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Abstract 

Signal analysis is a domain which is an amalgamation of different processes coming 
together to form robust pipelines for the automation of data analysis. When applied to 
the medical world, physiological signals are used. It is becoming increasingly common 
in today’s day and age to be working with very large datasets, on the scale of having 
thousands of features. This is largely due to the fact that the acquisition of biomedical 
signals can be taken over multi-hour timeframes, which is another challenge to solve 
in and of itself. This paper will focus on the electrocardiogram (ECG) signal specifically, 
and common feature extraction techniques used for digital health and artificial intel-
ligence (AI) applications. Feature extraction is a vital step of biomedical signal analysis. 
The basic goal of feature extraction is for signal dimensionality reduction and data 
compaction. In simple terms, this would allow one to represent data with a smaller 
subset of features; these features could then later be leveraged to be used more 
efficiently for machine learning and deep learning models for applications, such as 
classification, detection, and automated applications. In addition, the redundant data 
in the overall dataset is filtered out as the data is reduced during feature extraction. In 
this review, we cover ECG signal processing and feature extraction in the time domain, 
frequency domain, time–frequency domain, decomposition, and sparse domain. We 
also provide pseudocode for the methods discussed so that they can be replicated by 
practitioners and researchers in their specific areas of biomedical work. Furthermore, 
we discuss deep features, and machine learning integration, to complete the overall 
pipeline design for signal analysis. Finally, we discuss future work that can be innovated 
upon in the feature extraction domain for ECG signal analysis.

Keywords: ECG, Feature extraction, Digital health, Telehealth, Signal analysis, Artificial 
intelligence

Background
Signal analysis is a domain which is an amalgamation of different processes coming 
together to form robust pipelines for the automation of data analysis. The processes for 
the signal analysis pipeline would be as follows:

(a) Data acquisition
(b) Data pre-processing
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(c) Feature extraction
(d) Feature selection
(e) Model training and classification
(f ) Performance evaluation

When applied to the medical world, physiological signals are used. This paper will 
focus on the electrocardiogram (ECG) signal specifically and a review of common fea-
ture extraction techniques used in the industry.

The ECG was discovered by Willem Einthoven in 1902. The ECG signal measures the 
electrical activity of the heart, essentially performing an electrical tracing of the heart 
[1]. The heart has two atria (right and left) which perform blood collection, and two ven-
tricles (right and left) which pump the oxygenated blood to the rest of the body. The 
heart contracts due to electrical activity, which manifests in the ECG signal that we ana-
lyze. The ECG is the most commonly used signal in the healthcare domain for analyzing 
heart and overall patient health.

Acquisition of the ECG is fairly straightforward and non-invasive; surface electrodes 
are used on the limbs and/or the chest. Traditionally, a 12-lead ECG is taken (split into 
limb leads and precordial leads), but for more modern applications, single-lead ECGs 
are becoming more desirable and commonplace due to the reduction of complexity 
and data. This can be applied to the Internet-of-things (IoT) and connected healthcare 
domain, where telehealth is of popular concern [1]. Multi-lead ECGs are used more in 
clinical settings because it is the gold standard; single-lead/reduced-lead ECG signals 
are not typically accepted in the primary healthcare and clinical workspaces. However, 
single-lead/reduced-lead ECG analysis is accepted in the wellness space and ancillary 
healthcare systems by patients that want to track fitness and wellness to transform their 
lifestyles; this further facilitates the movement toward patient-centered healthcare.

Typically, the peak of the ECG ranges around 1 mV. It follows a characteristic PQRST 
wave pattern, as shown in Fig.  1. This is a periodic pattern repeated throughout 

Fig. 1 Typical ECG displaying the PQRST components. Green arrows indicate the P waves, blue arrows 
represent the QRS complexes, and red arrows represent the T waves [1]
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characteristic ECG waves. Due to the commonality of the wave shape, physicians can 
oftentimes extract information visually from the ECG due to the morphological shape 
they may observe. Hence, if the wave-shape does not follow the healthy, expected mor-
phology, it can be deduced that a cardiovascular disease is causing the anomaly (classi-
fication of the signal as either normal or pathological). Common uses of the ECG range 
from diagnosis of chest pain, tachycardia, bradycardia, hypertension, hypotension, myo-
cardial injury, rheumatic heart disease, and more.

There are many features and attributes of the ECG signal that can be measured with-
out the use of overly complex feature extraction algorithms, such as the heart rate and 
rhythm, PR interval, the ST segment, the QT segment, and the U, J, P, R, S, T waves just 
to name a few (Refer to Fig. 1 displaying a typical ECG and the PQRST components). 
This paper will delve into some of the more complex techniques as well.

Evolution of feature extraction methods

Feature extraction is a vital step of biomedical signal analysis. It is becoming increasingly 
common in today’s day and age to be working with very large datasets, on the scale of 
having thousands of features. This is largely due to the fact that acquisition of biomedical 
signals can be taken over multi-hour timeframes, which is another challenge to solve in 
and of itself [2].

There are some basics to understand about physiological signal properties [3]. Signals 
are:

(a) Non-stationary
(b) Non-linear
(c) Non-Gaussian
(d) Non-short form

This complicates the overall feature extraction and signal analysis process even further 
[2, 3].

The basic goal of feature extraction is for dimensionality reduction and data compac-
tion; in layperson’s terms, this would allow one to represent their data with a smaller 
subset of features; these features could then later be leveraged to be used more efficiently 
for ML and AI models for applications, such as classification and diagnosis. In addition, 
the redundant data in the overall dataset is filtered out as the information of interest is 
only extracted during feature extraction [2].

Useful features that are extracted from the signal should be able to represent the signal 
accurately, in terms of either specific patterns or behaviors observed in the signal itself. 
Note that before feature extraction can begin, the original signals must be made to be 
discrete from continuous analog signals to discrete digital signals using an analog-to-
digital converter (ADC). This allows for the identification of patterns over discrete time 
intervals [4].

After feature extraction, typically feature selection is performed. The features selected 
for training the ML models can greatly affect the performance of the model, either 
negatively or positively. For example, if inappropriate/inefficient features are chosen 
to train the model, which overall does not represent the underlying signals very well, 
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the performance of the model would degrade. A good rule of thumb is to choose appli-
cation-dependent features to represent your signal versus generic features; this would 
ensure that the features would capture the patterns and behaviors of interest [2, 4].

Overall, feature extraction and feature selection saves on hardware and software 
resources, computational time, and reduces complexity, all of which can be used to apply 
to the world of ML and AI-based connected healthcare and telehealth [3].

In this paper, we will review common feature extraction methodologies that have been 
applied to ECG signals over the years (refer to Fig. 2), everywhere from single-lead ECGs 
to multi-lead ECGs (note that the number of leads used affects the complexity of the 
techniques discussed, and thus result in very different feature extraction approaches). 
This will be organized by generation of the signal processing and feature extraction tech-
niques. At a high level, we will go through the following (refer to Fig. 2):

(a) Time domain
(b) Frequency/Spectral domain
(c) Time–Frequency domain
(d) Decomposition domain
(e) Deep features

Please note that the methods discussed in this paper are by no means an exhaus-
tive list; it is simply meant to provide a starting ground for analysis of ECG signals, 
and popular analysis techniques adopted in the biomedical engineering domain. 
This study will also go into the overall design of an ML model for biomedical signal 

Fig. 2 Basic feature extraction and machine learning pipeline showing the evolution of biomedical signal 
feature extraction techniques over the decades [3]
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analysis. The review work has been organized as follows: In “Significance of Features 
for Machine Learning” Section, the design of ML models for classification applica-
tions following successful feature extraction will be discussed. “Time-domain Feature 
Extraction, Frequency-domain Feature Extraction, Joint Time-Frequency Domain 
Feature Extraction, Decomposition Domain Feature Extraction and Deep Learning” 
Sections will discuss common feature extraction techniques and their advantages/dis-
advantages, as well as potential applications in the realm of ECG analysis. Finally, in 
“Discussions, Conclusions, and Future Works” Section, we will conclude the review 
with critical discussions, as well as potential guides toward future work.

Search strategy for review

The publications chosen for this review were chosen based on their pedagogical rel-
evancy for biomedical engineering students, pertaining to biomedical signal analysis. 
The underlying purpose of this review is for budding biomedical engineers (interested 
in the signal analysis domain) to have a quick reference for feature extraction algo-
rithms that are directly correlated with biomedical applications. Hence, each review 
was selected based on the following eligibility criteria:

(1) Relevant feature extraction technique
(2) Application of algorithmic signal analysis pipeline
(3) Digital/AI/Telehealth Biomedical Application
(4) Any year of publication
(5) Language: English

Please note that an official review protocol, as defined by the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA), does not exist. 
To identify potentially relevant articles, the Toronto Metropolitan University (TMU) 
library database was searched. The search strategy was refined through the target fea-
ture extraction method.

Significance of features for machine learning
The natural next step after feature extraction is to apply the features to an ML model 
that can be used for a variety of applications, such as classifying cardiac arrhythmias. 
ML is a subset of the overall artificial intelligence domain. ML can help with optimiz-
ing the features used as well; the developer can identify which features have a larger/
smaller positive/negative effect on the model, and use that information to optimize 
the overall pipeline [4].

It is important to take into account the application/problem that one wants to solve 
when choosing the appropriate ML algorithm to implement. Some models are more 
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robust than others for specific applications. Some are more computationally exten-
sive. All angles must be considered when making a decision. General criteria to follow 
when choosing an ML algorithm are the following: (1) Type of bio-signal, (2) Size of 
Feature Matrix, and (3) Availability of labeled data, just to name a few [4].

As the developer, you may also choose to evaluate more than one model for your appli-
cation and select the model with the highest performance. Refer to Fig. 2 for a simple 
end-to-end feature extraction ML pipeline.

ML can either be supervised or unsupervised. Supervised learning refers to when the 
data is labeled by domain experts in the field. Most of the case studies evaluated in this 
paper use supervised learning as they had access to annotation files from the databases 
used. The labels act as ground truth for the model to learn from during the training pro-
cess. Unsupervised learning is the opposite, and refers to a situation where you do not 
have expert labeled data. Instead, the algorithm works to find patterns in the data that 
are likely to distinguish between different classes. There are issues with unsupervised 
learning methods when working with biomedical signal data though. Since biomedical 
signals are better analyzed in short-duration segments, labels are applied to individual 
segments in supervised learning. In unsupervised learning, the ML-predicted label 
would be applied to the full-duration signal, which is not desirable if there are regions-
of-interest that need local feature extraction applied, not global [4].

Different sets of features may be better together, so it truly is a lengthy process to find 
a combination that works best for the problem you are trying to solve. The reader should 
be aware that the number of appropriate features is also a key point of consideration; 
this can lead to either over-fitting or under-fitting issues.

Time‑domain feature extraction
The first generation of feature extraction was encompassed by the time domain, which is 
when the biomedical signals in question are analyzed with respect to time. Time-domain 
features allow us to quantify how the ECG signal changes over time. Typically, window-
ing and segmenting the signal of interest is desired for time domain analysis; this allows 
for the time domain features to be extracted per window. This is done because ECG sig-
nals, like other physiological signals, are non-linear and non-stationary in nature [4–6]. 
There are various feature extraction techniques and methods available for time domain 
analysis.

Statistical features

Extracting statistical features from ECG signals is by far the least complex of the time 
domain feature extraction techniques. Using statistical mathematics programming lan-
guages, it becomes even simpler to implement with the use of native, built-in functions. 
Statistical analysis/feature extraction is not considered fiducial because knowledge of the 
actual ECG characteristics is not needed [7].

One popular application of statistical features can be applied for is for the use of sub-
ject recognition using ECG as a biometric trait. The feature extraction is what provides 
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the subject-unique biomarkers that can be used to differentiate between the subjects and 
their ECG signals [7].

A few popular statistical features that can be extracted from the ECG are as follows:

– Mean
– Standard deviation
– Median
– Maximum value
– Minimum value
– Range
– Interquartile range
– Interquartile first quarter (Q1)
– Interquartile third quarter (Q3)
– Kurtosis
– Skewness of ECG signal

The mean and the median features can be used to measure the central tendency 
of the ECG signal. The statistical dispersion of the ECG is captured by the standard 
deviation, range, and interquartile range features. The kurtosis and skewness features 
are typically used to measure the asymmetry and the sharpness of the peak of the 
ECG signal distribution [7].

A non-linear dimensionality reduction technique, like the t-distribution stochastic 
neighbor embedding (t-SNE) algorithm, can be used to show that these statistical fea-
tures are in fact separable, which allows for accurate and precise subject identifica-
tion. Refer to Fig. 3 for the statistical feature extraction pipeline [7].

Fig. 3 Proposed subject identification system using the statistical features from the ECG [7]
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Algorithm 1: Statistical feature extraction

1. Result: Feature table with extracted features from ECG signal

2. Import collected ECG signal

3. Preprocess ECG signal

  a. Filter

  b. Segment into window size of choice

4. Extract the statistical features per window

  a. Example with mean

    i. For i = 1:number of windows

      1. mean_i = mean(window_i)

5. Assemble the feature table to be used further in machine learning algorithms for classification

Another statistical technique that can be employed for the feature extraction from 
ECG signals is the principal component analysis (PCA) technique. The PCA technique 
is also known as the discrete Karhunen–Loève transform and the Hotelling transform. 
The goal of this technique is to extract the “principal components” of the signal, which 
are derived as a linear combination of the variables of the data (in this case, time samples 
of the ECG), with weights to ensure the components are mutually uncorrelated. This can 
be used to track temporal changes due to myocardial ischemia or signal separation dur-
ing atrial fibrillation, just to name a few applications [8].

Algorithm 2: PCA [8]

1. Result: Principal components of the ECG signal

2. Import collected ECG signal

3. Preprocess ECG signal

  a. Filter

  b. Segment into window size of choice

4. Principal Component Calculation:

  a. For i = 1:number of windows

    i. Signal-mean(window_i)

Multivariate autoregressive (MAR) and scalar autoregressive (SAR) modeling

Autoregressive models use the current and past values of a discretized signal to calcu-
late the future values. This technique is conducive for data compression/compaction and 
reducing signal noise. This method has been applied to two-lead ECG signals, as it has 
been shown that the two-lead signals optimize the classification results versus one-lead 
ECG signals [9]. MAR models and SAR models can be used, each having its own bene-
fits and appropriate applications. MAR has been popularly used to model heart rate and 
blood pressure, but not for the application of classifying cardiac arrhythmias. SAR has 
been used for modeling bio-signals for analysis, and for modeling heart rate variability 
(HRV), and for power spectrum estimation (PSD) of ECG signals [9].

The dataset used in the case study analyzed was obtained from the MIT/BIH data-
base, which included normal sinus rhythm (NSR), atria premature contraction (APC), 



Page 9 of 36Singh and Krishnan  BioMedical Engineering OnLine           (2023) 22:22  

premature ventricular contraction (PVC), ventricular tachycardia (VT), ventricular 
fibrillation (VF) and supraventricular tachycardia (SVT). The NSR, PVC and APC were 
sampled at a frequency of 360 Hz. The VT/’VF signals were sampled at a frequency of 
250 Hz. The SVT signals were sampled at a frequency of 128 Hz. The data was sampled 
such that all the two-lead ECG signals in the analysis had a frequency of 250 Hz [9].

In the case study, for the purposes of classifying cardiac arrhythmias, the MAR model 
of feature extraction was found to be superior.

Algorithm 3: AR Model [9]

1. Result: AR model coefficients

2. Import ECG signal

3. Preprocess

  a. Remove the noise (respiration, wandering baseline, etc.)

  b. High-pass filter with  fc = 2 Hz

4. For either SAR or MAR model, chose model order 4

5 Model coefficients are the features

Pan–Tompkins algorithm

The Pan–Tompkins algorithm is a popular algorithm used for the real-time detection 
of ECG signal QRS complexes, and analyses slope, amplitude and width. This algo-
rithm can be used for the detection of cardiac diseases. This is a highly reliable and 
accurate algorithm that is able to recognize QRS complexes [11, 12].

The dataset used in this study was from the MIT/BIH and AHA database, and con-
sisted of 48 half-hour recordings. This came together to form 24  h of ECG 2-channel 
data, including the annotation channel and binary-recorded timing track channel [11].

Algorithm 4: Pan–Tompkins Algorithm [11]

1. Result: QRS Complex Detection

2. Import the ECG signal

3. Apply a bandpass filter to the signal to reduce noise, account for the 60 Hz and T-wave interference, and 
correct the baseline wander

  a. Design for a desirable 3 dB passband from about 5–12 Hz

    i. Made by cascading a low-pass filter and high-pass filter

      1. Low-pass filter

        a.  Fc = 11 Hz

        b. Gain = 36

      2. High-pass filter

        a.  Fc = 5 Hz

        b. Gain = 32

        c. Delay = 16 samples

4. Apply a 5-point differentiator

5. Apply a squaring function to each time sample of the signal

6. Apply a moving-window integrator to the signal
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Linear predictive coding

Linear predictive coding (LPC) is another method of time domain ECG feature 
extraction. It has been widely used to analyze other physiological signals, like speech 
signals and for the spectral analysis of heart sounds, but has also been explored for 
the analysis of ECG signals. Specifically, with the use of Levinson–Durbin’s linear pre-
diction model, a residual error signal feature can be obtained. It has been found that 
there are a variety of fairly significant properties that show that this is an important 
ECG feature. The case study analyzed for this method delves deeper into the use of 
the residual error signal feature for arrhythmia detection, namely premature ventric-
ular contraction (PVC) detection [13].

The dataset used for this study was taken from the MIT/BIH arrhythmia database. The 
sampling rate was 360 Hz. There were annotation files available for comparison to the 
algorithm-detected PVCs [13].

This method is desirable as it provides accurate signal parameter estimates, and it is 
computationally fast. The basic premise behind LPC for ECG analysis is this: the sam-
pled ECG signal is approximated as a linear combination of the past ECG time samples 
in the following way [13]:

where Ŝ is the approximation of the ECG signal, a(k) are the kth linear predictive coef-
ficients (used as weighting factors) and S(i-k) are the past time sample values of the ECG 
signal. Refer to Fig. 4 for a visual representation of LPC [13].

(1)Ŝ(i) =
∑P

k=1
a(k) ∗ S(i − k)

Fig. 4 Linear Predictive Model Visualization [13]
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Algorithm 5: LPC Algorithm [13]

1. Result: Linear predictive coefficients and the residual error signal

2. Import signals

3. Preprocess the ECG

  a. Noise filtering

  b. QRS detection

      i. Can use algorithm of choice, i.e., Pan-Tompkins from Sect. “Pan–Tompkins algorithm”

4. Apply Levinson–Durbin’s Algorithm from [14]

  a. Use prediction order of P

Hidden Markov models

The hidden Markov model (HMM) was first applied to ECG signals in the 1990s. Prior 
to this, it was mainly used for speech signals. This approach combines both statistical 
and structural knowledge of the ECG into a signal model. The model parameters are 
obtained from a maximum likelihood re-estimation algorithm. The application this case 
study focused on was for improved supraventricular arrhythmia analysis. The challenges 
posed with arrhythmia detection and classification are due to the interference from arti-
facts from sources, such as skeletal muscles, electrodes movement, and power-line inter-
ference. Refer to Fig. 5 for the underlying HMM process applied to ECG analysis [15].

HMM works to characterize the observed data, in this case, the ECG signal, with a 
probability density function (PDF). There is an underlying Markov chain that varies the 
PDF. The advantage with HMM is that the structural integrity is preserved for the char-
acteristics. The goal is for the beats to be accurately identified by their wavefront compo-
nents; this would allow for complete arrhythmia analysis; each waveform is assumed to 
correspond with the Markov process [15].

This case study proposed a “patient-dependent” arrhythmia detection technique. 
“Patient-dependent” simply refers to the fact that supervised training is required to ana-
lyze ECG recordings from each patient, whereas a “patient-independent” system would 
be able to automatically analyze any new patient ECG without supervision. Although the 
“patient-independent” system would’ve been more ideal, at the time the paper was writ-
ten, further research was still needed in this domain [15].

The database used was from the American Heart Association (AHA) ventricular 
arrhythmia database. It consists of 80 1/2-h 2-channel ECG recordings which have been 
sampled at a frequency of 250 Hz. There was also an annotation file provided in the data-
base [15]. Please refer to Table 1 for the summary of the time domain feature extraction 
methods discussed.

Fig. 5 Basic process for HMM applied to ECG analysis [15]
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Table 1 Summary of time domain feature extraction methods for ECG

Method Advantages Disadvantages Sample applications

Statistical features Simple implementation
Computationally inex-
pensive

Not application-specific; 
statistical features can be 
extracted for many types 
of data, and may not 
always be the best choice 
for physiological signals 
like the ECG

Biometric identification 
system with the use of ECG 
signals [7]

Multivariate AR (MAR) and 
scalar AR (SAR) modeling

Signal compression
Improve resolution
Model spectral peaks
Reduce noise

SSE decreased with model 
order < P, but remained 
constant for model 
order ≥ 3. MAR model 
order 4 was chosen to 
extract the features
More details can be incor-
porated into the model 
order, but the number of 
MAR coefficients and the 
computation for higher 
orders would increase 
rapidly
Its linearity may not 
represent well the ECG 
nonstationary nature

Classify cardiac arrhythmias 
[9]

Pan-Tompkins High detection accuracy 
even in the presence of 
noisy ECG signals
Allows for real-time ECG 
analysis
Does not require exces-
sive computing power

The window size is deter-
mined empirically and 
thresholds depend on 
the accuracy of the heart 
rate determined in the 
previous segment—this 
can cause a domino effect 
of errors to occur

QRS detection, duration, 
amplitude and morphology 
for the diagnosis of cardiac 
diseases [10]

Linear Predictive Coding 
(LPC)

Correlator can be oper-
ated as an up-down 
counter
High accuracy and fast 
processing
Ideal for signal encoding

It has been shown that 
the actual LPC coeffi-
cients contain very little 
information for ECG signal 
analysis, but it is required 
to obtain the residual 
error signal feature

ECG classifications 
(arrhythmia detection, PVC 
detection, and rhythm 
analysis) [12]

Hidden Markov models Preserves structural char-
acteristics and integrity of 
the observed data
High accuracy for low 
amplitude P wave detec-
tion in ambulatory ECG 
recordings

Not much better results 
than the commercial 
analysis systems available
High computational 
complexity, and long anal-
ysis time (2.5 h for each 
35-min AHA database 
tape)

Cardiac arrhythmia analysis 
[15]
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Algorithm 6: HMM Algorithm [15]

1. Result: detection and classification of beat categories

2. Import ECG signal

3. Preprocess the signal

  a. Minimize artifact effects

    i. 2-Point central difference

    ii. Digital Low-Pass Filter

4. Estimate the model parameter

  a. Use maximum likelihood estimation or the forward–backward algorithm

5. Form the model

6. Apply the model to detect and classify beat categories

Frequency‑domain feature extraction
Hilbert transform

The Hilbert Transform (HT) is defined by the following:

The Fourier transform is taken of x ̂(t) to move into the frequency domain. The HT 
is an odd function, meaning that it crosses zero whenever there is a point of inflection 
in the original signal. Furthermore, if a zero-cross occurs between consecutive posi-
tive and negative points of inflection in the original signal, it will present as a peak in 
the HT (refer to Fig. 6) [16].

These properties can be used to formulate a robust method of QRS detection from 
the ECG signal [16].

The dataset used in this study was from the MIT/BIH arrhythmia database. The data-
base consisted of ECG signals recording from the modified limb lead II, as well as the 
modified leads V5 and V1 [16].

This method of QRS detection was very effective and accurate, in over 99% of cases, 
even in the presence of significant noise. However, it performed better with the modified 
limb lead II, versus the V5 and V1 leads. Future work is required to be able to apply this 
for all ECG leads/configurations [16].

(2)x̂(t) = H [x(t)] =
1

�

∫ ∞

−∞

x(Ŵ)
1

t − Ŵ
dŴ

Fig. 6 Proposed HT QRS Detection process [16]
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Algorithm 7: Hilbert Transform Algorithm [16]

1. Result: Real-time QRS detection

2. Import the ECG signal

3. Preprocess the signals

  a. Bandpass FIR filter with a Kaiser–Bessel window between 8 and 20 Hz

    i. This removes the muscle noise and maximizes the QRS complexes

  b. Take the derivative of the signals

    i. This removes the base-line drift and the motion artifacts

4. Segment the signal using 1024 points window

5. Apply the HT

  a. Use Eq. 2

6. Apply the Fourier Transform to the HT output

  a. Set the DC component to zero

7. Perform peak detection using the properties of the HT

  a. Adaptive thresholding algorithm

8. Implement a second-stage detector in parallel to confirm the peaks found by the HT algorithm

Note: a sampling frequency of 360 Hz was used

Discrete Fourier Transform (DFT)

The Fourier Transform (FT) is defined by the following:

The FT outputs the Fourier coefficients and it can be analyzed to better understand 
the underlying frequency distribution of the signal. If the signal is discrete, the DFT 
is used. The fast Fourier transform (FFT) is a fast and efficient implementation of the 
DFT. This algorithm can be used to find abnormalities in the ECG signals. Refer to 
Fig. 7 for the FFT and DFT analysis of a normal ECG (a) and a noisy ECG (b) [17].

Algorithm 8: FFT/DFT Algorithm [17]

1. Result: Fourier Coefficients

2. Import the ECG

3. Preprocess the ECG

4. Take the FFT of the signal

Mel frequency cepstral coefficients (MFCC) analysis

The MFCC is a linear representation of the cosine transforms of a short duration of 
logarithmic power spectrum of the ECG signal. It has popularly been used for vocal 
analysis and recognition. A huge advantage of MFCC is that the bulb of the features 
of the signal is concentrated into the first few coefficients [18].

The dataset in this case study was obtained from the MIT/BIH arrhythmia database. 
The records are 30 min long per patient, and contain both normal and abnormal ECG 
signals. Ultimately this can be used to support cardiologists in the ECG classification 
process [18].

(3)F(ω) =

∫ ∞

−∞

f (t)e(−jωt)dt
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The results show that this is a very robust system and it provides quick decisions. 
Future work will include a deeper classification of the nature of the abnormalities 
detected, i.e., tachycardia, bradycardia, etc. Refer to Fig. 8 for the MFCC pipeline [18].

Algorithm 9: MFCC Algorithm [18]

1. Result: Mel Cepstrum coefficients to form a feature vector

2. Import ECG signals

3. Preprocess the signals

4. Segment signal into durations on the scale of 20-30 ms

5. Apply a Hamming window to the signal segments

Fig. 7 FFT and DFT analysis of a normal ECG a and a noisy ECG b [17]

Fig. 8 MFCC Calculation pipeline [18]
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Algorithm 9: MFCC Algorithm [18]

6. Apply the FFT

  a. Obtain the amplitude spectrum

7. Filter using the “Mel Filter” which is a bank of filters pass type band triangular

8. Apply the Discrete Cosine Transform (DCT)

Discrete cosine transform (DCT)

In the digital world, security is becoming a huge concern. We are also moving rap-
idly toward the medical-technological revolution, in which we already see everything 
from smartwatches to smart homes integrating seamlessly with our lives.

What if your unique ECG could be used as a biometric for user identification and 
authentication when walking into your home? This is quite plausible as the ECG is 
almost a completely unique human characteristic due to the morphology and ampli-
tudes of cardiac complexes being controlled by individual factors. These factors range 
from heart size, shape and position, to the presence of possible pathologies. This is 
what this case study looks to solve. The biometrics in individual ECG signals are con-
fidential, sensitive, and difficult to steal/replicate. Thus, it has great potential to be 
used for this purpose [19].

The algorithm proposed uses discrete cosine transform (DCT) and autocorrelation 
to extract features from the ECG; the effect of myocardial infarction is also taken into 
consideration to test if those individuals can still be recognized by the system. Essen-
tially, the DCT coefficients would be estimated for the autocorrelated heartbeat sig-
nals [19].

The dataset used in this study was taken from the European ST-T database (healthy 
signals), as well as the MIT/BIH arrhythmia database (pathological signals). The 
signals from the European ST-T database were from 40 subjects, all healthy; each 
recording was taken for a duration of 1 min, and sampled at 256 Hz [19].

Overall, it was found that the biometric system proposed in this case study was 
able to effectively identify the subjects with a 97.5% overall identification perfora-
tion. It had a false positive rate of 0.1667, and a negative identification rate of 0.025 
[19].

Algorithm 10: DCT Feature Extraction Algorithm [19]

1. Result: DCT coefficients

2. Import the ECG Signals

3. Preprocess the signals

  a. Butterworth band-pass filter between 1 Hz and 40 Hz

4. Localize the highest peaks, constituted by the R peaks in the signal

5. Perform autocorrelation to obtain 21 coefficients

6. Perform DCT on the autocorrelation output
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Autoregressive (AR) models

The autoregressive method of feature extraction from the frequency domain will be 
focused on the residual ECG (rECG). The rECG is a signal in which the ventricular 
components of the original ECG have been canceled out, or removed, through beat 
averaging techniques. It is used to extract spectral parameters from these signals to 
estimate the dominant atrial cycle length (DACL) obtained from patients suffering 
from episodes of atrial fibrillation (AF). The DACL is an important feature because it 
is related to atrial refractoriness, and there has been an observed increase in DACL 
before spontaneous termination of AF [20].

It has been found experimentally, that for patients experiencing AF, they have a 
main spectral component, fo, found in the range of 3–12 Hz. The DACL is the inverse 
of this spectral component [20].

The dataset in this study was taken from Physionet’s Spontaneous termination AF 
database. The rECGs were constructed for each of the recordings in the database. 
There is a collection of 80 two-channel ECG signals in the database, each being a 
recording of AF for a duration of 60  s. They have been sampled at a frequency of 
128 Hz [20].

Algorithm 11: Autoregressive Algorithm (Frequency Domain) [20]

1. Result: Estimate of  fo/DACL feature

2. Import the ECG signal

3. Preprocess the signal

  a. Construct the rECG signal through beat-to-beat subtractions of the averaged QRST complex

4. Perform Spectral Estimation

  a. Use Welch’s periodogram to estimate the power spectral density (PSD)

    i. Use a 512-point Kaiser window with an overlap of 256 points

5. Locate spectral peak in the range of 3–12 Hz

  a. This becomes the  fo estimate

  b. Use method 2 from [20]

6. Downsample rECG series with fs = 32 Hz

7. Fit an AR model to each rECG series

  a. Use model order = 8

Eigenvector methods

The Eigenvector method is used to estimate the PSD of a noise-corrupted signal. It is 
based on the Eigen decomposition of the autocorrelation matrix of said noisy signals. 
The advantage of this method is its robustness under systems containing significant 
amounts of noise; even if the SNR is low, this method can produce a high-resolution 
spectra of the input signal, in this case ECG signals. It is best applied in the case where 
the ECG signals are buried in noise [8].

The main eigenvector method that will be discussed in this paper is Multiple Signal 
Classification (MUSIC). This method utilizes the average spectra of all the eigenvectors 
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of the signal. These eigenvectors are related to the noise subspace. The PSD can be esti-
mated with the following [8]:

where K is the noise subspace dimension and Ai(f ) is the desired polynomial. The 
MUSIC method has been shown to be superior for ECG analysis in the frequency 
domain [8]. Please refer to Table  2 for the summary of the frequency domain feature 
extraction methods discussed.

(4)PMUSIC(F) =
1

1
K (

∑K−1
I=0

∣∣Ai

(
f
)∣∣)2

Table 2 Summary of frequency domain feature extraction methods for ECG

Method Advantages Disadvantages Sample applications

Hilbert transform Accurate
Performs excellently even in 
the presence of significant 
noise in the signal

Future work required to 
overcome the challenges 
faced when using other 
leads with this method

QRS detection [16]

FFT and DFT Precise detection of abnor-
malities in the signal
Simple to implement

Challenges with capturing 
instantaneous frequency 
content
Application to multi-chan-
nel signals difficult

ECG analysis and abnormality 
detection [17]

MFCC High precision of calculation 
and decision-making
High speed, can be used for 
real-time analysis
Robust system

Highly sensitive to noise Cardiac pathologies detection 
system [18]

DCT High accuracy and simple to 
measure
Unique to Individual
Energy compression/con-
servation

Output is always real-valued, 
so quantization is needed to 
get integer-valued output
Specify if the cosine func-
tion to be applied is odd 
or even

ECG analysis for user identifi-
cation and authentication [19]

Autoregressive (AR) Handles low-component, 
noisy signals
Natural alternative to  f0 
estimate
Handles case of when the 
intensity of the fibrillatory 
wave is rather small and 
not well concentrated in 
frequency

Tradeoff with the AR model 
order. If it is too small, 
the AR models extract 
the prevalent features of 
the rECG signals, among 
which the fibrillatory wave 
emerges clearly. If too big, 
the parametric spectrum 
tends to be identical to the 
nonparametric one, leading 
to overfitting results. Com-
promise is 7 < M < 10

Detection of atrial fibrillation 
from the rECG [20]

Eigenvector Performs well even if SNR is 
low, therefore ideal for noisy 
data

MUSIC, which is identified 
as the superior method, 
causes the production of 
spurious zeros to occur. This 
can be solved by applying 
Minimum-Norm technique, 
but this increases the com-
plexity of the algorithm

ECG analysis of signals com-
posed of sinusoids buried in 
noise [8]
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Algorithm 12: Eigenvector Feature Extraction Algorithm [8]

1. Result: PSD (MUSIC) to be used as a feature vector

2. Import ECG signal

3. Preprocess the signal

4. Apply MUSIC formula from (4)

5. Extract the PSD as the feature vector

Joint Time–Frequency domain feature extraction
Joint time–frequency analysis comes in handy when considering the non-stationarity 
property of ECG signals [3, 5]. Since the ECG signals are inherently non-stationary in 
nature, it is beneficial to represent the signals in two dimensions, with time and fre-
quency as the coordinates [21]. In this section, we will explore various methods of time–
frequency domain feature extraction of ECG signals.

Please note that the wavelet transform will be discussed in “Decomposition Domain 
Feature Extraction” Section of this paper, as it is seen as more of a decomposition tech-
nique. However, it does also perform time–frequency analysis (or more appropriately a 
joint time-scale analysis), so readers be aware of this overlap.

Wigner–Ville distribution (WVD)

It has been argued that time–frequency analysis of ECG signals can relay and reveal 
more information about the signal, versus analyzing in the single domains. The WVD is 
one such time–frequency analysis method; it can be used for the detection of P waves in 
the time–frequency domain. P wave detection is important since it can directly be used 
for cardiac rhythm analysis [21].

The basic idea behind the WVD is this: for each time point in the ECG signal, a win-
dowed WVD will be computed, to form a 2D “image” that is representative of the energy 
distribution of the underlying signal. The WVD of a signal, s(t), is defined as the follow-
ing [21]:

where the analytic signal z(t) is defined as:

where H[s(t)] is the Hilbert transform of the signal.
In this particular study, the use of the cross WVD is used to cross two signals, s1(t) and 

s2(t) together. If s1(t) and s2(t) have similar time–frequency characteristics, the imaginary 
part of the cross WVD would be zero (mono-component behavior). If they have differ-
ing time–frequency characteristics, the imaginary part of the cross WVD would take 
non-zero values (multi-component behavior). The cross WVD is defined as [21]:

(5)W (t, f ) =

∫
z(t +

Ŵ

2
)z ∗ (t +

Ŵ

2
)e−j2�f ŴdŴ

(6)z(t) = s(t)+ jH [s(t)]
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Note that the “normal” WVD, as shown in Eq. 5, is real, while the cross WVD, shown 
in Eq. 7, is complex [21]. The cross-terms in the output image would be indicative of the 
artifacts present in the signal. Generally, the cross-terms appear during the P wave, and 
are represented as negative areas in the image. This can be used to detect the P waves 
[21].

Once the cross WVD algorithm is applied to the signal, the 2D energy distribution 
image is outputted; this image provides information about the modulation laws of the 
signal, in both the amplitude and frequency, which are important signal parameters. The 
dataset used in this study was taken from the MIT/BIH database [21].

Algorithm 13: Wigner–Ville Distribution Algorithm [21]

1. Result: P wave detection & WVD features

2. Import the ECG signals

3. Preprocess the signals

4. Integrate the imaginary part of the cross WVD output along the frequency axis

  a. A = Im
∫
w1,2(t , f )df

    i. This can be simplified to:

      A = s1(t) ∗ H[s2(t)] − s2(t) ∗ H[s1(t)] (8)

  b. This will determine the non-zero areas that detect the P waves

5. Integrate the real part of the cross WVD along the frequency axis

  a. E = Re
∫
w1,2(t , f )df

    i. This can be simplified to:

      E = s1(t) ∗ s2(t)+ H[s1(t)] ∗ H[s2(t)] (9)

6. Normalize A by E to enhance the WVD image

Note: this algorithm avoids the computationally exhaustive WVD generation

Generalized tensor rank one discriminant analysis (GTR1DA)

The study that proposed the GTR1DA technique is interested in feature extraction 
applied to direct tensor data inputs. The ECG signals used in this study are represented 
by third-order tensors in the spatial time–frequency domain (12-lead ECGs converted 
to third-order tensors). This can help achieve greater classification accuracy than other 
methods [22].

The study states that there is a current issue with the methods of ECG feature extrac-
tion being explored; they mainly are applied and developed for 2-lead ECG signals, 
which means they cannot later be applied to 12-lead ECG signals, which are the clini-
cal gold standard. When we use fewer leads, we are discarding much of the structural 
information of the ECG, and we lose spatial information as well. In theory, if all 12-leads 
could be considered for a feature extraction process, more robust features would be 
extracted, leading to a more accurate and efficient automatic analysis of the ECG signals, 
and the classification would be improved [22].

(7)W12(t, f ) =

∫
z1(t +

Ŵ

2
)z2 ∗ (t +

Ŵ

2
)e−j2�f ŴdŴ
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The tensors used in this study were constructed using the short-time Fourier trans-
form (STFT) on the raw ECG signals. STFT is used instead of FT since it can collect 
temporal information about when the frequency components occur [22].

The dataset used in this study was provided by a hospital with the help of SiWei 
medical company and the SiWei Remote ECG diagnostic center. The entire database 
spans 3 years, and contains 98,287 segments (20 s each) of ECG data. The sampling 
rate used for this data was 500 Hz. A subset of 3000 segments was taken from this 
dataset to test GTR1DA, and were annotated by clinical physicians.

Algorithm 14: GTR1DA Algorithm [22]

1. Result: Class mean tensor, total mean tensor, and mean tensor of tensor pair

2. Import the raw ECG signal

3. Preprocess the ECG Signal

  a. Perform denoising

  b. Segment the ECG signal

  c. Perform R-peak alignment

4. Take the short-time Fourier transform of the signal

  a. Step output: Tensor ECG data

5. Split the Tensor ECG data into training and testing data

6. Perform GTR1DA on the training data

  a. Calculate the class mean tensor

  b. Calculate the total mean tensor

  c. Calculate the mean tensor of tensor pair

  d. Check for convergence

7. Form the training feature vectors

  a. Train the ML model chosen

Short‑Time fourier transform (STFT)

The STFT can be used to compute and analyze the energy distribution of the ECG sig-
nal. It is essentially used to compute the strength of frequencies in the signal around 
time t. Features are then extracted from said energy distributions to use for classifica-
tion algorithms. The STFT is defined as follows [23]:

where x(t) is a finite length window, and x(t’-t) is the same window, but centered about 
time t [23].

The STFT has a tradeoff between time resolution and frequency resolution though, 
thus making the features limited by the accuracy of the frequency distribution. If 
the resolution in the frequency domain is increased, a longer data segment of ECG 

(10)STFT (t, f ) =

∫
x(t

′

)ϒ ∗ e−j2�ft
′

dt
′
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is required; however, the longer the ECG data, the higher the variation of frequency 
in the time domain. This means that if we want a high time resolution, we require a 
shorter window of ECG data [23].

The ECG dataset used in this study was taken from the Staley cardiac arrhythmia 
database, from which the raw data was collected by the Wisconsin-Dane County 
EMT-defibrillation program. It includes recordings of ventricular fibrillation, asystole, 
and more. The signals were acquired at a sampling rate of 100 Hz. Normal rhythms 
were taken from the MIT/BIH database, which are sampled at 360 Hz [23].

Algorithm 15: Short‑Time Fourier Transform (STFT) [23]

1. Result: 3 features (see Step 5) for further use in classification algorithms

  2. Import the ECG Signals

  3. Preprocess the signals

    a. Bandpass filter using 2 Hz and 20 Hz as cutoff frequencies, with filter order 61 as determined using a 
Hamming window

  4. Perform STFT based on Eq. (10)

  5. Feature Extraction

    a. Feature 1: Frequency of maximal intensity/peak frequency—Fm

    b. Feature 2: Normalized energy in the peak frequency band defined around  Fm

    c. Feature 3: Normalized energy in the harmonics of  Fm

Cone‑shaped Kernel (CKD)

The CKD method was developed to reduce the cross-terms found with other time–
frequency methods; it has been designed as a lateral inhibition function. This means 
that when the intensity computation of the signal at specified frequencies occurs, 
a neighborhood around that frequency will contribute positively, while frequen-
cies outside the neighborhood contribute negatively. It also allows for an improved 
time–frequency resolution. The CKD is defined as the following [23, 24]:

where x is the original signal and φ is the kernel. The bounds applied to parameter a are 
the following: 2 ≥ a < ∞ [23].

The ECG dataset used in this study was taken from the Staley cardiac arrhyth-
mia database, from which the raw data was collected by the Wisconsin-Dane County 
EMT-defibrillation program. It includes recordings of ventricular fibrillation, asys-
tole, and more. The signals were acquired at a sampling rate of 100  Hz. Normal 
rhythms were taken from the MIT/BIH database, which is sampled at 360 Hz [23].

Algorithm 16: Cone‑shaped Kernel (CKD) Algorithm [23]

1. Result: 3 features (see Step 5) for further use in classification algorithms

2. Import the ECG signals

3. Preprocess the signals

(11)CKD(t, f ) =

∫ ∫
ϕ(t − u,Ŵ)x(u+

Ŵ

2
)x ∗ (u+

Ŵ

2
)e−j2�ŴdudŴ

(12)ϕ(t,Ŵ) = g(Ŵ), |Ŵ| ≥ a|t|, 0otherwise
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Algorithm 16: Cone‑shaped Kernel (CKD) Algorithm [23]

  a. Bandpass filter using 2 Hz and 20 Hz as cutoff frequencies, with filter order 61 as determined using a 
Hamming window

4. Perform CKD based on Eqs. (11–12)

5. Feature Extraction

  a. Feature 1: frequency of maximal intensity/peak frequency—Fm

  b. Feature 2: normalized energy in the peak frequency band defined around Fm

  c. Feature 3: normalized energy in the harmonics of  Fm

Choi–Williams distribution (CWD)

The CWD method was developed to reduce the cross-terms found with other time–fre-
quency methods (namely the WVD method). It is sometimes referred to as the Reduced 
Interference Distribution (RID) as well. The CWD can be defined as the following [25]:

where the kernel function is the following:

ϕ(ζ , τ ) is the parameterization function or the kernel; The kernel works as a weight-
ing function; it attempts to keep the signal unchanged while rejecting the cross-terms 
[25]. If results are impacted by cross-terms, the kernel function should be leveraged to 
mitigate.

The dataset used in this study was taken from the MIT/BIH arrhythmia database, and 
it consisted of signals that were classified as the following: normal, left and right bundle 
branch blocks, premature ventricular contraction, paced beat, and the fusion of paces 
and normal beats. The method proposed achieves a classification accuracy of 99% [25]. 
Please refer to Table 3 for the summary of the time–frequency domain feature extraction 
methods discussed.

Algorithm 17: Choi‑Williams Distribution Algorithm [25]

1. Result: 16 CWD features

2. Import the ECG signals

3. Preprocess the ECG signals

  a. Band-pass filter to remove different artifacts, such as baseline wander, muscles noise, and interference 
noise of 60 Hz

4. Perform R-peak detection

  a. Segment the signal into different beats based on the R-peak detection

  b. Seven samples before the R-peak and eight samples after the R-peak (16 samples total) are time–fre-
quency transformed using the CWD

  c. The CWD of these 16 samples become the 16 features that are extracted

(13)CWx

(
t, f

)
=

√
2

π

∫∫ ∞

−∞

(
σ

|τ |

)
e
2σ2(t1−t)2

t2 x
(
t +

τ

2

)
x∗
(
t −

τ

2

)
e−j2π f τdtdτ

(14)ϕ(ζ , τ ) = e
−(

(πζτ)2

2σ2
)
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Decomposition domain feature extraction
This section will discuss methods of decomposition for ECG signals in depth. The basic 
premise of all the methods discussed is as follows: decompose the ECG signal, and 
select the desired components, while rejecting the undesirable components. This helps 
with data compression as well and can be applied to the IoT and connected healthcare 
domain [1].

As for the sparse representation of ECG signals, it is not actually used for tradi-
tional feature extraction from ECG signals. It is more involved with the transmission 
and storage of the ECGs, almost as an alternative to the Nyquist theorem popularly 
employed in the signal analysis realm. Over the past decades, it has not picked up 
traction for its use as a feature extraction method, but since it is involved in transmis-
sion and storage, it can be used to augment other algorithms, especially those con-
cerned with the IoT and connected healthcare domain [3].

Empirical mode decomposition (EMD)

The empirical mode decomposition (EMD) method allows for the ECG signal to be 
split into levels of intrinsic mode functions (IMFs), correlated to the frequency distri-
bution in the signal (from lower to higher frequencies). The IMFs are created through 
an interactive procedure called “sifting.” Certain requirements must be met for an 
IMF to truly be an IMF [26]:

1. The count of local extrema, as well as the count of zero crossings, must be equal to 
each other or different by at most one [26].

2. The average of the envelope (defined by the local maxima and local minima) calcu-
lated in the EMD algorithm (see Algorithm 18) should be zero at any time point [26].

The dataset used in this study was taken from the MIT/BIH arrhythmia database, 
and it consisted of signals that were classified as the following: normal, left, and right 
bundle branch blocks, premature ventricular contraction, paced beat, and atrial pre-
mature beats. 27 records were selected, and each record contained 2-channel ECG 
signals, with a duration of 30 min each. A sampling rate of 360 Hz was used, and the 
signals were bandpass filtered between 0.1 and 100 Hz [26].

Algorithm 18: Empirical Mode Decomposition [26]

1. Result: IMF signals, PSD features, and variance of PSD features

2. Import the ECG signal

3. Preprocess the ECG signal

  a. 10th-order Butterworth low-pass filter with 53 Hz cut-off frequency

  b. 3rd-order Butterworth high-pass filter with 0.75 Hz cut-off frequency

  c. Bandpass filter between 0.1 and 100 Hz

4. Perform EMD to decompose signal into IMFs (7)

  a. Find the local maxima and local minima of the original signal (x(t))

  b. Generate the upper and lower envelope. Use a cubic spline interpolation between the extrema points

  c. Average the upper and lower envelope

    i. m(t) = [emin(t)+ emax(t)]/2 (15) 

  d. Subtract the average from the original signal
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Algorithm 18: Empirical Mode Decomposition [26]

    i. h(t) = x(t)−m(t) (16) 

  e. Check if result meets the requirements of IMF

    i. If yes, then the IMF is formed. Go to f )

    ii. If not, repeat the procedure

  f. Subtract IMF from the original signal to find the residual signal

    i. r1(t) = x(t)− IMF (17) 

  g. Repeat steps a–f using the previous residual function found as the original signal x(t)

  h. Repeat until the residual signal calculated is a monotonic function

5. Perform feature extraction on the original signal and IMF1-IMF7

  a. Feature 1: Power Spectral Density (PDF)

  b. Feature 2: Variances of PDF

6. Use features from the original signal, IMF1 and IMF2 for classification

The wavelet transform (WT)

The wavelet transform (WT) is used as it can provide excellent localization in the 
time and frequency domains simultaneously [8]. For a signal f(t) with a mother wave-
let of ψ(t), the WT is defined as follows:

Note that a is the dilation factor and b is the translation factor. Changing these 
parameters achieves different frequency and time localizations [27]. Since the ECG 
signal is discretized, we must also discretize the wavelet transform. The discrete 
wavelet function is defined as the following [27, 28]:

The dataset used in the studies examined for the wavelet transform used the MIT/
BIH database. Please note that typically the continuous wavelet transform is used for 
feature extraction applications, while the discrete wavelet transform is used for data 
compression applications. This is because there are complications with the discrete 
wavelet transform due to its nature of time variance [3].

Algorithm 19: Wavelet Transform Algorithm [27]

1. Result: WT decomposed ECG signal

2. Import the ECG signals

3. Preprocess the ECG signals

  a. Filter to remove the high-frequency noise and baseline drift

4. Segment the signal into 5-s duration samples

  a. Perform R-peak detection for each of the segments

    i. Calculate the R-R intervals

  b. Compute mean and variance of R–R intervals (features 1 and 2)

(18)Wf (a, b) =< f ,ψa,b >= |a|−0.5

∫

r
f (t)ψ(

t − b

a
)dt

(19)ψm,n(t) = a0
−m

2 ψ(
t − nam0 b0

am0
) = a0

−m
2 ψ(a−m

0 t − nb0)
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Algorithm 19: Wavelet Transform Algorithm [27]

5. Segment the signal once again, this time based on the R peaks to obtain single-period waveforms

6. Perform WT to decompose the signals

  a. Reconstruct the characteristic waveform using the decomposition coefficients from the fourth layer

7. Compute FFT of the characteristic waveform

  a. Obtain the maximum amplitude in the frequency spectrum (feature 3)

Singular value decomposition (SVD)

SVD is popular since it can be used for data compression of ECG signals, while also 
being used to extract significant feature components of the ECG. SVD decomposes 
the ECG signal into sets of basic patterns with their own scaling factors; then, only 
the relevant parts of the singular triplets would be required to be retained to retrieve 
the original signal, resulting in data compression [29].

To perform SVD, first the signal needs to be rearranged as a 2D matrix. Considering 
that the signal is periodic, and has m consecutive periods,

Then, SVD can be performed using the following, considering U and V are the left 
and right singular vectors, respectively [29].

From A, which is composed of the repetitive pattern of consecutive rows, can be 
decomposed into the basic patterns of the signal, which can also be used to recon-
struct the signal. The less significant singular values will be eliminated, which conse-
quently performs data compression [29].

The dataset from the MIT/BIH database was used in this case study. The data con-
sisted of ten-minute data records, sampled at 360  Hz. Different ECG rhythms were 
chosen to evaluate the reconstruction aspect of the algorithm. Refer to Fig. 9 display-
ing the original signal (a) and the reconstructed signal using the SVD algorithm (b). 
Note the similarity in shape; this shows that the features extracted from the SVD algo-
rithm carry an appropriate degree of the underlying signal data, allowing for accurate 
reconstruction [29].

Algorithm 20: SVD Algorithm [29]

1. Result: Features: R-R interval, Mean Beat Period (MBP)

2. Import ECG Signals

3. Preprocess the ECG signals

4. Perform beat delineation (QRS detection) for periodic segmentation

  a. Store R-R interval information

5. Normalize the segmented ECG cycles to the same periodic length

  a. MBP is chosen as the normalized length

6. Perform SVD transformation, using Eqs. 20 and 21

7. Perform reconstruction using the features extracted

(20)A = {xi(t)|i = 1, . . . ,m; t = 1, . . . , n } =




x(1) · · · x(n)
...

. . .
...

x((m− 1)n+ 1) · · · x(mn)





(21)A = U
∑

VT
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Intrinsic Time‑Scale decomposition (ITD)

Intrinsic time-scale decomposition (ITD), is popularly used to de-noise ECG signals. 
This would lead to more effective feature analysis for a variety of applications, such as 
arrhythmia classification and detection; note that the case study analyzed did not focus 
on feature extraction, but it can definitely be expanded on [30].

During the acquisition and transmission of ECG signals, the signal is impacted by 
noise, such as Gaussian noise, powerline interference, muscle artifacts, and baseline 
wander. There are filtering techniques that could be employed, but they do not preserve 
the low-frequency ECG components of the signal [30].

Please note that in the following equations, x(t) is the original signal, L is an operator 
used to extract a baseline signal from x(t) to form a proper rotation, H. The baseline sig-
nal is Lt. [30].

When ITD is performed, the signal is broken down into components. In traditional 
ITD algorithms, to remove the noise, the noisy components of the signal are simply dis-
regarded. This is also helpful for data compression. The lower order components (1–3) 
contain the high-frequency information, like the QRS complex, and the noise. In this 
method however, we will perform wavelet-based denoising, as we want to preserve the 

(22)x(t) = Lx(t)+ (1− L)x(t) = Lt +H

(23)Lt = Lx(t)

(24)H = (1− L)x(t)

Fig. 9 a shows the original signal, and b shows the reconstructed signal using the SVD algorithm [29]



Page 29 of 36Singh and Krishnan  BioMedical Engineering OnLine           (2023) 22:22  

QRS complexes, not reject them. Steps to compute the wavelet denoising of a signal have 
been outlined in depth in [30].

The dataset used in this study was taken from the MIT/BIH database; 6 ECG records 
were used, all of 30 min durations each. Electromyography (EMG) noise was added to 
the signals to analyze the denoising power of the algorithm. The signal-to-noise ratio 
(SNR) is used to evaluate the performance [30].

Algorithm 21: ITD algorithm [30]

1. Result: ITD decomposed ECG signal

2. Import noisy ECG signal

3. Perform ITD to decompose the signal into 8 components + a residual signal

  a. Use Eqs. 22–24

4. Perform wavelet denoising of the components. Refer to “Generalized Tensor Rank One Discriminant Analysis 
(GTR1DA)” Section

5. Reconstruct the signal

6. Perform R-peak detection, and extract theirlocations as features

Matching pursuits (MP)

The matching pursuits (MP) algorithm is used for extracting time–frequency features 
for classification of abnormal heartbeats in the case study analyzed; essentially, the MP 
algorithm is used to select the time–frequency basis that is optimal for the detection of 
different beat patterns. This algorithm is further augmented with the use of independent 
component analysis (ICA) for extracting spatial features; ICA is a statistical technique, 
similar to PCA which was discussed in “Time-domain Feature Extraction” Section. 
Essentially, each heartbeat will be projected into different wavelet packet sets that are 
selected based on the matching of characteristic structures of the different beats that the 
algorithm is attempting to classify. Wavelet packets are used due to their high localiza-
tion power. Refer to Fig. 10 for the proposed MP and ICA feature extraction system [31].

Let s(t) be the original noisy signal. D is the dictionary of waveforms (φγ )γ ǫŴ where γ is 

the indexing parameter of D. The decomposition of s(t) can be approximated by the fol-
lowing [31]:

where r is the noise that is being separated from the original signal.
The dataset used in this study was taken from the 48 two-lead ECG recordings avail-

able in the MIT/BIH database. Each recording is 30 min in duration and the sampling 
frequency is 360 Hz [31]. Please refer to Table 4 for the summary of the decomposi-
tion domain feature extraction methods discussed.

Algorithm 22: Matching Pursuits Algorithm [31]

1. Result: Decomposition of ECG signal

2. Import ECG signal

3. Preprocess the ECG signals

  a. Bandpass filtered from 0.1 to 100 Hz

(25)s(t) =
∑m

i=1
αγ iφγ i + r(m)
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Algorithm 22: Matching Pursuits Algorithm [31]

4. Perform heartbeat detection

  a. Use the fiducial points of the database and extract samples using a fixed window around each fiducial 
point

5. Denoise the sets of heartbeats using the MP algorithm:

    Ŝ (0) = 0 

    r(0) = s

    i = 1

    while(i ≤ m)

    γi = argmaxγ �r
(i−1) ,φγ �1

    αγ i = �r(i−1) ,φγ i�

    Ŝ(i) = Ŝ(i − 1)+ αγ iφγ i

    r(i) = S − Ŝ(i)

    i = i + 1

    end

6. Perform ICA feature extraction

7. Select the m wavelet packet atoms that best match the structures in each class

8. Compute the average normal of the wavelet packet atoms

  a. Rank the average norms

    i. The atoms with the greatest average represent the most important/stable signal structures

9. Use the features extracted to train a machine learning model

Deep learning
Deep learning (DL) is a subset of machine learning (ML), which was discussed in “Sig-
nificance of Features for Machine Learning” Section. Essentially, DL attempts to mimic 
human interaction using a neural network of 3 or more layers. DL and the features it 
uses can be used to drive artificial intelligence (AI) to perform tasks without manual 
intervention. DL differs from ML because it does not require the data pre-processing 

Fig. 10 Proposed system for MP and ICA feature extraction [33]
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that is needed with ML; this means, DL is still efficient when it is faced with unstruc-
tured data, and does not require input from human experts, like supervised ML mod-
els do. DL automatically detects features that are most useful for classification purposes 
[32].

The underlying neural networks are made up of multiple layers of interconnected 
nodes which work to refine and optimize the task at hand. There are a variety of deep 
neural networks available for use, such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs). The network is chosen based on the application or 
problem that the developer is trying to solve [32].

Table 4 Summary of decomposition domain feature extraction methods for ECG

Method Advantages Disadvantages Sample applications

Empirical mode decom-
position

Signals are processed in 
the time domain and thus 
it is easier to evaluate the 
analysis
EMD removes the high-
frequency components 
and keeps the useful infor-
mation of ECG signals to 
extract efficient features

Only achieved 87% 
accuracy. Features chosen 
may not be the most 
appropriate to achieve 
a high accuracy—more 
research is needed

Arrhythmia detection [26]

Wavelet transform Excellent localization in 
the time and frequency 
domains simultaneously

The presence of some 
arrhythmias may lead to 
inaccurate detection of 
QRS complexes [8]
Applying 3-lead systems 
of ECG signal may cause 
the loss of signal informa-
tion which could limit 
efficiency of the WT [8]

Arrhythmia detection [27, 
28]

Singular value decompo-
sition

Allows for data compres-
sion
High computational 
efficiency
Provides efficient coding 
with high-compression 
ratios
Noise-filtering capability

Noise filtering of original 
signals in SVD-based 
approach contribute to 
a relatively larger error in 
the reconstructed signals

Data compression and 
recoverability of ECG signals 
[29]

Intrinsic time-scale 
decomposition

Reduces noise in the QRS 
regions and enhances the 
QRS complexes
Efficient decomposition 
into “proper rotation: com-
ponents; the frequency 
and amplitude are well 
defined

Higher computational 
power required for more 
complex signals
Features may not always 
be accurate

Denoising ECG signals [30]

Matching pursuits High discrimination 
performance
Approach is more flex-
ible than other leading 
approaches

Higher degree of features 
required for the algorithm
The algorithm can be 
optimized, at which point 
the performance would 
improve
Does not perform well 
with the PVC class of 
heartbeats
High computing power 
required
Overall is a greedy algo-
rithm for approximating 
decompositions

Heartbeat Classification [31]
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DL is being applied in the healthcare domain as well; one case discusses the applica-
tion of a CNN model to the ECG for classification of heart disorders. First, automatic 
feature extraction is performed from the data inputted. In the next step, the fully con-
nected, multi-layer perceptron works to classify what was learned in the first step [33].

The dataset used in this study was taken from the Physikalisch-Technische Bundesan-
stalt Diagnostic ECG records from the Physionet database consisting of 549 ECG signals 
with normal and abnormal recordings. Although DL is meant to eliminate the pre-
processing of the data, this case study performed some filtering. Please refer to Algo-
rithm  23 for a summary of the process. The classification results were in the high-80 
range in terms of performance; Accuracy = 88.33%, Sensitivity = 89.47%, and Specific-
ity = 87.80%. Performance can be improved with the use of other DL methods, which 
goes back to the point that the choice of DL method is heavily dependent on your appli-
cation and/or problem you want to solve [33].

Algorithm 23: Deep Learning—CNNs [33]

1. Result: DL pipeline

2. Import ECG signals

3. Pre-process ECG signals

  a. Symlet scaling filter from the wavelet transform

  b. Savitzky–Golay filter

4. Use AlexNet from the CNN architecture family

  a. For performing feature extraction before moving onto the classification stage

5. Use the features in an ML model—> Extreme Learning Machine (ELM) model

  a. Use the ELM sigmoid function as it provides the best results

Discussion, conclusion, and future work
Through this review, we have studied various methods of feature extraction from the 
time domain, frequency domain, time–frequency domain, and the decomposition 
domain. As we progress through these stages, the signal data dimensions are observed 
to increase, but signal representation via the features is also improved through the 
domains. It was also analyzed in “Significance of Features for Machine Learning and 
Deep Learning” Section, that the features can be integrated into ML pipelines for the 
various applications discussed in Tables 1, 2, 3, 4. Note that a practical feature extrac-
tion pipeline needs to generate robust features, compress the underlying data through 
dimensional reduction, and be easily integrated with an ML model [4].

Although the time domain and frequency domain features are fairly straight forward 
to extract from signals, on their own, they do not optimize representation of the under-
lying signals. This is critical to achieve when applying feature extraction methods to 
physiological signals. Hence it was determined that the time–frequency domain meth-
ods perform better for ECG applications. This is primarily due to the non-linear and 
non-stationary characteristics that ECG signals carry [3].

Popular methods in the time domain, like LPC, have been shown to have fast process-
ing, but again face the issue of the LPC coefficients not carrying enough information 
about the ECG signals for a robust analysis. Hidden Markov models have high compu-
tational complexity, so it would be difficult to apply this for real-time systems. This is 
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yet another challenge faced by engineers; developing pipelines that are computationally 
simple enough that a result can be outputted in real-time for quick analysis. This is a 
tradeoff that is observed. For some of the more accurate methods, they are more compu-
tationally expensive, and take more time to actually run and compute. But as engineers, 
this is a design choice that needs to be carefully considered and weighed depending on 
the problem that you are trying to solve.

In the frequency domain, methods, such as the Hilbert transform, FFT, DFT, MFCC, 
and the DCT, are all very accurate and precise for their applications. This is further 
solidified as we know the frequency component of ECG signals is highly important for 
analysis. Hence, frequency features would intuitively result in a better representation of 
the data (when compared to the time domain methods), and thus report greater results. 
However, these methods also have their drawbacks as they are sensitive to noise, and we 
sometimes see difficulty when considering scaling the methods for multi-lead ECG sig-
nals. Many of the methods commonly used are for single or two-lead ECGs.

Moving onto more complex solutions, the time–frequency domain combines the con-
cepts from the previous two domains. These methods provide more insight into the fre-
quency components with time instances associated as well. This would further increase 
the accuracy and representation of the ECG signals, which would theoretically lead to 
better results. We do see excellent results with the methods discussed in this review. 
For example, the WVD has excellent resolution for the energy along both the time and 
frequency axes of the signals. The TR1DA method is helpful because it can represent the 
signal without compromising structural information like other methods do. Although 
CWD has high accuracy, it should be noted that with these methods, there is a tradeoff 
with time and frequency resolution; this means it is not possible to have both optimized, 
and some of these methods can also be computationally exhaustive. Again, this will need 
to be carefully considered by the practitioner developing the algorithm, and it must be 
justifiable as a design choice.

The decomposition domain is useful as it allows for the decomposition of the ECG 
signal, after which the irrelevant components can be disregarded, and the desired com-
ponents can be accepted. This can also be used to pre-process signals as the noisy com-
ponents can be removed. Furthermore, this also results in data compression and can be 
applied to the IoT and healthcare domains.

Some of the methods discussed in this review are EMD, WT, SVD, and MP. How-
ever, there are drawbacks to these methods. These methods require signal approxima-
tion, which results in information loss. The result is lower feature accuracy, larger errors. 
These methods also require higher computational power. [3, 26–29, 31]. Typically, in the 
decomposition domain, to combat the drawbacks, a larger degree of features is required 
to represent the underlying data.

In this review, we focused on methods to compare their computational complexity, 
data compression capabilities, robustness and accuracy of features extracted, and han-
dling of non-linearity and non-stationarity. Each method, summarized in Fig.  11 has 
its own sets of pros and cons (refer to Tables 1, 2, 3, 4), which will need to be weighed 
by the reader during implementation and testing. Based on the analysis of the various 
methods, it is clear that time–frequency provides the best representation on average of 



Page 34 of 36Singh and Krishnan  BioMedical Engineering OnLine           (2023) 22:22 

ECG signals. However, it still is important to consider the methods in the other domains 
depending on the application or problem that you are trying to solve.

There is definitely room for future work and research with the feature extraction 
methods. Many of the methods discussed can either be applied to single-lead ECGs or 
multi-lead ECGs. Recall that, traditionally, a 12-lead ECG is taken, but for more mod-
ern applications, single-lead ECGs are becoming more desirable and commonplace 
due to the reduction of complexity and data. This can be applied to the IoT and con-
nected healthcare domains. However, multi-lead ECGs are used more in clinical settings 
because it is the gold standard; single-lead/reduced-lead ECG signals are not typically 
accepted in the primary healthcare and clinical workspaces. Majority of the methods 
discussed are applied to single or 2-lead ECG signals, meaning that the results would not 
be clinically accepted. Thus, there is room for research here, where perhaps the solutions 
can be scaled in such a way that the primary healthcare system can benefit.

Also, there is room for improvement for extending the solutions discussed in this 
review for real-time applications. As the health-technological revolution continues, we 
will be required to innovate in this regard. The real-time systems need to be improved so 
that the accuracy of the results rival that of the more robust yet computationally expen-
sive methods such that they can be clinically accepted methods in future. There are a 
wide variety of challenges that this could solve, including reducing some of the strain 
that the healthcare system faces due to the backlog of patients. Real-time solutions 
would allow for the processing of more patients in a shorter period of time.
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