated 2D radiographs 
with different levels of bone defect using two different methods (i.e., SSM and SSAM). 
The reconstructions were evaluated by calculating the RMSE of the reconstructed 
surfaces and the surfaces segmented from CT images and calculating the error of 
commonly used anatomical measures calculated from the surfaces.

To evaluate the methods for use in clinical applications, the precision of anatomical 
measures was compared to deviations reported in the literature. Knee replacement sur-
geries for the treatment of osteoarthritis or sports injuries typically aim for preserving 
the joint alignment and, therefore, the kinematics. Whereas the accuracy of the preser-
vation is influenced by the implant type [9], the positioning of the implant has the largest 
effect on the kinematics. A typical threshold for studies evaluating the lower limb align-
ment in varus–valgus is 3° [12], Yau et al. [50] used the same threshold for the rotational 
alignment to calculate the success rate of joint replacement surgeries and found that 
over 50% of cases had angles above this threshold with values ranging from 17° internal 
to 15° external rotation.

Fig. 3 Comparison of anatomical measures between measures taken from surfaces segmented from medical 
images and surfaces reconstructed using the contour line and image intensity matching using projections 
in anterior–posterior and mediolateral direction from bones with defect levels of 0%, 10%, 20% and 50%. The 
measures were the angle between the anatomical and mechanical axis (a), diaphyseal–condylar angle (b), 
femoral neck angle (c), bow angle (d), and version angles calculated using the posterior condylar axis (PCA) 
(e) and using the trans-epicondylar axis (TEA) (f)
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In this study, the angle between anatomical and mechanical axes, and the diaphyseal–
condylar angle were evaluated to estimate the accuracy of the varus–valgus alignment. 
Whereas median errors between anatomical and mechanical axes are well below the 
threshold of 3° (Fig. 3), median errors for diaphyseal–condylar angle are within the typi-
cal threshold for varus–valgus angle (i.e., 3°) when the bone defects are smaller than 20% 
of the whole bone. Version angles were used to estimate the accuracy of the rotational 
alignment. The median errors in these angles, ranging from 5.3 to 9.3°, were above the 
acceptable threshold used in clinical practice (i.e., 3°), but below the range reported in 
clinical practice using computer navigation [50].

For unicompartmental knee arthroplasties, Ng et  al. [33] reported errors in implant 
placement between 2 and 7° in femoral rotation for a lateral implant, and Jaffry et  al. 
[25] reported errors between 3 and 7°. These measures were evaluated using the 
reconstruction of the trans-epicondylar axis using pre- and post-op CT scans. The errors 
in diaphyseal–condylar angles and version angles reported in this study were close 
to these values. The benefit of the method described in this study lies in the reduced 
exposure to ionising radiation compared to evaluating CT images and, therefore, can 
be an alternative to the estimation of the 3D shapes in surgical planning for unicondylar 
knee replacements.

Applications using augmented reality (AR) for orthopaedic reconstructions of the gle-
noid reported deviations for models of the glenoid of about 2.3 mm mean error [4, 5]. 
Typical registration errors for head-mounted AR systems were reported between 0.8 
[11] and 1.3 mm [7]. The average errors reported in this study had a comparable magni-
tude (Fig. 2).

The shapes reconstructed using the image intensity metric were more accurate when 
only using projections in the AP direction compared to using AP and ML projections 
(Fig.  2). Previous studies comparing reconstructions with more than one perspective 
for planar radiographs using an intensity error metric reported only small differences in 
shape accuracy [23]. In our study, the CT images were only empirically calibrated as the 
CT scans in the Digital Korean data set did not have phantom calibration data included, 
which might result in inaccuracies in the calibration and might result in variations in 
the image intensities. However, the exact relationship in this paper is not relevant, since 
the X-ray images are generated using the same relationship and, therefore, do not influ-
ence the end results. Creating a statistical shape and appearance model (SSAM) using 
CT image calibration using a phantom might reduce the variation which could change 
this behaviour. From the results of this study, reconstructions from intensity values seem 
less important than contour only for the prediction of bone shape. Intensity values rep-
resent the internal structure and bone density and, therefore, to a large degree the bone 
strength. The images for the construction of the shape model were obtained from cadav-
ers covering a large age range and bone density. As bone density reduces with age [14, 
26, 44], an SSAM for a narrow age range might produce more accurate reconstructions 
from matching intensity values. In addition, bone strength and shape are influenced by 
loading in growing bones [2]. Therefore, predictions from image intensities might be 
more significant in paediatric bone shape predictions if an age-specific SSAM is used.

The projection of isolated bone geometries allowed easy segmentation of the contour 
lines. In clinical practice, this might require more, potentially manual, work and is, 
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therefore, a potential source of error which could affect the reconstruction accuracy. 
Automated methods to segment bone geometries have been described in the literature 
[29] which would help minimise segmentation errors. Due to the way bones overlap, 
such as at the hip joint and due to the patella, local differences between clinical 
radiographs and the simulated radiographs in this study were not taken into account. As 
this would only affect local regions it is assumed that it will not have large effects on the 
reconstruction using the matching of intensity values and only affects the reconstruction 
using the contour measure through the segmentation, which is not evaluated in this 
study. In this study, the same projection method to simulate radiographs of the target 
shape and the reconstructions were used. This cannot be assumed for applications in 
clinical practice, where images from different sources might be used. This study tried 
to minimise this effect using an image intensity measure which has been shown to be 
robust for the comparison of images from different modalities [8]. Nevertheless, the 
evaluation of the robustness was not part of this study and needs to be investigated 
separately. The RMSE were used to evaluate the surface reconstruction error in this 
study. This is a commonly used parameter in such studies as it assesses average errors, 
whereas the Hausdorff distance gives information on the maximal error. The RMSE 
and Hausdorff distance were closely related in our study, likely due to the rather 
smooth surface coming from the segmented surfaces and automated surface smoothing 
algorithm. Reconstruction with bone defects from 0% and 50% of the whole bone were 
simulated in this study; therefore, average error was prioritised to take account of the 
different sizes of reconstruction. Finally, the bone geometries reconstructed in this study 
and the shape models were accurately aligned with regard to the anatomical directions, 
so that the projection directions did not need to be adjusted. In clinical practice, this 
might not be the case and an algorithm to maximise similarities between radiograph 
and projection would be necessary to optimise reconstruction results. This is a research 
question on its own and is not addressed in this study. The X-ray image used in this 
study is produced from CT scans using digitally reconstructed radiographs (DRR). We 
used in this study linear projection with a camera distance of 1500 mm (the standard 
clinical distance) without applying magnification of the images, so the projected X-ray 
size might appear different from the true size. However, as the same DRR-based X-ray 
projection setup is used for the sample preparation and shape reconstruction, we believe 
this is unlikely to amend our study conclusions. For clinical use, the DRR parameters 
need to be calibrated and so further study on this point is needed.

Conclusions
In summary, this study showed that reconstructions from 2D planar images using statis-
tical shape and appearance models had an accuracy which would support their potential 
use in orthopaedic reconstruction after trauma, in examples such as a template for the 
reconstruction using AR systems, creating personalised instrumented guides for joint 
reconstruction and construction of patient-specific implants.
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Materials and methods
Subject data

Full-body CT scans of 40 female cadaveric specimens obtained from the Digital Korean 
data set (http:// dk. kisti. re. kr) [36] were used to create statistical shape and appearance 
models (SSAMs) following the method described in Nolte and Bull [34] using a leave-
one-out strategy. In short, the models were created by aligning shapes using rigid body 
transformations calculated using an iterative closest point algorithm [6]; morphing a ref-
erence shape into all other shapes using free-form deformations [42]; creating a tetrahe-
dral mesh of the reference shape and morphing it to all other shapes by solving a Laplace 
boundary condition problem as per Shontz and Vavasis [45],mapping the Hounsfield 
units (HU) from CT scans to the volume meshes by mapping the grey value of the clos-
est voxel; and using a principal component analysis [13]. To allow the Hounsfield units to 
be read and assigned to the created shape model, we use the tetrahedral mesh to divide 
the shape model (i.e., surface only) into multiple “cells” (i.e., as a solid model). Since the 
extracted surface model shares the same coordinates with its DICOM CT images. For 
every single cell, with the known coordinates of the cell centroid point, we can acquire 
the greyscale or Hounsfield unit from the DICOM image, by repeating this for all the 
cells, a model can then be built with greyscale information (appearance model). The sta-
tistical shape and appearance models have previously been published [34], demonstrat-
ing compactness, generalization ability and specificity.

For each specimen, digitally reconstructed radiographs (DRRs) of the segmented 
right femur bones were created using a volume rendering method implemented in VTK 
(VTK 6.3.0, www. vtk. org) to simulate X-ray images. For the volume rendering, a linear 
transfer function describing the relationship between HU and opacity (op) values with 
coefficients op = 0.25 HU/1700, which was determined empirically, was used. DRRs 
were created for projections in the sagittal and coronal planes in anterior–posterior (AP) 
and mediolateral (ML) directions, respectively (Fig. 4). The projections were made with 
a consistent camera distance of 1500 mm to replicate a standard clinical distance.

Fig. 4 Projection directions used for reconstructions from digitally reconstructed radiographs in a anterior–
posterior and b anterior–posterior and mediolateral directions

http://dk.kisti.re.kr
http://www.vtk.org
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Shape reconstruction

The femur shapes of the 40 specimens were reconstructed from the SSAMs by calculat-
ing parameters for the modes of variation to minimise an error metric. For the recon-
structions two error metrics were used: (1) quantification of the similarity of the contour 
of the DRR of the source and the projection of the shape model, and (2) quantification of 
the similarities in grey value intensities of the target DRRs and the DRRs of projections 
of the shape model instances. For the first metric, the contour line was extracted from 
the DRR of the source shape and compared to the aligned contour line of the projection 
of the shape model instantiation by calculating the average distance between contours. 
For the second metric, the grey values of the aligned images were compared by calculat-
ing a Pearson correlation coefficient of the grey values, which has been shown to be a 
robust measure in case the grey value ranges are not calibrated to the same scale [8]. For 
both measures, the images were aligned by extracting the contour lines of both images, 
pre-aligning to match the most proximal point of the contour lines and afterwards mini-
mising the distance between them using an iterative closest point search algorithm [6] 
implemented in VTK. To determine the parameters for the modes of variation, the error 
measures were minimised using a Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimi-
sation algorithm for bound optimisation implemented in Python (L-BFGS-B, www. scipy. 
org).

Evaluation

To simulate bone defects, the distal part of the bones on the DRRs were cropped at lev-
els of 0%, 10%, 20% and 50% of the bone length. Shapes were reconstructed using the 
two methods mentioned above using DRRs in AP only or AP and ML directions. Shapes 
were reconstructed using 14 modes of variation. The initial estimate for the optimisation 
problem was determined iteratively by estimating the parameters for one mode of varia-
tion using a guess of 0.0, and iteratively using the solution as an initial guess to calculate 
the solution for the optimisation problem with one mode of variation more.

The accuracy of the reconstructed shapes was evaluated by aligning the reconstructed 
shapes to the segmented intact bone shapes and calculating the root-mean-square 
error (RMSE) between them. In addition, anatomical measures used in the literature 
were evaluated [15, 34]. These are used in orthopaedic interventions and are the 3D 
angle between two tangent lines connecting the proximal and distal end of the femoral 
anatomic axis (bow angle), the angle between the mechanical and anatomical axis 
(FAA–FMA angle), the version angle using the trans-epicondylar axis (Version TEA) 
and the posterior condylar axis (Version PCA), the diaphyseal–condylar angle and the 
femoral neck angle. Furthermore, the radius of the femoral head was estimated by fitting 
a sphere to points on the bone surface (Fig. 5).

Statistical analysis

The measures for evaluating reconstructions were compared for differences between 
error metrics, defect level and the number of projection planes. Results were analysed 
using non-parametric Kruskal–Wallis tests with paired Wilcox signed rank tests in the 

http://www.scipy.org
http://www.scipy.org
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post-hoc analysis. All tests were performed with a significance level of α = 0.05 using R 
(v3.5.1, www.r- proje ct. org).
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