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Abstract 

Background: Physics-based cardiovascular models are only recently being considered 
for disease diagnosis or prognosis in clinical settings. These models depend on param-
eters representing the physical and physiological properties of the modeled system. 
Personalizing these parameters may give insight into the specific state of the indi-
vidual and etiology of disease. We applied a relatively fast model optimization scheme 
based on common local optimization methods to two model formulations of the left 
ventricle and systemic circulation. One closed-loop model and one open-loop model 
were applied. Intermittently collected hemodynamic data from an exercise motiva-
tion study were used to personalize these models for data from 25 participants. The 
hemodynamic data were collected for each participant at the start, middle and end of 
the trial. We constructed two data sets for the participants, both consisting of systolic 
and diastolic brachial pressure, stroke volume, and left-ventricular outflow tract velocity 
traces paired with either the finger arterial pressure waveform or the carotid pressure 
waveform.

Results: We examined the feasibility of separating parameter estimates for the indi-
vidual from population estimates by assessing the variability of estimates using the 
interquartile range. We found that the estimated parameter values were similar for the 
two model formulations, but that the systemic arterial compliance was significantly 
different ( p < 10

−6 ) depending on choice of pressure waveform. The estimates of 
systemic arterial compliance were on average higher when using the finger artery 
pressure waveform as compared to the carotid waveform.

Conclusions: We found that for the majority of participants, the variability of param-
eter estimates for a given participant on any measurement day was lower than the 
variability both across all measurement days combined for one participant, and for the 
population. This indicates that it is possible to identify individuals from the population, 
and that we can distinguish different measurement days for the individual participant 
by parameter values using the presented optimization method.
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Background
Cardiovascular disease is a leading cause of loss of quality of life and premature death 
worldwide  [1]. Although much of the pathophysiology is known, cardiovascular dis-
ease typically progresses over several years before detectable, and then often severe, 
symptoms emerge. Furthermore, subsequent prediction of the cardiovascular response 
and determining the benefits of early intervention remain challenging. Computational 
modeling has been proposed, by several engineers and researchers, to improve early 
detection and treatment of cardiovascular disease  [2–4]. These models parallel similar 
applications in engineering. However, one of the main issues in medical applications 
is the estimation of model parameter values representing an individual patient (model 
personalization) [4].

Previous research has shown promising results for personalizing cardiovascular 
models [5–12] or predicting intervention effects in settings of localized cardiovascular 
disease and critical care  [13, 14]. In this work, we investigated the application of such 
models as a tool for monitoring of the left ventricle and systemic circulation in appar-
ently healthy adults at risk of developing cardiovascular disease. The parameters of 
hemodynamic models represent mechanical properties of the heart and blood vessels, 
such as contractility, compliance, and resistance, and their estimation can be seen as 
low-level phenotyping. Longitudinal monitoring of subtle changes in individual hemo-
dynamics may provide means for early detection of novel risk factors and cardiovascu-
lar disease progression, which may otherwise be ignored or undetected. Furthermore, 
hemodynamic modeling may be used to predict changes to a given stimuli to determine 
the best course of treatment.

Various approaches for personalizing cardiovascular models have been demon-
strated  [5–12]. We focused on an approach for improving screening of apparently 
healthy adults at risk of cardiovascular disease in clinical practice. In this context, 
we identified three main factors influencing the choice of model and personaliza-
tion method. First, we considered the cardiovascular physiology of interest which was 
defined by targeted model outputs such as central blood pressure, ventricular and aor-
tic blood flow. Second, the objective of widespread hemodynamic monitoring limits the 
feasibility of acquiring detailed anatomical data on vascular networks, and thus, we con-
sidered which data may be available in a realistic clinical setting. We focused on models 
and personalization methods that can be accomplished from widely available non-inva-
sive clinical measurements, such as echocardiography and continuous blood pressure 
monitoring. Third, we considered model performance in terms of precision, accuracy, 
and predictive power. A main consideration was that increased model complexity may 
give a better representation of underlying mechanisms, but requires more data to con-
strain the additional parameters [3, 15]. Another consideration, of relevance to clinical 
practice, was the computational complexity and time cost of evaluating more sophisti-
cated models. Indeed, increased model complexity becomes particularly problematic in 
the personalization process as computational demands for estimation of personalized 
parameters can increase. Additionally, a more complex model with more personalizable 
parameters increases uncertainty in model outputs [3]. We investigated two effectively 
minimal models of the cardiovascular system consisting of lumped parameter repre-
sentations of the left ventricle and the systemic circulation in a closed- and open-loop, 
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respectively. In summary, the minimal approach in this work was motivated by the car-
diovascular physiology of interest, the limited clinical data, and the long-term goal of 
enabling personalized predictions in clinical practice without a large additional burden 
to the patient and healthcare provider.

In this work, we developed a computationally efficient approach to personalize two 
minimal models based on numerical optimization to adapt the model outputs to meas-
ured data. Our approach is presented as a computationally cheaper method compared 
to more complex global methods. Simultaneously, we used an ensemble of estimates to 
account for uncertainty in the initial parameter estimates. We evaluated this modeling 
and personalization approach with available data from 25 individuals, with initially low 
physical activity levels, participating in a pilot study investigating the effects of physical 
activity self-monitoring on blood pressure. The participants were given advice on how 
much physical activity they should aim to engage in over the course of 12 weeks while 
monitoring their activity by wrist-worn heart rate sensors. Clinical measurements of 
blood pressure, volume, and flows were acquired at the beginning, middle, and end of 
the intervention period to detect potentially non-linear parameter changes. This study, 
similarly to the work of [16], investigates the change of parameters throughout an inter-
vention period, which could give more insight into progression of disease or therapy. 
However, Audebert et al. focus on a parameter in response to disease progression in rats, 
while we monitor exercise as hypertension therapy in humans.

Our primary objective was to find personalization methods which could reliably esti-
mate model parameter values specific for each participant and measurement day. Our 
evaluation of the parameter estimates used the relative variability of individual param-
eter estimates in comparison to the variation of parameter estimates for all participants. 
To this end, we express variability as the interquartile parameter range normalized by 
the median and refer to it as the interquartile range (IQR). Furthermore, we evaluated 
the consistency in parameter estimates from the closed- and open-loop models and 
using various pressure waveforms. The model output of primary interest was the cen-
tral aortic pressure wave for monitoring of medical conditions such as hypertension. In 
summary, this study investigates the feasibility of using lumped parameter models with 
different data to detect personalized changes in model parameters after 6 to 12 weeks of 
exercise.

Method
In this work, we used data on brachial arterial pressure, finger arterial pressure, pulse 
wave velocity (PWV), and volumetric flow in the left-ventricular outflow tract (LVOT) 
before and after 6 and 12 weeks of physical activity.

Study design, setting, and participants

Personal Activity Intelligence (PAI) is a personalized and relative metric of exercise 
frequency, duration, and intensity based on heart rate monitoring and an accumulated 
score of ≥ 100 PAI/week is associated with higher cardiorespiratory fitness and lower 
cardiovascular mortality [17, 18]. We used data from a pilot randomized controlled trial 
to assess whether a 12-week intervention with PAI monitors increase physical activity 
and reduce 24-h ambulatory blood pressure in adults with elevated blood pressure [19]. 
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A secondary aim of the trial was to collect data for computational models describing 
cardiovascular remodeling of physical activity. The data provided varied opportunities 
for personalizing models, and this work outlines our approach for model personaliza-
tion. The trial was approved by Regional Committee on Medical and Health Research 
Ethics of Norway (Identifier: 2019/1084) and preregistered on clinicaltrials.org (Identi-
fier: NCT 04151537).

Data collection

All hemodynamic measurements were collected at pre- (baseline), mid- (6 weeks), and 
post-intervention (12 weeks), denoted 1, 2, and 3 as superscripts in the formulations, 
respectively.

Physical activity monitoring

To assess physical activity level at baseline and during the whole 12-week intervention 
period, all participants were provided a wrist-worn heart rate monitor without a dis-
play (LYNK2). The monitor automatically processed raw heart rate data to an aggre-
gated weekly PAI score. The baseline period lasted one initial week directly before the 
intervention period. Twenty-six initially inactive participants (< 50 PAI/week based 
on self-reported physical activity) with elevated blood pressure (systolic ≥ 130 mmHg 
and/or diastolic ≥ 80 mmHg) were randomized 1:1 to an active intervention or passive 
control. Participants in the active intervention were provided with a mobile application 
for self-monitoring of PAI score and were instructed to obtain and maintain ≥ 100 PAI/
week. Participants in the passive control were recommended to follow the World Health 
Organization’s physical activity guidelines of 150 min of moderate intensity or 75 min of 
vigorous intensity activity or any combination thereof per week [20].

Blood pressure recordings

Brachial and finger pressure were measured with non-invasive cuff-based devices. Bra-
chial pressure measurement yielded momentaneous measurements of systolic and dias-
tolic blood pressures, while the finger pressure measurements provided continuous 
waveforms.

Brachial pressure was recorded in two ways. First, brachial pressure was assessed in 
the sitting position with an automatic blood pressure monitor (TangoM2, SunTech Med-
ical Inc) at the test station, which is from this point on referred to as office blood pres-
sure. Second, brachial pressure was measured with a 24-h ambulatory blood pressure 
monitor (Oscar 2 model 250, SunTech Medical Inc), which is abbreviated to ABPM. We 
used the average systolic and diastolic blood pressure during waking hours in the data 
analyses.

Finger arterial pressure was measured in the left lateral recumbent position using 
Finometer PRO (FinaPres) for 4 of the participants and Non-Invasive Blood Pres-
sure Nano (FinaPres) for the remaining participants. We synchronized all finger artery 
recordings with LVOT flow obtained with echocardiography.
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Echocardiography

All participants underwent three full echocardiographic assessments (Vivid E95, Ving-
Med). Velocity flow trace in the LVOT and stroke volume (SV) from the left ventricle 
were the considered most relevant measurements. Traces of LVOT flow was synchro-
nized with finger pressure for at least three heart cycles. The first cycle was assumed to 
be less prone to noise and extracted as the sample cycle. We converted the velocity trace 
as the volumetric flow in units of milliliters per second (mL/s) to be compatible with 
the model formulation. Stroke volume was computed from 4D measurement of the left 
ventricle which was automatically segmented to determine SV and averaged over multi-
ple heart cycles using EchoPAC (GE Healthcare). Stroke volume was used to rescale the 
LVOT flow cycle integral such that the cycle sample corresponded to the volume meas-
ured in 4D, which we have assumed to be a more accurate and stable measure of the SV 
as it was automatically averaged over multiple heart cycles.

Applanation tonometry

Pulse wave velocity was acquired by applanation tonometry (SphygmoCor CvMS v9, 
AtCor Medica). The PWV was estimated by monitoring the carotid and femoral pres-
sure waves and computing the time of pulse propagation from the ventricle to the two 
points. Uncalibrated pressure cycles are reported as an image with marker points for 
each QRS complex. We extracted carotid pressure waveforms from the tonometry 
traces. The cyclic waveform data points were digitized using WebPlotDigitizer [21]. We 
used carotid and finger pressure waveform data for our model optimizations as continu-
ous blood pressure data have been shown to give better estimates than using momenta-
neous measurements using synthetic data [22].

Data preprocessing

The data preprocessing described in this section and the data analyses described in the 
subsequent sections were executed in Python (Version 3.9).

Finger pressure

Arterial finger pressure was synchronized to the LVOT flow signal to the precision of 
the closest heart beat for all three aortic flow measurement locations. The flow data were 
interpolated to match the time points of the pressure recording to ensure the same fre-
quency and enable applying a standard numeric solver to the paired data. The pressure 
cycle was rescaled to match ambulatory blood pressure to use the finger pressure wave-
form as a proxy of more central waveforms.

Tonometry traces

The tonometry traces were of varying quality and we assessed all cycles manually before 
determining which to include in the analyses. The waveforms were assessed visually and 
discarded if they were obviously distorted, lacked any signs of the dicrotic notch plateau, 
or did not represent complete heart cycles. The remaining cycles, each representing a 
heartbeat, were normalized to a uniform scale, averaged, and subsequently scaled to 
match ambulatory blood pressure. The cycle lengths were averaged to estimate the heart 
rate, and the final pressure cycle was standardized to this heart rate.
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Pressure and flow waveform alignment

None of the collected pressure and flow waveforms were collected at the same sam-
pling rate which was required by the chosen estimation algorithm. Matching time 
points ensures equal weighting of the two waveform signals due to number of con-
tributing residuals in an optimization context. When pairing flow and the finger pres-
sure signals, the heart cycle was determined by identifying the distance between start 
of upstroke for the first flow cycle and to the next start of upstroke. These time points 
were then used to extract a corresponding pressure cycle from the continuous pres-
sure recording. The flow signal was linearly interpolated to match the time points of 
the finger pressure. For the carotid waveforms, the data with the largest mean inter-
point distance in time had their measurement points rearranged to be evenly distrib-
uted over the corresponding heart cycle. Afterwards, both pressure and flow signals 
were interpolated to the new uniformly distanced time points. The number of total 
data points for the flow and carotid pressure waveforms were often comparable and 
therefore the number of total discretized points were not changed considerably in 
most cases due to interpolation. All pressure measurements were linearly rescaled 
so that the maximum and minimum of the waveform matched the ambulatory blood 
pressure systolic and diastolic values. However, in a single set of measurements the 
ambulatory blood pressure was missing and office blood pressure was used instead.

In both cases, the flow cycle length in time was rescaled to have the same heart 
rate as the pressure sample, and to have the same SV as recorded in 4D echocardi-
ography mode. In cases where 4D SV were missing, we used the SV calculated by 
EchoPac from the LVOT flow. All pressure and flow cycles were aligned to start at 
systolic upstroke.

Models

In this work, we applied two models of the left ventricle and systemic circulation. One 
closed-loop model in which the venous pressure and volume was estimated as a model 
prediction and one open-loop model which assumed fixed venous pressure and left atrial 
pressure. The parameters chosen for personalization in our models are shown in Table 1.

Closed‑loop model

The simplified closed-loop model used for personalization has been presented by 
Bjørdalsbakke et al. [22], and is based on similar models by Segers, Smith and Stergio-
pulos et al. [2, 23–26]. An illustration of our version of the model is provided in Fig. 1.

The closed-loop model is described by a system of differential equations characterizing 
the behavior of the stressed volumes of the ventricle, arteries, and veins. All flows were 
computed as the pressure gradient across resistances between the model compartments. 
Each separate compartment was modeled using a linear relationship between pressure 
and volume. See “Model equations” section for the full mathematical model description.

Open‑loop model

The open-loop model formulation is identical to the closed-loop model, except that 
the venous compartment is removed. This means the venous compliance parameter 
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is replaced by a fixed venous pressure value, which in turn means that the total 
stressed blood volume parameter fluctuates. The model is identical to the one used 
by Stergiopulos et  al. [24], but we set the constant venous pressure to Psv = 6.0 
mmHg, which is a value within the range of a normal central venous pressure (CVP) 
[27, 28]. See Fig. 1 for an illustration of the model. Additional details of the math-
ematical description can be found in “Model equations” section.

Model output

The model outputs such as pressure and flow are denoted as y(t, θ) to emphasize 
that each output varies with time t and the parameter vector θ . From these model 
predictions, estimates of clinical measurements can be derived. The model predic-
tions were computed numerically using SciPy’s implementation of the 4th-order 
Runge–Kutta (RK4) method to integrate the differential equations  [29]. The model 
was solved for 10 heart cycles, and the tenth cycle was taken as the model prediction.

Fig. 1 a The closed-loop, lumped parameter model of the left ventricle, systemic arteries, and veins. b 
The open-loop lumped parameter model of the left ventricle and systemic arteries. The circuit equivalent 
formulation of the models are depicted with the pressures and most of the mechanical parameters used to 
describe the systemic circulation. The venous compartment is volumeless and only partially described in the 
open-loop model. Adapted from Bjørdalsbakke et al. [22], and used under CC-BY 4.0



Page 8 of 35Bjørdalsbakke et al. BioMedical Engineering OnLine           (2023) 22:34 

Parameter estimation

The inference method for the parameters was based on a local optimization method, 
similar to the work outlined in [22]. We preferred a local optimization method as it is 
most feasible to apply to routine screening in clinical practice as global methods often 
demand higher computational costs. The SciPy implementation of the Trust-Region 
Reflective Algorithm (TRRA) was chosen as it supports the use of bounds for differ-
ent parameters [29], which can constrain the parameter space to more physiologically 
realistic parameters.

Both models take a vector of parameters θ and generate outputs y(tk , θ) at time 
point k. A real measurement at the same time point can be described as being com-
posed by this model output and other terms of the form

where Ek is a measurement error or noise. However, to infer the parameters which 
reproduce a measured set of data, a problem on the form

must be solved. Here, J is a cost function which characterizes the optimization problem. 
In this work, we focused on non-linear least squares optimization.

The TRRA is dependent upon a set of initial parameter guesses θ where the ith compo-
nent of the vector is θi . We found personalized parameter estimation by applying the TRRA 
in a five-step procedure. In short, the procedure can be described as follows: 

1 Use the TRRA to make 30 parameter estimates from 30 different sets of initial 
guesses.

2 Take the initial parameter guess which yields the lowest cost function value estimate 
and create a new uniform distribution centered on these parameter values.

3 Make 20 new initial guesses based on the best previous guess and produce 20 new 
sets of estimates, we call this set of parameters �step2.

(1)ymk = y(tk , θ)+ Ek ,

(2)ˆθ = arg min J (θ)

Table 1 The closed-loop model parameters are listed with their corresponding symbols and units. 
The same parameters are used to describe the open-loop model except for Csv and Vtot

Symbol Description Unit

Cao Systemic arterial compliance mL
mmHg

Csv Systemic venous compliance mL
mmHg

Emax Maximal left ventricular elastance mmHg
mL

Emin Minimal left ventricular elastance mmHg
mL

Rmv Mitral valve resistance mmHg s
mL

Rsys Total peripheral resistance mmHg s
mL

T Heart period s

tpeak Time of peak ventricular elastance s

Vtot Total stressed blood volume mL

Zao Characteristic impedance of the aorta mmHg s
mL
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4 Make a selection based on the best cost function values from Step 3, �p,d,k
filtered , where k 

denotes the kth filtered estimate, and p refers to participant, while d represents pre-, 
mid-, and post-intervention measurement days encoded as 1, 2, and 3.

5 Compute the final parameter estimate as the mean of the estimates from Step 3, such 
that ˆθp,dmean,i =

1
Nk

∑

k �
p,d,k
filtered,i . Nk is the number of remaining estimated parameter 

vectors in �p,d
filtered after filtering.

To find the best parameter estimates, guesses for each component of the parameter vec-
tor were sampled from a uniform distribution with a lower bound θlower,i and upper bound 
θupper,i . Consequently, we sampled the initial parameter guesses in Step 1 as

where U(a, b) is a continuous uniform distribution, with upper and lower bound a and 
b. Thirty sets of initial parameters sets were sampled and used to optimize the cost func-
tion J (θ) . In Step 2, the initial parameter guess resulting in the optimization with the 
smallest cost function value was taken as a new reference set θmin to sample 20 more 
guesses, in Step 3, from a uniform distribution with limits 10% below and above the 
components of the reference parameter set as in

This procedure resulted in multiple sets of estimated parameters ˆθ which in Step 4 were 
filtered by only accepting the results with a cost function value smaller than or equal 
to the mean value of the 20 optimized parameter sets from Step 3. Lastly, in Step 5, the 
mean of the selected parameter sets were taken as the final parameter estimate for par-
ticipant p on measurement day d, ˆθ

p,d

mean.
The cost function was designed to adapt the model to the pressure and flow waveforms, 

SV, and ambulatory blood pressure. If we let Pm
k  denote the measured pressure and Pao,k 

denotes the model output aortic pressure at time point k, while Qm
k  and Qk denote the aortic 

flow, then the cost function can be expressed as

Here, N is the number of time points in the waveform sample, Psys and Pdia are the sys-
tolic and diastolic values of the pressure waveform, SVm is the SV corresponding to the 
area under the flow waveform, and the m superscript denotes a real measurement. SV 
as determined by the model is the SV calculated as the maximal change of volume in 
the left ventricle throughout the final heart cycle. The final term constrained the mean 
venous pressure ( MVP ) computed by the model to approximately 6 mmHg, which is a 
value within the range of a normal central venous pressure (CVP) [27, 28]. The model 
only models the Psv which is the averaged pressure of all veins and is not actually tied 
to a vein in particular. We calculate the mean value of the pulsatile Psv signal to create 

(3)θi = U(θlower,i, θupper,i),

(4)θi = U(0.9θmin,i, 1.1θmin,i).

(5)

J (θ) =

N
∑

i

(

Pm
i −Pao,i
Kp

)2
+

∑N
i

(

Qm
ao,i−Qao,i

Kq

)2

+

7.52N 2

402

[

(

Pm
sys−Psys

Kp,sys

)2

+

(

Pm
dia−Pdia
Kp,dia

)2
]

+

7.52N 2

402

[

(

SVm
−SV

KSV

)2
+

1
9

(

6.0−MVP
KMVP

)2
]

.
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the mean venous pressure indice MVP . We thereafter approximate the MVP indice to 
be equal to the CVP as this influences ventricular filling, and the is the model concept 
most closely related to CVP. All constants K are scaling constants with a magnitude sim-
ilar to a reference level for the different measurement types. For further details, settings, 
and bounds for the optimization routine, see Optimization algorithm details. The cost 
function was identical for both models, except for the final venous pressure term, which 
was not applicable to the open-loop model. The weights 7.5

2N 2

402
 and 2.5

2N 2

402
 were manually 

tuned to assign more weight to the pressure extrema values and clinical indices as these 
are particularly important in clinical settings, and  perhaps also more likely to express 
cardiovascular remodeling. The number 40 was chosen as a reference scale since the 
number of data points in the carotid waveform and LVOT flow signals were usually close 
to this number before interpolation.

Previous optimization of parameters for the closed-loop model using aortic pres-
sure and flow shows that Emin,Rmv and Zao are among the most challenging param-
eters to estimate in synthetic data produced by the model itself with Gaussian noise 
[22]. These three parameters were found to be least sensitive to aortic pressure when 
applying a sensitivity analysis to the model. In the parameter optimization routine 
used, these parameters were therefore not prioritized for attempted personaliza-
tion. The remaining parameters in Table 1 were chosen for estimation, except for T 
which was estimated directly from the waveform cycle lengths. Despite the low sen-
sitivity value, Zao was included for optimization since initial attempts at optimizing 
the model to real data indicated that this improved the model’s ability to recreate the 
pressure waveform during systole. For the open-loop model, the same parameters 
were personalized as for the closed-loop model, except for Vtot and Csv . The mitral 
valve resistance was fixed to be Rmv = 0.02

mmHg s
mL  . Emin was fixed to 0.055 or 0.06 

depending on whether or not the systolic pressure was below 140 mmHg, see Optimi-
zation algorithm details for further details.

All model output waveforms incorporated in the cost function were aligned with 
pressure and flow data by enforcing that the model outputs always started at begin-
ning of systole. No single parameter determines the start of systole in the model, so 
this was done by translating the waveforms in time until they started at the correct 
value.

Post‑processing of parameter estimates

All computed parameters were normalized by body surface area (BSA) computed as

All participants had height and weight measured at pre-intervention, while weight was 
also measured at mid- and post-intervention and BSA updated accordingly. All param-
eter estimates, except for tpeak , have been BSA indexed as a normalization to account 
for variations in body size for parameters, which may be assumed to be body size 
dependent.

(6)BSA =

√

Height ·Weight

3600
.
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Due to noisy or missing data or missing synchronization data, we could not compute 
parameters for all study participants. Thus, we defined two data sets, both included the 
LVOT flow trace converted to volumetric flow, the ambulatory blood pressure values 
and stroke volume. The first data set included the finger pressure waveform scaled by 
ambulatory blood pressure and synchronized with the LVOT flow cycle, while the sec-
ond data set included the averaged carotid pressure waveform scaled by ambulatory 
blood pressure paired with the LVOT flow cycle.

The data sets based on finger pressure had 50 eligible measurements across all partici-
pants and measurement days, while the carotid pressure had eligible 62 measurements. 
For finger pressure, 9 participants could be identified at all three measurement days, 
whereas 14 participants were identified for carotid pressure. Seven of these participants 
had eligible measurements for both pressures. The total number of unique study par-
ticipants in the data set was 25 when counting all data sets where all three measurement 
days were not present. For all eligible participants, and for both models, we estimated 
Emax , Rsys , Cao , tpeak , Zao . For the closed-loop model, Csv and Vtot were also estimated.

The variability within estimates for each individual participant and the population as 
a whole were assessed by computing the interquartile range and dividing by the median 
value. In this manuscript, we refer to this as the interquartile ratio (IQR):

where the 25% and 75% subscripts refer to the corresponding percentiles. The means for 
the parameters over all participants and all measurement days were computed to also 
assess if there were differences in estimates between model formulations and pressure 
waveforms.

We used IQR to assess estimate variability in three different contexts. First, we inves-
tigated the variability in estimates for single participants on any measurement day, for 
which we calculated the IQR based on the set of estimates �filtered yielded from a single 
set of raw data, i.e., a given participant on a given measurement day. The median IQR for 
these estimates was found, and the first and third quartiles were interpreted as a meas-
ure of variability in the IQR for each participant on any measurement day. We computed 
the IQR for all eligible participants whether they had 1, 2 or 3 available measurement 
days. We refer to this as the “Single day IQR”.

Second, the variation across an individual over all measurement days d was assessed 
for each individual p. The three estimated sets �filtered resulting in parameter estimates 
ˆθ
p,1

mean , ˆθ
p,2

mean , and ˆθ
p,3

mean for each participant p were combined to make one common set 
of parameters �p

all days containing the best optimized parameter estimates across all 
measurement days for each individual. Only participants whose parameters could be 
estimated for all 3 days were included. For each participant, the IQR was computed 
based on the set �p

all days , and afterwards the median IQR and first and third quartiles 
were determined. We named this quantity the “Multiple day IQR”.

Third, we computed the final parameter estimates ˆθ
p,d

mean for all participants on all 
measurements days and subsequently collected these in a set for which we computed 
the IQR value. This IQR value was interpreted as the variability in parameters across the 

(7)IQR =

θi,75% − θi,25%

ˆθi,median

,
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population and across all measurement days. All participants were included, and this 
IQR measure is referred to as the “Population IQR”. This quantity is not presented with 
standard deviations as it is a single value characterizing the study population. All three 
IQR analyses were repeated for both models and the data sets with pressure waveform 
measured in either the carotid artery or finger artery.

Other methods for estimating model parameters

The arterial parameter estimates from the personalization could be compared to esti-
mates made with more traditional methods to estimate these. Arterial compliance can 
be estimated by

where PP is the brachial artery pulse pressure as a proxy for more central pressure. Simi-
larly, the vascular resistance can be estimated by

where CO is cardiac output and MAP is mean arterial pressure calculated as the mean of 
the pressure waveform scaled with brachial pressure.

Quality of waveform optimizations

To assess whether the estimated model parameters could recreate the waveforms and, 
especially, the other indices included in the cost function accurately, we examined the 
unscaled residuals between model predictions and data. Instead of listing each residual 
for every participant and measurement day, we assessed the mean absolute value of 
residuals on each measurement day for both data sets and model formulations sepa-
rately. The model outputs used to compute the residuals are the outputs based on the 
final parameter set based on the averaged parameters from the best optimization sets, 
ˆθ
p,d
mean,i.

Summary

From a pilot randomized controlled trial on self-monitoring of physical activity, blood 
pressure and echocardiography data for initially inactive adults were available. We 
implemented a closed- and open-loop model of the left ventricle and systemic circu-
lation in Python, and optimized these using local methods to paired data of pressure 
and flow waveforms, including SV . Pressure waveforms collected by non-invasive fin-
ger pressure measurement and carotid applanation tonometry were paired with aortic 
flow data and applied to parameter estimations for the trial participants. We computed 
the variability in estimates for each individual and the population as whole using our 
definition of the IQR and assessed how well the parameters of participants and possible 
parameter changes could be resolved from the population.

(8)˜Cao ≈

SVm

PPm
,

(9)˜Rsys ≈
MAPm

COm
,
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Results
The results in this section are based on analysis of parameter estimates for individuals 
over multiple measurement days (model personalization). We computed estimates for 
both a closed- and an open-loop model, but added an additional dimension in doing so 
for two different data sets including either the carotid or finger pressure waveforms.

Parameter estimate variability in individuals compared to the population

The IQR as defined by equation (7) was calculated for the variation in estimates for the 
population given either the finger pressure or carotid pressure waveform. Similarly, the 
IQR scores for all individuals across all measurement days were expressed by the median 
IQR and variation presented as the first and third quartiles. The IQR values were calcu-
lated for both the closed- and open-loop models and the results are shown in Figs. 2 and 
3, respectively. Figures 2–5 display the IQR for several model parameters and outputs. 
The IQR is unitless, but otherwise the units used are the same as in Table 1 for model 
parameters, only BSA indexed, and hence divided by m2 unless otherwise noted. Only 
tpeak is not BSA indexed.

The IQR was computed for different model outputs which are shown in Figs.  4, 5, 
for the closed- and open-loop models, respectively. All pressures Psys , Pdia , PP (pulse 

Fig. 2 The interquartile ratio (IQR) computed for the parameters of the closed-loop model. The “Single day 
IQR” which is based on the median IQR values for the estimates for single individuals on any measurement 
day are included. The whiskers indicate first and third quartiles. The variation in individuals over all 
measurement days are displayed as “Multiple day IQR”. The final parameter estimates for all individuals in the 
different data sets yield the “Population IQR”. “F” indicates the data set with finger pressure waveform, and “C” 
indicates the data set with the carotid pressure waveform. The IQR refers to the difference between the upper 
and lower quartiles divided by the mean parameter value. Emax is the maximal left-ventricular elastance, Cao is 
the systemic arterial compliance, Rsys is the total peripheral resistance, tpeak is the time of maximal ventricular 
elastance, Zao is the characteristic aortic impedance, Vtot is the total stressed blood volume, and Csv is the 
systemic venous compliance
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pressure), MAP (mean arterial pressure) and MVP (mean venous pressure) are measured 
in units of mmHg. Stroke volume SV is given in mL, while stroke work SW is expressed 
in mmHg·mL.

Parameter estimates compared between different data sources

The mean parameter values scaled by BSA were compared for the different pressure 
waveforms (finger and carotid) and for the closed- and open-loop models. The results 
are displayed as mean values with standard deviations in Fig. 6. There are minor differ-
ences between the estimate averages, especially between model formulations. The open-
loop models have on average a marginally lower Emax than the closed-loop model. The 
estimate differences are larger between the different waveforms, where for example the 
Cao estimates are on average higher for the finger pressure waveform than the carotid 
pressure waveform.

Figure 6 contains the results from the complete case analysis of both models and pres-
sure waveforms. We also picked the 47 paired samples where both pressure waveforms 
were available for the same participant and compared the means in Table 2. The func-
tion ttest() from the Pingouin Python library version 0.5.1 was used to perform a paired 
sample t-test and compute the mean difference and 95% confidence interval between 

Fig. 3 The interquartile ratio (IQR) computed for the parameters of the open-loop model. The “Single day 
IQR” which is based on the median IQR values for the estimates for single individuals on any measurement 
day are included. The whiskers indicate first and third quartiles. The variation in individual participants over 
all measurement days are displayed as “Multiple day IQR”. Final parameter estimates for all individuals in the 
different data sets yield the “Population IQR”. “F” indicates the data set with finger pressure waveform, and “C” 
indicates the data set with the carotid pressure waveform. The IQR refers to the difference between the upper 
and lower quartiles divided by the mean parameter value. Emax is the maximal left-ventricular elastance, Cao is 
the systemic arterial compliance, Rsys is the total peripheral resistance, tpeak is the time of maximal ventricular 
elastance, and Zao is the characteristic aortic impedance
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finger and carotid pressure [30]. The difference between sample means was found to 
be statistically significant for both models, see Table  2. The paired sample differences 
for arterial compliance Cao were computed and the 5th, 25th, 50th, 75th and 95th per-
centiles were presented to give an indication of the distribution of differences not being 
extremely asymmetrical. For the closed-loop model these percentiles were −0.005, 0.233, 
0.430, 0.575, and 0.771, respectively, while for the open-loop model they were 0.035, 
0.186, 0.380, 0.538, and 0.709 in units mL / (mmHg·m2 ). The paired samples mean Cao 
estimates were 1.275 and 0.876 for the closed-loop model with the finger pressure wave-
forms and carotid pressure waveforms, respectively. Similarly, for the open-loop model 
the finger pressure-based sample mean was 1.221, while the carotid pressure-based sam-
ple mean was 0.860. Paired t-tests for other parameters can be seen in the supplemen-
tary materials.

Comparison of arterial parameter estimates to other estimation methods

To assess the credibility of arterial parameter estimates, we compared model estimates 
to more conventional estimation techniques for Cao and Rsys as expressed by equations 

Fig. 4 The interquartile ratio (IQR) computed for model outputs generated by the closed-loop models, each 
model instance optimized for one individual. The “Single day IQR” is based on the median IQR values for the 
model outputs from the variation in parameter estimates for single individuals on any measurement day. 
The whiskers indicate first and third quartiles. The variation in the best optimized sets of model outputs from 
individuals over all measurement days are displayed as “Multiple day IQR”. The model outputs based on the 
final parameter estimates for all individuals in the different data sets yield the “Population IQR”. “F” indicates 
the data set with finger pressure waveform, and “C” indicates the data set with the carotid pressure waveform. 
The IQR refers to the difference between the upper and lower quartiles divided by the mean parameter value. 
Psys is the systolic aortic pressure, Pdia is the diastolic aortic pressure, SV is the stroke volume indexed by body 
surface, PP is the aortic pulse pressure, MAP is the mean arterial pressure, MVP is the mean venous pressure, 
and SW is the left-ventricular stroke work
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(8) and (9), respectively. Figs.  7–8 show the results for the parameter comparisons in 
scatter plots for the closed- and open-loop models, respectively. The Pearson correlation 
coefficient (r) was calculated for all comparisons as shown in Table 3. The correlation 
coefficient and confidence intervals were found by the corr() function in the Pingouin 
Python library. Estimates for Rsys had a high degree of correlation to the other estima-
tion method, while Cao showed a moderate amount of correlation. While both models 
yielded similar results, the measurement location for the pressure waveform does affect 
the results for Cao reducing the correlation.

Quality of optimization results

Closed‑loop model

The quality of model optimization was assessed by the unweighted percentage errors of 
the measurements in the cost function (equation (5)). The results are shown in Table 4, 
for estimates based on the carotid and finger pressure waveforms for all measure-
ment days separately and collectively. The upper and lower quartiles for the percent-
age errors along the data points of the pressure and flow waveforms were computed, 
and the median values for these quartiles across all participants at different choices of 

Fig. 5 The interquartile ratio (IQR) computed for model outputs generated by the open-loop models, each 
model instance optimized for one individual. The “Single day IQR” is based on the median IQR values for the 
model outputs from the variation in parameter estimates for single individuals on any measurement day. 
The whiskers indicate upper and lower quartiles. The variation in the best optimized sets of model outputs 
from individuals over all measurement days are displayed as “Multiple day IQR”. The model outputs based on 
the final parameter estimates for all individuals in the different data sets are used to compute bars labeled as 
the “Population IQR”. “F” indicates the data set with finger pressure waveform, and “C” indicates the data set 
with the carotid pressure waveform. The IQR refers to the difference between the upper and lower quartiles 
divided by the mean parameter value. Psys is the systolic aortic pressure, Pdia is the diastolic aortic pressure, 
SV is the stroke volume indexed by body surface, PP is the aortic pulse pressure, MAP is the mean arterial 
pressure, and SW is the left-ventricular stroke work
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measurement days are given in the table. Typical examples of the quality of waveform 
fits can be found in Figs. 9 and 10. The worst optimized samples according to cost func-
tion value can be found in Figs. 11 and 12.

Open‑loop model

The quality of model optimization were assessed by the unweighted residuals of the 
clinical indices in the cost function (equation [5)] in Table 5, for estimates based on 
the carotid and finger pressure waveforms for all measurement days separately and 
collectively. Waveform percentage error quartiles and their median value across all 
participants are given in the table, equivalently as for the closed-loop model. Typical 
examples of the quality of waveform fits can be found in Figs. 13 and 14. The worst 
optimized samples according to cost function value can be found in Figs. 15 and 16.

Fig. 6 The mean parameter estimates, and standard deviations, for all individuals in the different data 
sets. These results originate from estimates made for the closed-loop (“CL”) and open-loop (“OL”) models, 
respectively. “F” indicates the finger pressure waveform, and “C” indicates the data set with the carotid 
pressure waveform. The y-axis represents model parameters and units listed in Table 1 as BSA indexed values, 
with the exception of tpeak which is given in units seconds, s. Emax is the maximal left-ventricular elastance, 
Cao is the systemic arterial compliance, Rsys is the total peripheral resistance, tpeak is the time of maximal 
ventricular elastance, Zao is the characteristic aortic impedance, Vtot is the total stressed blood volume, and Csv 
is the systemic venous compliance
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Discussion
The variation in parameter estimates for individuals were consistently smaller than the 
variability in the same parameters for the whole study population, as shown in Figs. 2 
and 3. Consequently, this study shows that it is possible to estimate the model parame-
ters for individuals and separate them from parameters of other individuals in the popu-
lation for the presented estimation heuristic.

The estimates for Csv , and Vtot were subject to the most variability in the popula-
tion regardless of using the pressure waveform from the carotid or finger artery for the 
closed-loop model. However, for the open-loop model Emax , Cao , and Zao were the most 

Fig. 7 The scatter plots of closed-loop model parameter estimates for total peripheral resistance Rsys (top 
panels) and arterial compliance Cao (bottom panels), compared to estimates from conventional methods, 
using the data sets with the carotid (left panels) and the finger pressure (right panels) waveforms. Model 
estimates are on the x-axes, while conventional estimates are on the y-axes

Table 2 Mean arterial compliance Cao parameter values averaged over different samples of 
measurements for both model formulations and choice of data set. The p-value and 95% confidence 
interval (CI 95%) are obtained by a two-tailed t-test for paired data comparing the mean parameter 
values using the finger and carotid pressure waveforms, respectively, within the same model

Model Samples Mean Cao w/ Mean Cao w/ 95% CI for p‑value

finger pressure carotid pressure mean difference

[mL/(mmHg·m2)] [mL/(mmHg·m2)] [mL/(mmHg·m2)]

Closed-loop Mixed 1.28 0.91 – –

Closed-loop Paired 1.28 0.88 [0.33, 0.47] p < 1.0e − 14

Open-loop Mixed 1.23 0.90 – –

Open-loop Paired 1.22 0.86 [0.29, 0.43] p < 1.0e − 13
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variable parameters, but the variability was similar in all three parameters. This study 
indicates that the estimates using the carotid pressure waveform are more or equally sta-
ble for the individual than using the finger pressure waveform, as seen in Figs.  2 and 
3. This same pattern is not as apparent in the open-loop model, which may be due to 
either the parameter space having fewer dimensions or the altered model structure 
itself. Figures 4 and 5 show that the estimates for the individual had low variation, which 
was far smaller compared to the population IQR. This suggests that high variability in 
some model parameters, such as venous compliance, does not affect model outputs 

Fig. 8 The scatter plots of open-loop model parameter estimates for total peripheral resistance Rsys (top 
panels) and arterial compliance Cao (bottom panels), compared to estimates from conventional methods, 
using the data sets with the carotid (left panels) and the finger pressure (right panels) waveforms. Model 
estimates are on the x-axes, while conventional estimates are on the y-axes

Table 3 Correlation coefficients for parameters estimated by the local optimization approach 
compared to estimates from more conventional methods. Hence, the correlations are found 
between Cao and C̃ao for arterial compliance, while Rsys versus R̃sys yield the correlation for peripheral 
resistance. The p-value and 95% confidence interval (95% CI) was obtained by a two-tailed t-test

The scatter plots of these variables can be seen in Figs. 7 and 8

Parameter Model Pressure Correlation p‑value 95% CI
waveform coefficient, r

Rsys Closed-loop Finger 0.990 p < 1.0e − 41 [0.98, 0.99]

Rsys Closed-loop Carotid 0.994 p < 1.0e − 59 [0.99, 1.00]

Rsys Open-loop Finger 0.987 p < 1.0e − 39 [0.98, 0.99]

Rsys Open-loop Carotid 0.988 p < 1.0e − 50 [0.98, 0.99]

Cao Closed-loop Finger 0.601 p < 1.0e − 5 [0.39, 0.75]

Cao Closed-loop Carotid 0.864 p < 1.0e − 18 [0.78, 0.92]

Cao Open-loop Finger 0.647 p < 1.0e − 6 [0.45, 0.78]

Cao Open-loop Carotid 0.852 p < 1.0e − 17 [0.76,0.91]
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substantially. IQRs calculated for the closed-loop model using carotid pressure exhibits 
very little variability for the individual, indicating that in a majority of cases there is a 
well-defined local or global minimum which the optimization algorithm chooses. For 
the same results using finger pressure, there is a higher level of variability, which indi-
cates that a single minimum is harder to obtain in this case.

Examination of results presented in Figs. 2 and 3 shows that the majority of multiple 
day IQRs were smaller than the population IQR. The only case this was not true was for 
tpeak in the open-loop model using the finger pressure waveform. This parameter is heart 
rate dependent which changes from beat-to-beat, hence it is not surprising that this 

Fig. 9 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The model predictions are 
based on the final averaged parameter estimate for each participant. This is an example of a typical waveform 
fit for the closed-loop model and the carotid pressure waveform

Fig. 10 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. This is an example of a typical 
waveform fit for the closed-loop model and the finger pressure waveform
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parameter could experience variation over all measurement days similar to the popula-
tion IQR. The tpeak is related to the heart rate of the signal as the length of systole varies 
with heart rate. Although measurements were performed in a state of rest, it is not guar-
anteed that everyone had reached their true resting heart rate on each measurement day. 
For the other parameters, we saw that due to the variability in the multiple-day IQR the 
standard deviations show that this variability will grow beyond the value of the popula-
tion IQR for some participants. This means that we potentially could calculate rather 
large changes from one measurement day to the next. Whether this is realistic remains 

Fig. 11 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the closed-loop model with the carotid pressure waveform

Fig. 12 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the closed-loop model with the finger pressure waveform



Page 22 of 35Bjørdalsbakke et al. BioMedical Engineering OnLine           (2023) 22:34 

to be examined, but it can be hypothesized that physical activity induced changes in 
model parameters larger than the population IQR are unrealistic during a 12-week clini-
cal trial. This would be unrealistic for most of the parameters, aside from tpeak . However, 
the variation in single-day IQR is far lower compared to the multiple-day IQR, in most 
cases. Exceptions can be noted for Cao , Vtot , and Zao based on finger pressure where the 
first and third quartiles overlap for the multi-day and the single-day IQR. This indicates 
that the single and multi-day IQR may be equally high in some participants, and that 
changes in these parameters may not in many cases be trusted to be changes caused by 
the data, and may be artifacts of the numerical uncertainties of the estimation method. 

Fig. 13 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. This is an example of a typical 
waveform fit for the open-loop model and the carotid pressure waveform

Fig. 14 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. This is an example of a typical 
waveform fit for the open-loop model and the finger pressure waveform
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This would especially be a challenge for detecting small changes in the individual com-
pared to the variation over the population.

The individual estimates were computed as the mean of the estimates with a cost func-
tion value lower than the mean of the final 20 parameter estimate sets, see Sect. Parame-
ter estimation. This allowed the amount of samples used in the computation of the mean 
parameter estimates to vary. Furthermore, there is a possibility that choosing only the 
best fitted parameter estimate provides better results in some cases. The averaging over 
different solutions was chosen to account for sensitivity of the exact location of the cost 

Fig. 15 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the open-loop model with the carotid pressure waveform

Fig. 16 The model-optimized pressure curve based on the mean of the best parameter estimates for the 
individual is shown with the raw data to which it is optimized for a participant. The sample shown is for 
the measurement sample with the highest cost function value when compared to other participants and 
measurement days. This is a waveform adapted to the open-loop model with the finger pressure waveform
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function minimum due to noise and model structure insufficiency. If, for example, noise 
causes multiple smaller minima, or a displacement of the local minimum compared to 
the unperturbed cost function minimum, having multiple estimates in this region and 
averaging them may mitigate these noise effects. However, using the averaging proce-
dure without bounds for the problem sometimes introduced much higher variability in 
the resulting solutions, and the averaging would yield parameter values which would not 
recreate the data well. In contrast, with bounds, we found that the averaged parameters 
provide acceptable solutions as seen in the table and figures of Sect. Quality of optimi-
zation results. The estimates for systolic and diastolic pressures are more accurate for 
the finger pressure-based estimates since they were more heavily weighted due to more 
data points since the finger pressure was sampled at a higher frequency than the carotid 
pressure. We cannot be certain that the algorithm has found the global minimum using 
this procedure, but it is also a possibility that the global minimum does not correspond 
the most physiologically accurate combination of parameters. The averaging of solutions 
around a local minimum gives some information about solutions that are almost as good 
as the local minimum itself and may be just as physiologically viable. Should the local 
minimum not be the global minimum, then it is still a minimum which provides a good 
description of the data as observed in Tables 4 and 5.

In Fig.  6, it is demonstrated that the mean estimates from for the two models only 
showed small differences based on choice of pressure waveform. A notable exception 
was found for Cao , for which the finger pressure-based estimates were statistically signifi-
cantly higher in both model formulations. This may be explained by the finger pressure 
waveform having a flatter slope during diastole. The tpeak was another notable exception, 
which was estimated with a small difference between waveforms. As previously noted, 
the corresponding heart rates of the two waveforms could be different. This could poten-
tially contribute to some variation in estimates. The paired sample t-tests between other 
combinations of model formulations and pressure waveforms are shown in the supple-
mentary materials. The finger pressure was not transformed into a more central pressure 

Table 4 Percentage errors between measurements and model outputs optimized using the closed-
loop model with carotid pressure waveforms. These residual statistics are computed across all 
individuals, i.e. they are not grouped by individual, but by measurement day. The mean and standard 
deviations of the absolute residuals are given. Psys is the systolic aortic pressure, Pdia is the diastolic 
aortic pressure, and SV is the stroke volume, and MVP is the mean venous pressure.  pWFx, and  qWFx 
indicates the median value across all measurements for the  xth percentile percentage error of the 
waveform residuals for a single measurement  (pWFx for pressure and  qWFx for flow)

Pressure Meas. day Psys Pdia SV MVP pWF75% pWF25% qWF75%
[%] [%] [%] [%] [%] [%] [%]

Carotid All 1.62± 1.71 1.38± 1.36 2.32± 2.38 6.71± 9.13 5.03 1.65 26.63

Carotid 1 1.82± 1.6 1.4± 1.34 2.4± 2.06 6.04± 7.74 4.94 1.71 22.69

Carotid 2 1.95± 2.09 1.63± 1.69 2.92± 2.81 8.7± 9.96 5.32 1.61 30.68

Carotid 3 0.84± 0.9 1.0± 0.69 1.34± 1.88 4.8± 9.76 4.52 1.56 25.52

Finger All 0.61± 0.79 0.72± 0.91 1.29± 1.54 3.4± 4.21 5.52 1.48 25.28

Finger 1 0.61± 0.72 0.74± 0.95 1.39± 1.63 4.15± 5.22 5.3 1.46 18.7

Finger 2 0.72± 1.01 0.83± 1.1 1.67± 1.82 3.74± 3.96 5.65 1.4 30.3

Finger 3 0.47± 0.54 0.56± 0.6 0.72± 0.85 2.15± 3.03 5.74 1.79 22.64
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by a transfer function, as it was seen as interesting to compare the distal measurement 
to the carotid waveform which is a more proximal measurement. A question for future 
work is to answer whether the change in the compliance estimated using the two pres-
sure signals, will change similarly given the same stimulus.

There are no other very large differences in mean parameter estimates between the 
two models. Therefore, the venous compartment in the closed-loop formulation does 
not seem to affect the other model estimates to a large extent. Also, it seems like the 
effect of adjusting the total stressed blood volume can be counteracted by appropriately 
tuning the venous compliance. Hence, there seems to be little gain of adding these com-
partments from a parameter estimation perspective.

Two models were applied in this study. Although the closed-loop model may give 
more insight into the physiology, ventricular filling and fluid distributions of different 
states and individuals, some parameters could have interacted and caused difficulty in 
reaching the correct minimum for the cost function in the parameter space. For exam-
ple, multiple parameters which were all influential on the ventricular filling properties 
in the model could have caused optimization challenges when adapting all of them to 
tune the filling properties according to the optimization data set which contained both 
noise and model discrepancy. One or both of the models may be practically unidentifi-
able for the data used in this analysis, which could result from such parameter interac-
tions. Specifically, the high variability of stressed volume and venous compliance in the 
closed-loop model may be the result of such a situation as a higher blood volume would 
increase the pressure of the closed-loop system, while an increased compliance would 
accommodate the increased volume and counteract the pressure increase. Similarly, pre-
vious work found that the aortic impedance parameter was among the least influential 
parameters of the aortic pressure waveform [22]. Insensitivity can lead to practical uni-
dentifiability and thus variability in estimates of Zao may only reflect this and not any 
meaningful changes in the hemodynamic state. For the remaining parameters, we have 
focused on comparing the variability in individual estimates to those of the whole group 

Table 5 Percentage errors between measurements and model outputs optimized using the 
open-loop model with carotid pressure waveforms. These residual statistics are computed across 
all individuals, i.e. they are not grouped by individual, but by measurement day. The mean and 
standard deviations of the absolute residuals are given. Psys is the systolic aortic pressure, Pdia is the 
diastolic aortic pressure, and SV is the stroke volume.  pWFx, and  qWFx indicates the median value 
across all measurements for the  xth percentile percentage error of the waveform residuals for a single 
measurement  (pWFx for pressure and  qWFx for flow)

Measurement Meas. day Psys Pdia SV pWF75% pWF25% qWF75%
[%] [%] [%] [%] [%] [%] [%]

Carotid All 0.99± 1.3 1.07± 0.87 2.82± 4.27 4.64 1.38 31.24

Carotid 1 1.03± 1.13 1.04± 0.6 2.47± 3.54 4.27 1.42 30.62

Carotid 2 1.13± 1.62 1.25± 1.16 3.37± 4.75 5.14 1.15 34.05

Carotid 3 0.71± 1.04 0.86± 0.69 2.51± 4.67 4.66 1.72 29.65

Finger All 0.56± 1.12 0.65± 1.33 1.44± 2.29 5.73 1.57 27.0

Finger 1 0.79± 1.3 0.88± 1.54 1.95± 2.55 5.86 1.68 31.9

Finger 2 0.65± 1.35 0.68± 1.62 1.73± 2.74 5.42 1.47 30.99

Finger 3 0.21± 0.13 0.35± 0.38 0.52± 0.67 5.46 1.78 23.68
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(Figs. 2, 3) and further compared estimated values to clinical indices to further investi-
gate the consistency of the estimates (Figs. 7, 8). A more formal practical identifiability 
analysis would be beneficial, but would require a good characterization of the expected 
variability in measurements and model discrepancy, and this would require same-day 
repeated measurements of individuals to characterize measurement variation. Further, 
a required level of precision must be specified for each parameter value. The multiple 
day IQR found in this study can be interpreted as a conservative estimate of the preci-
sion achievable as the repeated measurements included are expected to correspond to 
changed parameter values in many cases as the measurements are over 12 weeks while 
increasing physical activity.

The estimated parameter combinations were not assessed in terms of how credible 
they are to be found in real individuals aside from being bounded by values taken from 
the literature. By estimating Rsys as MAP/CO and Cao as SV/PP , we found high positive 
correlation between these estimates and the model-predicted resistance. However, this 
was not the case for Cao , as seen in Figs. 7, 8 where the correlation was lower but still 
moderately high. The Pearson correlation coefficients are shown in Table 3, and indicate 
high correlation for Rsys in all cases, even if the conventional method estimates are not 
used for sampling initial parameter guesses for the model optimization.

We focused on using single heart beat cycles of data. The data comprised either syn-
chronized waveforms as for the finger pressure waveform and LVOT flow, or as a sin-
gle averaged waveform as for pairing the carotid waveform with the LVOT flow data. 
Colebank et al. and Marquis et al. used an approach where optimization is performed 
for multiple consecutive cycles at the same anatomical locations which is a convinc-
ing approach for accounting for beat-to-beat variations  [6, 7], but this requires a large 
amount of continuous waveform data. We did not do any analysis on the impact of using 
more than one cycle of data, but previous examinations show that one cycle should be 
sufficient under ideal conditions for synthetic data [22].

By scaling the waveforms by ABPM systolic and diastolic values, some of the daily var-
iability of measurements should be accounted for. While the waveform shape itself was 
subject to noise, it may also have been subjected to other perturbations and daily vari-
ability through changes in, for example, respiration patterns and heart rate. These effects 
should be partially accounted for in the averaged carotid waveform. The finger pressure 
waveforms did not benefit from the same effect as they were not averaged, but were on 
the other hand synchronized to the simultaneously recorded flow cycles.

Even though the model captures the approximated aortic pressure values reasonably 
well, this is a highly simplified model of the cardiovascular system with some limita-
tions. Firstly, the model is geometryless, which means that it ignores all personalizable 
traits relying on spatial geometry more specific than a global compartment of vessels. 
Despite this, we still observe that the model is able to capture total peripheral resistance, 
extreme pressures and stroke volumes relatively well, at least when compared to con-
ventional estimation methods for the parameters and the raw data used in the cost func-
tion. Secondly, the model neglects the inertance of the vessels and combined with its 
0-dimensional nature it therefore ignores potential reversal of blood flow and reflected 
wave propagation. This makes the model unable to fully describe some features of cen-
tral pressure waveforms, such as the dicrotic and anacrotic notch. Thirdly, other relevant 
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physiological functions which affect and regulate the cardiovascular system, such as 
neural, respiratory, renal, metabolism, and gas exchange have been neglected. Any dis-
eases which are not detectable by changes in the systemic hemodynamics and the left 
ventricle will not be detectable by this model. The parameter ranges that bound the opti-
mization should allow for some types of heart disease and both normal and hypertensive 
ranges of blood pressure. Any disease or condition which is described by a combination 
of parameters which needs to exceed one or more of these ranges may not be possible to 
detect by this personalization algorithm. For the case of monitoring hypertension and 
possibly related heart remodeling and disease such as heart failure, the model may be 
able to capture this combined remodeling. However, this has not been investigated by 
the authors and is beyond the scope of this paper. The ejection fraction (EF) of the model 
is not necessarily realistic as the ventricular volume intercept is set to a volume of 0. 
Consequently, if heart failure is to be detected it would likely be more reliably detected 
by other measures than EF, such as cardiac output or contractility. Lastly, as the iner-
tance is neglected and valve resistances are not explicitly personalized, this model will 
not account for cardiac valve diseases or leakage.

Some of the synchronized finger pressure waveforms were subject to a high level of 
noise, while still retaining some characteristic waveform features. This was a drawback 
for the optimization as it made it more difficult to detect changes and probably contrib-
uted to increased variability in estimates. Despite this, we observed similar mean esti-
mates for most model parameters using both finger and carotid waveforms. The only 
major difference was found in Cao which can be partially be explained by the flatter dias-
tolic slope of the finger pressure waveforms. The finger pressure waveform does experi-
ence pressure amplification and distortion of the waveform compared to more central 
pressures such as the carotid pressure waveform. Therefore, we may have expected to 
see some differences in the mean parameters as well. In Eq.  5, the clinical indices get 
additional weighting to increase their priority in the optimization scheme. If the weights 
were removed the optimization procedure would be able to recreate the waveforms even 
closer, but also allow larger discrepancies in the remaining terms of the cost function. 
This could in turn have caused even larger discrepancies between results from the differ-
ent choices of pressure waveform, but for this investigation we chose a balance between 
adaption to waveform or more clinically relevant measures such as systolic and diastolic 
pressures.

Conclusion
Model personalization was performed for blood pressure and echocardiography data 
collected from 25 participants in an physical activity motivational study were used for 
model optimization.

Mean parameter estimates were practically equivalent across both model formulations 
and for both choices of waveforms, except for a few cases. The Cao parameter was found 
to have a higher value on average when estimated using the finger pressure waveform 
as compared to the carotid waveform, regardless of model choice. For both models, the 
estimates for arterial resistance and compliance were found to correlate at least moder-
ately well ( r > 0.60) with other conventional estimation methods (Additional files 1, 2).
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Changes in pressure and flow waveforms, as well as SV are reproduced reasonably well 
by both models for the estimated parameters. Using the closed-loop model did not prove 
to aid the ability to resolve single participants’ parameter estimates from the model pop-
ulation compared to the open-loop model. This supports using the open-loop model for-
mulation for further efforts in personalizing the ventricle and arterial compartments of a 
lumped parameter model.

Resolving parameter changes for individuals and distinguishing these changes from 
the population seems feasible given the IQR values, assuming the real changes are suf-
ficiently large to not be lost in the personal estimation variability. Questions for further 
research are whether or not these changes are realistic or a product of noise, insufficient 
data, or uncertainty introduced in the estimation procedure. Whether the data are suf-
ficient to detect cardiovascular remodeling given the recorded exercise stimulus remains 
to be investigated.

Appendix
Model equations

Closed‑loop model

This subsection is largely a repetition of details described in [22]. The closed-loop model 
comprised a system of non-linear ordinary differential equations (ODEs) describing the 
volume state variable of the three model compartments. The dynamic elastance function 
of the heart contributes a source term to the system of ODEs:

The two remaining state variables, pressure and flow, are mainly modeled by linear rela-
tionships as expressed below:

(10)

dVsa

dt
= Csa

dPsa

dt
= Qlvao − Qsys

dVsv

dt
= Csv

dPsv

dt
= Qsys − Qsvlv

dVlv

dt
= Qsvlv − Qlvao.

(11)

Vsa = CsaPsa

Vsv = CsvPsv

Plv = E(t)Vlv + Pth(t)

E(t) = (Emax − Emin)e(t)+ Emin

Pao = max [Psa,Plv]

Qlvao = I(Plv > Psa)
Plv − Psa

Zao

Qsvlv = I(Psv > Plv)
Psv − Plv

Rmv

Qsys =
Pao − Psv

Rsys
.
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The indicator function I(x) has the value 1 when the argument x is true and 0 when x is 
false. The activation function e(τ ) is defined as:

where τ is position in the cardiac cycle between the end of the last diastolic period and 
the end of the next diastolic period τ = 1 . The parameters a1 and n1 determine the shape 
of contraction and a2 and n2 determine the shape of relaxation of the elastance curve and 
the timing of peak elastance. The choice of values for these parameters are identical to 
those of Stergiopulos et al [24]. We wrote the parameter values for a1 and a2 in terms of 
the ratio of tpeakT  , and set α = 1.672 , to ensure normalization of the curve. tpeak describes 
the time of peak ventricular elastance, and therefore determines when the left-ventric-
ular elastance E(t) reaches Emax . The intrathoracic pressure function Pth describes the 
external pressure effects on the ventricular muscle aside from pressure gradients inside 
the blood vessels and is here modeled as a constant of Pth(t) = −4 mmHg. Otherwise, 
the parameters are defined as in Table 1.

The Vtot parameter describes total stressed volume and is enforced by setting ini-
tial compartment volumes and pressures such that the total stressed volume equals 
the parameter value. The model was demonstrated to conserve the volume and hence 
the total blood volume will not change. The initial volumes are set according to the 
equations:

where the initial aortic pressure is set to Pao,0 = 100 mmHg, and initial left-ventricular 
volume is set to Vlv,0 = 100 mL. The initial venous pressure is denoted by Psv,0.

Open‑loop model

The open-loop model describes two compartments, the left ventricle and arteries. The 
heart compartment is identical to the one described for the closed-loop model. The 
state equations describing the model are as follows:

The state variables pressure, flow and volume are mainly modeled by linear relationships 
as seen here:

(12)e(τ ) = α ×

(τ/a1)
n1

1+ (τ/a1)n1
×

1

1+ (τ/a2)n2
,

(13)
Vao,0 = Cao Pao,0, and

Psv,0 =
Vtot−Vao,0−Vlv,0

Csv
,

(14)

dVsa

dt
= Csa

dPsa

dt
= Qlvao − Qsys

dVlv

dt
= Qsvlv − Qlvao.
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where e(t) is as defined in Equation (12), while Psv = 6.0 mmHg is now a fixed quantity. 
Now the initial volumes are set as

where the initial aortic pressure is set to Pao,0 = 100 mmHg.

Optimization algorithm details

The Trust Region Reflective Algorithm (TRRA) as implemented in SciPy ver-
sion 1.7.1 was applied for the parameter optimization procedure [29]. In particu-
lar, the implementation of the algorithm as expressed through the function scipy.
optimize.least_squares() was used. We executed this function given the arguments 
below and a list of initial parameter guesses as sampled from Eq. (3). The function 
specific parameters passed to the TRRA to set the accuracy of the method were set to 
xtol = 2.3 · 10−16, ftol = 2.3 · 10−16, gtol = 2.3 · 10−16 and diff _step = 1.0 · 10−3.

The uniform distributions from which the first 30 initial parameter guesses are sam-
pled were bounded by the upper and lower bounds presented in 6. For the next 20 initial 
parameter guesses the sampling was made from the uniform distribution with bounds 
expressed as (4). In Eq. (4), θmin,i refers to the initial parameter guess form the first 30 
guesses which optimized the solution with the minimal cost function value from that 

(15)

Vsa = CsaPsa

Plv = E(t)Vlv + Pth(t)

E(t) = (Emax − Emin)e(t)+ Emin

Pao = max [Psa,Plv]

Qlvao = I(Plv > Psa)
Plv − Psa

Zao

Qsvlv = I(Psv > Plv)
Psv − Plv

Rmv

Qsys =
Pao − Psv

Rsys
,

(16)
Vao,0 = Cao Pao,0, and

Vlv,0 = 100 mL,

Table 6 All model parameters that were assigned to be personalizable are listed along with their 
upper and lower bounds. The bounds determine the uniform distributions from which the initial 
parameter guesses are sampled

Parameter Upper bounds Lower bounds Units

Cao 3.0 0.148 mL
mmHg

Csv 90.0 1.48 mL
mmHg

Emax
10.48
BSA

0.5 mmHg
mL

Rsys 2.963 0.917
BSA

mmHg s
mL

tpeak min(0.442, T ) min(0.15, 0.9T ) s

Vtot 1503. 150. mL

Zao 0.2 0.001 mmHg s
mL
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first set of guesses. The same bounds were upper and lower limits for parameters in both 
sampling distributions.

All parameters from Table 1 were sampled, except T which was always set to the heart 
beat period of the given waveform, as well as Emin and Rmv which were fixed to prede-
termined values. Mitral valve resistance should be a small resistance according to Ster-
giopulos et  al. [24], which we fixed it to 0.02 mmHg s/mL. The value of Emin was set 
according to apparent phenotype based on blood pressure. Segers et al. estimated values 
for minimal left-ventricular elastances as 0.03 mmHg/mL for normotensive people [12], 
while we calculated the same parameter to be 0.034 when taken as the weighted average 
over all hypertensive groups presented in their study. This value caused difficulties in 
estimating the left-ventricular elastance by constantly estimating it to the lowest bound 
for all participants. Therefore the value of 0.06 mmHg/mL as used by Stergiopulos was 
used instead, but separation was made according to if the systolic blood pressure was 
above or below 140 mmHg as was similar to the case for the estimates by Segers et al. 
[12]. For systolic blood pressure below 140 mmHg, Emin = 0.055 mmHg/mL was opted 
for, while we used for values above Emin = 0.06 mmHg/mL.

The bounds in Table 6 were set based on many different sources in literature. The study 
from Vardoulis et al. simulated a wide range of total arterial compliances [31], and we 
used a similar range for our concept of arterial compliance, but it was slightly widened as 
finger pressure estimates tend to have a low diastolic slope, which might indicate a high 
compliance. Central venous compliance is often estimated to be 30 times the value of 
arterial compliance [32, 33], and therefore, we used estimates of the venous compliance 
10–30 times the arterial compliance values to make the widest range possible. For Emax 
we used the body surface area (BSA) indexed results from a study by Bombardini et al. 
which estimated end-systolic elastances for patients in both disease and health to esti-
mate a wide range to use as bounds for sampled elastances [34]. For Rsys , Chantler et al. 
estimated vascular resistance in groups men and women with normo- or hypertension 
[35]. We considered all four groups, the group with the lowest mean value minus two 
standard deviations was taken as the lowest bound, and the group with the highest mean 
was used in the opposite direction to determine the highest bound. tpeak was bounded 
using results from studies by Weissler et  al. and Mertens et  al., which both measured 
systolic timing properties of the heart [36, 37]. Their measurements of the QS2 period of 
the heart ejection time determined by electromechanical considerations were taken as 
and indication of how large the allowed range for tpeak should be, and hence the bounds 
were determined by a technique similar to how it was done for Rsys . The lower bound 
was lowered further as to accommodate an even wider range. The total stressed blood 
volume bounds were estimated by taking the measurements of total blood volume from 
a paper by Feldschuh et al. and applying a formula as demonstrated by Colunga et al. to 
estimate the total blood volume [5, 38]. This was done by taking the total blood volume 
value and estimating the total stressed volume fraction by this formula:

where the total stressed blood volume Vtot is computed by assuming what fraction of the 
total blood volume (TBV) can be found in the left ventricle, systemic arteries, and sys-
temic veins, and what fractions of these volumes are assumed to be stressed. The mean 

(17)Vtot ≈ TBV · (0.13 · 0.27+ 0.64 · 0.18+ 0.035 · 0.5),
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blood volumes, of the study groups examined by Feldschuh et al. [38], with the highest 
and lowest mean values were adjusted by adding or subtracting 3–4 times the standard 
deviations to find the widest possible range based on these data. Two standard devia-
tions gave volumes which were larger than what was expected to give reasonable results 
with our model. Finally, the bounds for Zao were based on the values reported by Segers 
et al. [12], but we allowed a range 33 times wider as this was a small parameter com-
pared to the other arterial parameters. The upper range was set to ensure that it likely 
would be smaller than the total peripheral resistance. The resulting parameter range also 
corresponds reasonably well with the range found by Segers et al. when optimizing the 
parameter to multiple data sets for a three-element Windkessel model [39].

The scaling factors used to balance the different terms in the cost functions in (5) 
are listed in Table 7. The initialization for the random seed using the numpy.random.
seed() function from the NumPy libary [40], was set to be 112233 for sampling initial 
parameter guesses from the distributions defined by (3) and (4).

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12938- 023- 01086-y.

Additional file 1. Table S1. Two-tailed t-tests for parameter means using different models and pressure wave-
forms. Parameter values averaged over different samples of measurements for both model formulations and choices 
of data sets. Standard deviations are presented in parentheses. The p-value and 95% confidence interval (CI95%) are 
obtained by a two-tailed t-test for paired data comparing the mean parameter values using the finger and carotid 
pressure for the same model formulation, or using the same pressure waveform but different model formulations. 
“Group” indicates which combination of model and pressure waveform is used to generate the data for the group. 
“CL” indicates the closed-loop model, and “OL” signifies the open-loop model. “-C” indicates the carotid pressure 
waveform, and “-F” indicates the finger pressure waveform. The parameters included in the analysis are systemic 
arterial compliance (Cao), total peripheral resistance (Rsys), time of peak elastance in the left ventricle (tpeak), charac-
teristic aortic impedance (Zao), and maximal left-ventricular elastance (Emax). 

Additional file 2: Table S1. Two-tailed t-tests for parameter means using different models and pressure wave-
forms. Parameter values averaged over different samples of measurements for both model formulations and choices 
of data sets. Standard deviations are presented in parentheses. The p-value and 95% confidence interval (CI95%) are 
obtained by a two-tailed t-test for paired data comparing the mean parameter values using the finger and carotid 
pressure for the same model formulation, or using the same pressure waveform but different model formulations. 
“Group” indicates which combination of model and pressure waveform is used to generate the data for the group. 
“CL” indicates the closed-loop model, and “OL” signifies the open-loop model. “-C” indicates the carotid pressure 
waveform, and “-F” indicates the finger pressure waveform. The parameters included in the analysis are systemic 
arterial compliance (Cao), total peripheral resistance (Rsys), time of peak elastance in the left ventricle (tpeak), charac-
teristic aortic impedance (Zao), and maximal left-ventricular elastance (Emax).

Table 7 The scaling factors K, which are used to balance and approximately normalize the terms 
in the specified cost functions. MVP - mean venous pressure, p - aortic pressure waveform, pdia 
- diastolic brachial pressure, psys - systolic brachial pressure, q - aortic flow, and SV - stroke volume

Symbol Value Unit

KMVP 5.0 mmHg

Kp 100.0 mmHg

Kpdia 80.0 mmHg

Kpsys 120.0 mmHg

Kq 500.0 mL
s

KSV 100.0 mL

https://doi.org/10.1186/s12938-023-01086-y
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