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Abstract 

Background: Beta amyloid in the brain, which was originally confirmed by post-
mortem examinations, can now be confirmed in living patients using amyloid positron 
emission tomography (PET) tracers, and the accuracy of diagnosis can be improved by 
beta amyloid plaque confirmation in patients. Amyloid deposition in the brain is often 
associated with the expression of dementia. Hence, it is important to identify the ana-
tomically and functionally meaningful areas of the human brain cortex surface using 
PET to diagnose the possibility of developing dementia. In this study, we demonstrated 
the validity of automated 18F-flutemetamol PET lesion detection and segmentation 
based on a complete 2D U-Net convolutional neural network via masking treatment 
strategies.

Methods: PET data were first normalized by volume and divided into five amyloid 
accumulation zones through axial, coronary, and thalamic slices. A single U-Net was 
trained using a divided dataset for one of these zones. Ground truth segmentations 
were obtained by manual delineation and thresholding (1.5 × background).

Results: The following intersection over union values were obtained for the various 
slices in the verification dataset: frontal lobe axial/sagittal: 0.733/0.804; posterior cin-
gulate cortex and precuneus coronal/sagittal: 0.661/0.726; lateral temporal lobe axial/
coronal: 0.864/0.892; parietal lobe axial/coronal: 0.542/0.759; and striatum axial/sagittal: 
0.679/0.752. The U-Net convolutional neural network architecture allowed fully auto-
mated 2D division of the 18F-flutemetamol PET brain images of Alzheimer’s patients.

Conclusions: As dementia should be tested and evaluated in various ways, there is a 
need for artificial intelligence programs. This study can serve as a reference for future 
studies using auxiliary roles and research in Alzheimer’s diagnosis.
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Background
Dementia is one of the neurodegenerative diseases and can be classified into dementia, 
vascular dementia, and treatable dementia based on the cause. Pathological findings of 
neurodegenerative diseases indicate the accumulation of amyloids in the brain as one 
of the primary causes. Of these, abnormal clustering of beta amyloid (Aβ) in the brain 
can damage the nerve cells [1–3]. The development of molecular imaging techniques has 
greatly influenced the pathological physiological diagnosis and research of Alzheimer’s 
disease (AD); in particular, amyloid (A) imaging can be used as a neurodegenerative bio-
marker to assess the presence and extent of Aβ deposition in vivo during AD diagnosis 
[4, 5].

In amyloid positron emission tomography (PET), an image biomarker along with a 
radioactive isotope is injected to bind to the amyloid protein. In early biomarker studies, 
carbon radioisotope (11C) was mainly used, but in recent times, fluorine isotope (18F) is 
used as it has a longer half-life [6, 7]. Amyvid (florbetapir, 2012) was originally approved 
by the US Food and Drug Administration for Aβ target imaging; however, Vizamyl 
(flutemetamol, 2013) and NeuraCeq (florbetaben, 2014) have also been approved of late 
for the same purpose [8].

Currently, the standard for determining Aβ deposits under clinical settings involves 
careful visual assessment by skilled doctors [9]. However, the classification accuracy of 
the disease type depends on the training and experience of the doctor; further, burnout 
problems with doctors may result in misdiagnosis of medical readings, and in the case 
of low levels of Aβ deposition, visual evaluations may be difficult [10]. There are differ-
ent types of radiation tracers that can be used with PET to detect A markers, which are 
characteristic of Alzheimer’s neuropathology, and visual readings of the 18F-flutemeta-
mol scans used in studies were often obtained according to a color scale (Sokoloff, Rain-
bow, or Spectrum) [11–13]. These color scales require accurate depictions of the cortex 
and reference regions compared to regular gray-level scales and are influenced by the 
PET machines and reconstruction algorithms, which render the standardized criteria for 
positive A identification difficult and may limit accurate diagnosis by a doctor’s visual 
assessment [14].

The main detection model using convolutional neural network (CNN), i.e. semantic 
segmentation, can distinguish the meaningful parts of an image or video by image pro-
cessing [15, 16]. Using the 18F-FET PET image proposed by Blanc-Durand et al. [17], 
glioma was automatically detected and segmented using a full 2D U-Net CNN. In addi-
tion, Falk et  al. [18] proposed a segmentation study for cell counting, detection, and 
morphological measurement using the U-Net algorithm.

Our study is important for determining whether 18F-flutemetamol PET imaging 
can be used to effectively distinguish the characteristics of Aß deposition from the 
diagnostic group on an unstandardized color scale. We extracted patient data and 
standard imaging of deep learning images through preprocessing (image editing) of 
18F-flutemetamol PET images, which are not standardized with the image editing 
program (MIM) used in hospitals and constructed an image database which we used 
to analyze data from patients regarding similar shapes and positions of the brain. 
Then, an additional mask branch was inserted to predict whether each pixel corre-
sponded to an object, and a binary mask was obtained to determine whether each 
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pixel in a boundary box was part of the object. The primary purpose of this study was 
to develop, learn, verify, and test 2D-CNNs to classify negative (i.e. no amyloid accu-
mulation) and positive (i.e. amyloid accumulation) 18F-flutemetamol scans by training 
deep learning (DL) networks using U-Net structures [19, 20].

Results
The classification learning performance of the U-Net model using the 18F-flutemeta-
mol images was confirmed for 440 images, of which 264 were positive and 176 were 
negative. The learning results were compared based on six parameters: mean inter-
section over union (IoU), accuracy, specificity, sensitivity, precision, and F1-score. 
The ground true images and the images form the results were compared pixel-wise, 
and the TP, FP, FN, and TN values were represented by a confusion matrix; then, the 
six parameters were calculated using Eqs. (6)–(11). Table  1 summarizes the overall 
segmentation performance of the CNN architecture.

Figure 1 shows the mean, median, and maximum IoU for the training and valida-
tion datasets, depending on the axial directions of the five target zones. The proposed 
network has average, median, and maximum IoU segmentation scores for Alzheimer’s 
lesions, which were 0.689, 0.757, and 0.840 in the axial direction in the frontal lobe 
and 0.709, 0.795, and 0.860 in the sagittal direction. In the posterior cingulate cortex 
(PCC) and precuneus zones, these values were 0.556, 0.607, and 0.680 in the coronal 
direction and 0.610, 0.662, and 0.790 in the sagittal direction. In the lateral temporal 
lobe, the values were 0.759, 0.833, and 0.850 in the axial direction and 0.671, 0.732, 
and 0.820 in the coronal direction. In the parietal lobe, the values were 0.655, 0.611, 
and 0.670 in the axial direction and 0.655, 0.609, and 0.683 in the coronal direction. In 
the striatum, the values were 0.534, 0.552, and 0.550 in the axial direction and 0.543, 
0.632, and 0.710 in the sagittal direction.

Radiologists were recruited to subjectively evaluate these segmentation results, 
with the resulting images being split into the five amyloid zones, as shown in Figs. 2 
and 3. These results show almost perfect pixel-wise segmentation of the lesions in 
relation to the positive and negative areas. The subjective evaluations by radiologists 
revealed that these segmentation results matched the ground truth images. Figure 2 
shows an example of a positive image (amyloidosis), with (a) being an original image 
from a set of amyloid PET data and (b) representing the label of the corresponding 

Table 1 Machine learning per-segment similarity coefficient and segmentation performance results

IoU intersection over union, PCC posterior cingulate cortex

Segment Frontal lobe PCC and 
Precuneus

Lateral 
temporal lobe

Parietal lobe Striatum

Mean IOU 0.804 0.726 0.892 0.759 0.752

Accuracy (%) 90.3 92.0 97.6 97.3 96.7

Specificity (%) 81.4 88.0 96.0 100.0 100.0

Sensitivity (%) 100.0 100.0 100.0 100.0 94.1

Precision (%) 85.9 90.8 95.2 100.0 100.0

F1-score (%) 91.6 93.2 97.5 95.9 94.0
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amyloid region. Figure 2c shows the outputs of the image using the binary technique; 
Fig. 2d shows the divided images overlapped with the original images from semantic 
segmentation.

We measured the operation time for the segmentation using the timer of the graphics 
processing unit (GPU) to compare the improved performance time for parallel comput-
ing using CUDA. Each of the 76 amyloid PET images was tested on the GPU by random 
selection from the dataset. The test time for the results is the total required time, and the 
training time is the time required for 2000 training cycles, as shown in Table 2.

The graphics training performance for the proposed AD lesion segmentation is shown 
in Fig. 4, with the accuracy and loss curves for the training and validation phases of the 
network being provided in Table  3. In addition, the U-Net model in Fig.  4 shows fast 
convergence without overfitting the training data, especially considering that the valida-
tion loss is similar to the training loss.

Discussion
The purpose of this study was to implement and evaluate a 2D U-Net CNN for positive 
and negative area segmentation of 18F-flutemetamol amyloid images. The U-Net model 
used for learning positive and negative segmentations of 18F-flutemetamol amyloid 
images [19] is a neural network model that is optimized for medical image segmentation. 
Because this network does not use a fully connected layer, the learning speed is high. 
By attaching and using the neural network used in the max pooling process, the loss 
of spatial information by dimension reduction is prevented. This has the advantage of 
producing high-performance segmented results with a small amount of data. According 

Fig. 1 Machine learning per-segment similarity coefficient and segmentation performance: a Frontal lobe, b 
PCC and precuneus, c Lateral temporal lobe, d Parietal lobe, e Striatum
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to Lindström et al. [21], PET images were studied to understand the uptake value ratio 
(SUVR) values and quantitative measurements via reconstruction. In particular, we con-
firmed that the relative absorption differences in the images increase or decrease due 

Fig. 2 Positive image: a Frontal lobe (axial) region, b frontal lobe (sagittal) region, c lateral temporal lobe 
(axial) region, d Lateral temporal lobe (coronal) region, e Striatum (axial) region
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Fig. 3 Negative image: a mask converted image, b parietal lobe (axial) region segmentation image, c 
frontal lobe (sagittal) region segmentation image, d striatum (sagittal) region segmentation image, e lateral 
temporal lobe (coronal) region segmentation image, and f frontal lobe (axial) region segmentation image

Table 2 Computing time comparison for the five areas

GPU graphic processing unit, PCC posterior cingulate cortex

Computing practice Equipment Frontal lobe PCC and 
Precuneus

Lateral 
temporal 
lobe

Parietal lobe Striatum

Average test time/s GPU 10.72 16.35 9.75 8.19 6.87

Average training time/min GPU 6.3 7.1 9.6 7.2 5.7

Fig. 4 Learning curves for training and validation data for the frontal lobe region
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to reconstructions from images of patients with neurodegenerative diseases in the data-
base. Hence, it was concluded that the images acquired through reconstruction required 
normalization; if a normalized image is not set when dividing deep learning images from 
medical image data, problems, such as incorrect subdivision by the algorithm and diffi-
culty in obtaining accurate subdivision results, are observed. The visual geometry group 
(VGG) model is a simple CNN architecture that uses fewer hyperparameters. Deep 
learning through 18F-florbetaben amyloid PET images using VGG [22, 23] and deep 
learning with 2D CNN-based AD/CN classifications from 18F-flortaucipir PET images 
have also been reported. In the framework development study, since grayscale (0,1) PET 
image data are used, normalization of the images in the database is not required. How-
ever, as in this study, if the 18F-flutemetamol amyloid PET images are in color (0–100%), 
then the images require normalization of the pixel values for the entire brain based on 
the values of the cerebellar gray matter (or pons). Despite the heterogeneity of the data-
set used in the image reconstruction, image quality, pixel concentration based on color 
scale, and voxel size, the results of the amyloid region segmentation learning showed an 
IoU value of 0.804 for the frontal lobe, 0.726 for the posterior cingulate cortex, 0.720 for 
the anterior dental coronary/thalamus, 0.892 and 0.752 for the vertical lobe axis/coro-
nary, and 0.752 for striatum regions, and failure cases (IoU < 0.5) were not recorded. This 
shows the advantage of generating high-performance segmented results with a small 
amount of data. The data presented herein highlight the typical high accuracy and low 
operation time for artificial intelligence (AI) integration through encouraging results for 
application in the radiation field, especially in the field of nuclear medicine to evaluate 
dementia.

Conclusions
In this paper, we propose an in-depth supervisory 2D U-Net model for Alzheimer’s 
lesion segmentation in three-axial (axial, coronal, and sagittal) 18F-flutemetamol PET 
images. The proposed network efficiently segments the amyloid-positive and -nega-
tive regions with a mean IoU score of 0.787. The experimental results showed that the 
proposed U-Net-based algorithm achieved IoU values of 0.733/0.804 in the frontal lobe 
axial/sagittal, 0.661/0.726 in the PCC and precuneus coronal/sagittal, 0.864/0.892 in the 
lateral temporal lobe axial/coronal, 0.542/0.759 in the parietal lobe axial/coronal, and 
0.679/0.752 in the striatum axial/sagittal slices for the verification dataset. Existing amy-
loid PET images that are evaluated using deep learning methods are generally grayscale 
images [24], but our work uses colored images; thus, to the best of our knowledge, for 
the first time, a deep learning method for efficient segmentation by normalization of the 
color pixels in the image has been proposed. If additional learning can be performed in 

Table 3 Loss curves for the training and validation phases of the network

PCC posterior cingulate cortex

Performance metrics Frontal lobe PCC and precuneus Lateral 
temporal 
lobe

Parietal lobe Striatum

Training loss 0.02816 0.01238 0.02009 0.01909 0.00905

Validation loss 0.00432 0.00168 0.00314 0.00345 0.00147
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the future by collecting data acquired from various scan techniques, it is expected that 
a computer-assisted diagnostic system can be developed to generate more accurate seg-
mentation results that clearly delineate the positive and negative areas, possibly assisting 
clinical physicians with insufficient experience to diagnose and treat AD.

Methods
The algorithm proposed in this paper comprises four steps: data acquisition, data pre-
processing, U-Net training, and U-Net testing. The flowchart for the algorithm is shown 
in Fig. 5.

Participants

The institutional review boards of medical center approved this study (IRB No. 2020-
02.017) and exempted the need for individual informed consent. This research study 
was performed in accordance with the principles of the Helsinki Declaration as revised 
in 2013. We retrospectively collected flutemetamol PET images that were obtained 
between 06/09/2017 and 05/09/2020 at the medial cancer. An experienced nuclear med-
icine physicians who received electronic training for vizamyl analyzed the flutemetamol 
PET images. Considering the formal report as the gold standard, 176 cases were con-
sidered as negative for amyloid, and 264 cases were positive for amyloid. For positive 
cases, we scored each of five domains, namely, frontal lobes, posterior cingulate and pre-
cuneus, lateral temporal lobes, inferolateral parietal lobes, and striatum, as positive or 
negative according to the formal report.

PET/CT data acquisition

The PET data were acquired using a Biograph mCT Series PET/CT scanner (Siemens 
Healthcare, Europe); the patient head movements were minimized using a head holder. 
A low-dose computed tomography (CT) scan was first acquired for attenuation and 
scatter correction. Then, about 330 ± 30 MBq of the amyloid radiotracer 18F-flutemet-
amol (Vizamyl™; GE Healthcare, Little Chalfont, England, UK) was injected intrave-
nously, and PET was acquired 90–110 min post-injection. The list-mode PET data were 
reconstructed using the time-of-flight ordered-subsets expectation–maximization and 

Fig. 5 Overall flowchart of the proposed Alzheimer’s disease-positive region segmentation algorithm
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TrueX + time-of-flight algorithm with four iterations and 21 subsets, thus accounting for 
random, scatter, dead time, and attenuation. A 3.0 mm full width at half maximum post-
reconstruction Gaussian filter was used on all PET images. The reconstructed images 
had a matrix size of 256 × 256 × 200 and a voxel size of 2.0  mm in the three primary 
directions.

Image preprocessing

Ground truth 18F‑flutemetamol PET segmentation

To perform semi-automatic contouring, masks were drawn manually around the white 
or gray matter of images from five regions (frontal lobe, (PCC) and precuneus, lateral 
temporal lobe, inferolateral parietal lobe, and striatum) using MIM software (https:// 
www. mimso ftware. com, CEA, version 6.8.6) [12, 25], as shown in Fig. 6. After normal-
izing the structural position of the patient, each area was detected automatically, and the 
SUV and Z-score values for each area were calculated. Using these two values, the con-
trast of the image pixels was normalized automatically. Using the pons as a reference, the 
densities of all areas having white matter were adjusted using the statics viewer, with the 
pons reference contour ratio of 1 as the standard.

Preprocessing

For computational purposes, all images (masks and summation images) were resized 
using linear interpolation to a volume of 256 × 256 × 159  mm3 voxels. Each volume was 
normalized to the mean and standard deviation values of all images. To avoid overfit-
ting, a data augmentation strategy was used to enlarge the training dataset. As shown 
in Fig. 7, this procedure included rotations (− 10° and + 10°), X- and Y-axis translations 
(− 0.1, 0.1), and shearing (− 10°, + 10°). To evaluate the segmentation procedure under 
clinical conditions, the dataset was randomly split between a training set and a valida-
tion set, constituting 80% and 20% of the entire image dataset, respectively.

Loss function

The five zones identified account for only a small proportion of the total brain volume. 
In this study, the IoU loss [26] expressed by Eq. (1) was used to segment the amyloid 
positive area, and its value ranges from 0 to 1.

Fig. 6 Automatic normalization of the contrast in the five identified areas using MIM software and based on 
the Pons as the reference

https://www.mimsoftware.com
https://www.mimsoftware.com
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where pi represents the softmax value of the ith voxel output by the segmentation sub-
network, as shown in Eq. (2); gi represents the value of the i th voxel in the positive area 
gold-standard mask. If a voxel belongs to the target region (hippocampus), then its value 
is 1; otherwise, its value is 0 [27].

The cross-entropy loss function [28] expressed by Eq. (3) was used to classify the 
pathological state diagnosis of the brain:

where tk is the correct solution, such that its index is 1 when correct, and 0 otherwise. yk 
is the output of the softmax activation function and is calculated using Eq. (4).

(1)LIoU = 1−

∑N
i Pigi∑N

i Pi +
∑N

i gi −
∑N

i Pigi
,

(2)pi =
eyi

∑N
i=1 e

yi
.

(3)Lcross−entropy = −

∑

k

tk logyk ,

Fig. 7 Sample image and its random data augmentation procedures using OpenCV
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Implementation

We trained the model using a workstation with an NVidia GeForce GTX 1080 GPU 
(8 GB), Ubuntu 14.04 operating system, and CUDA 11.0, by employing the deep learning 
toolkit Python (v.3.7.6) [29, 30]. The networks were trained using the stochastic gradi-
ent descent Adam optimizer method [31], with the IoU as an accuracy measure for the 
segmentation procedure, and negative IoU as the loss function that is backpropagated 
through the CNN [32, 33]. The batch size was set to four. The learning rate was set to 
10−5 initially, and the model was trained for up to 2000 epochs.

Architecture of the U‑Net

As shown in Fig. 8, U-Net is a popular end-to-end encoder–decoder network for seman-
tic segmentation that was originally formulated for biomedical image segmentation 
tasks [34]. The U-Net developed by Christ et  al. [34] extended the fully convolutional 
networks [35] with a U-shaped architecture, which allowed features from the shallower 
layers to combine with those from the deeper layers. U-Net consists of a contracting 
path to capture the features and an asymmetric expanding path that enables precise 
localization and segmentation of the pixels. This architecture is U-shaped and skipping 
connections join the high-resolution features from the contracting path to the upsam-
pled outputs of the expanding path.

After collecting the required features in the encoding path, the decoding path performs 
nonlinear upsampling of the feature maps before merging with the skipped connections 
from the encoding path [36], followed by two 3 × 3 convolutions, and each followed 
by an element-wise rectified linear unit. The skip concatenation allows the decoder to 
learn at each stage the relevant features that are lost when pooled in the encoder. In the 
final layer, a 1 × 1 × 1 convolution is used to map each component feature vector to the 
desired number of classes (two in our study) [37].

In total, the network had 11 convolutional layers and 214,748 parameters to be trained. 
The predicted mask from the U-Net was followed by a morphological dilation operation 

(4)yk =
eyk

∑2
k=1 e

yk
.

Fig. 8 U-Net model
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with 3 × 3 × 3 square connectivity. Fixed thresholding was performed, where the thresh-
old was set to 1.3 times the mean value of a hemispheric swap of the predicted U-Net 
mask to match the procedure performed for the ground truth. All computations were 
performed using Python 3.7.6 with NumPy, TensorFlow 2.1 [38]. U-Net required a train-
ing time of approximately 9.5 h on the NVidia GeForce GTX 1080 GPU (8 GB).

Evaluation criteria

In this study, we chose the IoU measure, which is also known as the Jaccard index, to 
evaluate the positive area segmentation performance. The IoU measure quantifies the 
ratio of overlap between the ground truth mask and segmented image [39] and its math-
ematical definition is given in Eq. (5), which was obtained by subtracting the dice loss 
value from 1:

The meaning of the parameters in Eq. (5) is the same as that in Eq. (1).
The brain pathological state diagnosis performance was evaluated based on the accu-

racy, specificity, sensitivity, precision, and F1-score. The formulas for these indicators are 
as given in Eqs. (6)–(10).

where TP, TN, FP, and FN represent the true-positive, true-negative, false-positive, and 
false-negative numbers, respectively.

Abbreviations
PET  Positron emission tomography
18F-FMM  18F-flutemetamol
CNN  Convolutional neural network
IoU  Intersection over union
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