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Abstract 

Background:  Accurate segmentation of unruptured cerebral aneurysms (UCAs) is 
essential to treatment planning and rupture risk assessment. Currently, three-dimen-
sional time-of-flight magnetic resonance angiography (3D TOF-MRA) has been the 
most commonly used method for screening aneurysms due to its noninvasiveness. 
The methods based on deep learning technologies can assist radiologists in achieving 
accurate and reliable analysis of the size and shape of aneurysms, which may be help-
ful in rupture risk prediction models. However, the existing methods did not accom-
plish accurate segmentation of cerebral aneurysms in 3D TOF-MRA.

Methods:  This paper proposed a CCDU-Net for segmenting UCAs of 3D TOF-MRA 
images. The CCDU-Net was a cascade of a convolutional neural network for coarse seg-
mentation and the proposed DU-Net for fine segmentation. Especially, the dual-chan-
nel inputs of DU-Net were composed of the vessel image and its contour image which 
can augment the vascular morphological information. Furthermore, a newly designed 
weighted loss function was used in the training process of DU-Net to promote the 
segmentation performance.

Results:  A total of 270 patients with UCAs were enrolled in this study. The images 
were divided into the training (N = 174), validation (N = 43), and testing (N = 53) 
cohorts. The CCDU-Net achieved a dice similarity coefficient (DSC) of 0.616 ± 0.167, 
Hausdorff distance (HD) of 5.686 ± 7.020 mm, and volumetric similarity (VS) of 
0.752 ± 0.226 in the testing cohort. Compared with the existing best method, the DSC 
and VS increased by 18% and 5%, respectively, while the HD decreased by one-tenth.

Conclusions:  We proposed a CCDU-Net for segmenting UCAs in 3D TOF-MRA, and 
the obtained results show that the proposed method outperformed other existing 
methods.
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Background
Cerebral aneurysms (CAs) are abnormal bulges that mostly occur in the circle of 
Willis [1]. Rupture of CAs is the leading cause of subarachnoid hemorrhage (SAH) 
[2]. Meanwhile, the death and disability rate caused by the first rupture is as high as 
approximately 30% [3]. Accurate segmentation and reliable analysis of the size and 
shape of unruptured cerebral aneurysms (UCAs) may be helpful in rupture risk pre-
diction [4]. At the same time, three-dimensional time-of-flight magnetic resonance 
angiography (3D TOF-MRA) has become one of the most commonly used screening 
methods because of its noninvasiveness in recent years. Hence, accurate segmenta-
tion for UCAs from 3D TOF-MRA images is particularly crucial.

However, due to the various shapes and complex locations of UCAs, the accurate 
segmentation of UCAs can sometimes be difficult. With the development of deep 
learning technologies, technical methods based on deep learning models (DLMs) 
would increase the speed of clinical diagnosis workflow without compromising accu-
racy. However, the accurate segmentation of UCAs is still challenging. According to 
the investigation, the study of Sichtermann et  al. [5]. was the first to use a convo-
lutional neural network (CNN) to segment UCAs on a 3D TOF-MRA data set, and 
the dice similarity coefficient (DSC) reached 0.53. They focused on the preprocessing 
method of the data set while omitting consideration of the segmentation accuracy, 
which resulted in a low DSC. In addition, Junma [6] at the ADAM 2020 Challenge 
(https://​adam.​isi.​uu.​nl/) trained nnU-Net [7] and achieved a DSC of 0.41, rank-
ing first. They fed the entire image into the model while overlooking the problem of 
potential feature disappearance with the increasing depth of the model. In this paper, 
we developed a CCDU-Net for segmenting UCAs in 3D TOF-MRA. In detail, the 
CCDU-Net was based on a coarse-to-fine segmentation framework. The coarse seg-
mentation model we used was a CNN and the fine segmentation model was the DU-
Net we proposed. The dual-channel inputs of DU-Net were composed of vessel image 
and vascular contour image that could augment the morphological information of 
vessels with UCAs. Meanwhile, a weighted loss function was designed to adaptively 
assign weights to the voxels not well-segmented.

Results
Data materials

In total, 270 patients from 2014 to 2021 were included in this retrospective study and 
annotated by three junior radiologists and a senior radiologist. The patients were ran-
domly split into the training and validation cohort (N = 217), and the testing cohort 
(N = 53). The average size of UCAs was 5.468 ± 3.283 mm in the training and valida-
tion cohort (mean age, 61.4 ± 12.2 years), and 5.373 ± 3.515 mm in the testing cohort 
(mean age, 59.4 ± 13.9  years), respectively. As shown in Table  1, the distribution of 
aneurysms in all cohorts covered the internal carotid artery area, middle cerebral 
artery area, anterior cerebral artery area, posterior cerebral artery area, and basilar 
artery area, but no vertebral artery area was included in the testing cohort. In addi-
tion, the distribution of size of aneurysms can be seen in Fig. 1. As we adopted five-
fold cross-validation strategy, we plotted a box plot of one of the folds for display.

https://adam.isi.uu.nl/
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CCDU‑Net segmentation performance evaluation

Using our proposed method to segment UCAs in the testing cohort, CCDU-Net 
achieved the DSC, HD, and VS of 0.616 ± 0.167, 5.946 ± 6.680, and 0.752 ± 0.226, 
respectively.

The findings showed that most single UCA of 3D TOF-MRA images (36/49, seg-
mented/total number) were well-segmented, and the distribution covered the internal 
carotid artery area (23/31), the middle artery area (5/6), the anterior cerebral artery 
area (7/8), the posterior cerebral artery area (1/1), and the basilar artery area (2/3). 
Double UCAs of images (2/4) were also well-segmented, and the distribution covered 
the posterior cerebral artery area (1/1). At the same time, double UCAs of images 
(2/4) that were not segmented had a distribution that covered the internal cerebral 
artery area (2/2) and the max diameter ranges from 2.59 to 3.08 mm.

Table 1  Profiles of patients

Characteristic Training cohort + validation cohort Testing cohort

Number of patients 217 53

Age (years) 61.4 ± 12.2 59.4 ± 13.9

Gender

 Male 89 21

 Female 128 32

Size of aneurysms (mm) 5.468 ± 3.283 5.373 ± 3.515

Number of aneurysms 228 57

Location of aneurysms

 Internal carotid artery area 125 35

 Middle cerebral artery area 36 7

 Anterior cerebral artery area 35 9

 Posterior cerebral artery area 18 3

 Basilar artery area 8 3

 Vertebral artery area 5 0

Fig. 1  Distribution of size of aneurysms in training, validation and testing cohorts
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Comparison between CCDU‑Net and other methods

The segmentation performances in the testing cohort of our proposed CCDU-Net and 
other existing methods are listed in Table 2, our proposed method had higher DSC, VS, 
and lower HD than DeepMedic and nnU-Net. Especially in HD, the segmentation per-
formance of CCDU-Net was one-tenth of those of DeepMedic and nnU-Net. Since the 
other two methods showed a large number of false positive and false negative areas, the 
HD values were negatively affected.

To visually display the segmentation performances of the models mentioned above, 
several typical TOF-MRA images were selected for comparison. The segmentation 
results obtained through the models are presented in Fig. 2. The segmentation results 
of DeepMedic (red), nnU-Net (yellow), and CCDU-Net (orange) were superimposed 
over the manual segmentation, namely, GT (green). The white arrows represented the 
position of the segmentation result of the models. The distance between lines of differ-
ent colors can reflect the value of HD. We found that the segmentation results of the 

Table 2  Segmentation performances of the proposed method compared with other existing 
methods in the testing cohort

Models DSC HD (mm) VS

Proposed 0.616 ± 0.167 5.946 ± 6.680 0.752 ± 0.226

DeepMedic [5] 0.286 ± 0.299 61.999 ± 71.326 0.502 ± 0.303

nnU-Net [6] 0.521 ± 0.287 59.598 ± 83.901 0.717 ± 0.245

Fig. 2  Typical visualizations of segmentation performances of different models in the testing cohort. The 
segmentation results of DeepMedic (red), nnU-Net (yellow), and CCDU-Net (orange) were superimposed 
over the GT (green). In addition, the white arrows represented the position of the segmentation results of the 
models
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proposed method with low HD in b3, c3, and d3 images were closer to manual annota-
tion, while the other methods did not precisely segment the accurate regions. Observing 
the results of series a and e, all three models did not segment double UCAs well. How-
ever, the number of false positive and false negative areas segmented by CCDU-Net was 
less than those of other existing methods.

Ablation experiments of different inputs and loss functions

In this section, we explored the best settings of different inputs and weighted loss func-
tions. Through ablation experiments in the testing cohort, the segmentation perfor-
mances of different inputs were compared. As presented in Table  3, the dual-channel 
model trained with the initial loss function achieved higher DSC and VS of 0.591 ± 0.201, 
0.738 ± 0.225, respectively, and lower HD of 5.686 ± 7.020 mm, while the single-channel-
input network trained with initial loss function achieved DSC of 0.567 ± 0.205, HD of 
6.433 ± 8.153 mm, and VS of 0.738 ± 0.217. When the vascular contour image was fed 
into the network as one of the dual-channel inputs, the DSC was increased by 5%, and 
HD was reduced by 0.747 mm.

Regarding the bias of single-channel input, it can be seen from Table 3 that when β was 
equal to 0.1, the model achieved the best DSC of 0.590 ± 0.194, HD of 5.085 ± 5.787 mm, 
and VS of 0.741 ± 0.213. Compared with the model trained with the initial loss function, 
the weighted dice loss function positively improved network performance.

Discussion
In this study, we adopted and trained a CCDU-Net for segmenting UCAs in 3D 
TOF-MRA, and evaluated it in the testing cohort. The CCDU-Net was a cascade 
of a CNN and the proposed DU-Net. The following operations were included: the 
vascular contour was extracted along with the vessel image as the dual-channel 
inputs of DU-Net to augment morphological information of vessels with UCAs; a 
weighted loss function was designed to train DU-Net to improve the accuracy of 
voxels that were difficult to segment. The comparisons with the existing meth-
ods showed that our proposed method had higher DSC, VS, and lower HD than 

Table 3  Ablation results of different inputs and weighted loss functions in the testing cohort

Input type Loss function DSC HD (mm) VS

Single-channel Initial loss 0.567 ± 0.205 6.433 ± 8.153 0.738 ± 0.217

Dual-channel Initial loss 0.591±0.201 5.686±7.020 0.738±0.225
Initial loss 0.557 ± 0.197 9.002 ± 10.083 0.709 ± 0.225

Single-channel WDL (β = 0.1) 0.590±0.194 5.085±5.787 0.741±0.213
WDL (β = 0.2) 0.528 ± 0.164 5.585 ± 8.480 0.674 ± 0.221

WDL (β = 0.3) 0.483 ± 0.162 6.194 ± 9.307 0.657 ± 0.241

WDL (β = 0.4) 0.363 ± 0.149 6.910 ± 5.076 0.554 ± 0.241

WDL (β = 0.5) 0.289 ± 0.113 9.052 ± 11.633 0.513 ± 0.245

WDL (β = 0.6) 0.232 ± 0.111 8.269 ± 5.708 0.508 ± 0.276

WDL (β = 0.7) 0.166 ± 0.101 9.453 ± 5.296 0.369 ± 0.269

WDL (β = 0.8) 0.053 ± 0.164 12.659 ± 5.978 0.202 ± 0.195

WDL (β = 0.9) 0.528 ± 0.164 17.377 ± 8.370 0.163 ± 0.213

WDL (β = 1.0) 0.003 ± 0.009 31.892 ± 5.294 0.455 ± 0.314
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DeepMedic (0.286 ± 0.299, 61.999 ± 71.326  mm, 0.502 ± 0.303, respectively), nnU-
Net (0.521 ± 0.287, 59.598 ± 83.901  mm, 0.717 ± 0.245, respectively). In particular, 
the segmentation performance of CCDU-Net in HD was one-tenth of those of Deep-
Medic and nnU-Net.

Considering the tiny UCAs in 3D TOF-MRA images, the information describing the 
UCAs would disappear with the increasing depth of the network. Hence, we extracted 
the vascular contour as one channel of input to augment the morphological information 
of vessels with UCAs. As can be seen from the ablation results in the testing cohort, the 
performance of the dual-channel network was improved compared to the single-channel 
backbone network. Regarding the specific performance, HD was decreased by 0.747 mm 
compared with the backbone model. HD is the metric to assess the maximum distance 
between two pointsets and is sensitive to the object contour and important for analyz-
ing the effect of dual-channel inputs on augmenting morphological information. The 
improvement of HD reflected that the dual-channel inputs indeed promoted the model 
to learn UCAs contour which meant that morphological information could be helpful 
during learning.

While verifying the exponential value of the weighted loss function, we chose the value 
within the interval for experimental comparison, and when β = 0.1, the network per-
formance improved the most. Compared with the network trained with the initial loss 
function, the model trained with WDL increased DSC by 6%, decreased HD by 38%, 
and increased VS by 5%. The voxel overlap between the ground truth and the predic-
tion could be intuitively reflected through DSC. The improvement in DSC indicated that 
WDL did play a role in promoting the network to focus on the voxels of aneurysms that 
not well-segmented during the training process.

Meanwhile, in the coarse-to-fine segmentation framework adopted in this article, the 
segmentation performance at the coarse segmentation stage would affect the effect of 
the fine segmentation. First, in the above experiments, we found that the prediction of 
DeepMedic cannot guarantee that the VOI contained all cerebral aneurysms after being 
cropped to a size of 64 × 64 × 64, and the segmentation accuracy would be influenced. 
Second, if there were too many FP counts at the coarse segmentation stage, the num-
ber of cropped VOIs would also increase and even negatively cause the increasing FP 
counts of the overall network segmentation. Our current research aimed to improve the 
accuracy of the segmentation of cerebral aneurysms. In our future work, we will try to 
reduce the false positive count in the segmentation under high-precision segmentation 
performance.

Conclusions
In this paper, we proposed a CCDU-Net for segmenting UCAs from 3D TOF-MRA 
images, which included two main operations: extracting the vascular contour image 
along with the vessel image as the dual-channel inputs of DU-Net and designing a 
weighted loss function for training. In the experiments, the performance of CCDU-
Net has been verified in ablation studies. CCDU-Net achieved the highest DSC and 
extraordinary HD compared with the existing methods.
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Methods
Data collection

The data used in this paper were acquired on 1.5 T or 3 T GE Discovery MR750 and 
3  T SIEMENS Verio scanners. Details of the image acquisition parameters are pre-
sented in Table  4. The inclusion criteria were as follows: (1) patients with saccular 
UCAs, and (2) underwent preoperative 3D TOF-MRA. The exclusion criteria were: 
(1) the images contained serious artifacts, which were based on the judgment of three 
junior radiologists and a senior radiologist. This study was approved by the Institu-
tional Review Boards of our center and the informed consent was waived.

Development of CCDU‑Net

In this study, we adopted CCDU-Net which was a cascade of a CNN for coarse seg-
mentation and the DU-Net for fine segmentation, and the general workflow of 
CCDU-Net is shown in Fig. 3a.

First, the preprocessed data were passed through a CNN [8] for coarse segmentation to 
detect UCAs. Second, the volume of interest (VOI) was generated according to the coarse 
segmentation result. The VOI coordinates were then transmitted for cropping the vessel 
image and the vascular contour image at the same position.

Subsequently, VOIs of vessel image and vascular contour image were fed into DU-Net 
trained with our proposed weighted loss function. Figure 3b shows the architecture of DU-
Net. The dual-channel inputs of DU-Net comprised VOIs of vessel image and its contour 
image. The network was optimized based on the variant 3D U-Net proposed by Isensee [9]. 
The network was still a four-layer deep structure. In the encoding path, except for the input 
layer, which was a 3 × 3 × 3 convolution with stride 1, each layer consisted of a 3 × 3 × 3 
convolution with stride 2 followed by a context block. The context block was composed of 
a 3 × 3 × 3 convolution with stride 2 followed by a dropout layer with a dropout probability 
of 0.3. In addition, residual connections were embedded between the convolution block 
and the context block to reduce the loss of feature maps. After the penultimate context 
block, the SE [10] block was embedded. The SE block can assign weights to effective fea-
ture channels and suppress invalid features as a spatial attention mechanism. In the decod-
ing path, with the expectation of the output layer that was 3 × 3 × 3 convolution with stride 
1, the other layers consisted of a localization block and an upsampling block. After the 

Table 4  Image acquisition parameters

Manufacturer Field 
strength 
(T)

TR/TE 
(msec)

FOV 
(mm)

Acquisition 
time

Acquisition matrix Flip 
angle (°)

Thickness 
(mm)

SIEMENS 3 21/3.4 58–90 1 min 
12 s–3 min 
33 s

(256−384) × (197–
331)

18 0.5–1

GE 1.5 33/6.3 75–100 1 min 
22 s–3 min 
4 s

(288−384) × 192/195 20 1.2–1.6

3 25/3.4 70–94 1 min 
14 s–3 min 
5 s

(320−384) × 192 15 1–2.4
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first up-sampling block, we also embedded the SE block. The localization block included 
a 3 × 3 × 3 convolution with stride 1 and a 1 × 1 × 1 convolution, which input was the 
summation that concatenated the output of the upsampling block and the context block. 
Meanwhile, segmentation layers were employed for deep supervision at different layers in 
the decoding pathway. The final output was obtained by adding outputs of segmentation 
layers and activating with the SoftMax function.

Finally, the fine segmentation result was restored to the corresponding position and 
size of the raw image by resampling, to obtain the segmentation of the aneurysm.

Weighted dice loss function

Inspired by the focal loss [11], we designed a new weighted dice loss function. The purpose 
was to promote the network to focus on the voxels of UCAs that were difficult to segment. 
During the training process, the overlap between label and prediction was evaluated by 
DSC. When the overlap was too small, the segmentation performance was poor. At this 
time, the loss value was weighted. That is to say, the worse the segmentation performance 
was, the higher the loss value would be, or vice versa. GT was the abbreviation of ground 
truth, Pred referred to prediction, and the symbol “||” meant absolute value. β and S were 
average constant terms, β was derived from experimental inference, and S was a practical 
value of 0.0001. The formula of our loss function is as shown in (1) below:

(1)Weighted Dice Loss = (1− DSC)β

(

−2×
|GT| × |Pred| + S

2

GT+ Pred+ S

)

Fig. 3  a Workflow of CCDU-Net we proposed. b Full architecture of DU-Net
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To satisfy the purpose raised above, we analyzed the value interval of β. Since the 
calculation formula of DSC was similar to the above parenthetical expression, we set 
Weighted loss = −DSC(1− DSC)β , and speculated that in a certain interval of β, when 
DSC was smaller, the weighted loss would increase; when DSC was larger, the weighted 
loss would decrease. By analyzing the monotonicity of function, it could be concluded 
that when the value interval of β was [0,1] the aim of assigning weights to poorly seg-
mented voxels could be achieved. With the preceding analysis, we referred to the value 
of the exponential in focal loss function [11] and employed arithmetic progression to 
set the value of β. Models trained with different loss functions were compared based on 
three metrics and it can be seen from Table 3 that the best setting was β equalled to 0.1.

Training of CCDU‑Net

Preprocessing and data augmentation

The data set used in our study being from seven centers. Therefore, data preprocess-
ing was essential to ensure feature similarity. We performed the following operations for 
preprocessing: (I) N4BiasFieldCorrection [12], (II) cerebral artery extraction [13], (III) 
Z-Score normalization [14], and (IV) vascular contour extraction. Among them, the 
vascular contour was extracted by the Sobel [15] operator. The processed data set was 
divided into the training cohort, validation cohort, and testing cohort, and the following 
further processing was done for the training and validation cohorts.

In the coarse-to-fine segmentation framework, the inputs were different. For the 
CNN, the input was a single-channel vessel image of 128 × 128 × 128. When training 
the CNN, we adaptively dilated the aneurysm (label = 1) according to the UCA size; For 
the DU-Net, the inputs were dual-channel images comprising of VOIs of vessel image 
and vascular contour image. In detail, we took the centroid of the label as the centre of 
a cube and cropped the VOIs of 64 × 64 × 64. In addition, motivated by the augmen-
tation approaches delivered in brain-tumor segmentation [16], the training cohort was 
augmented eight times through flipping along the z-axis, discrete Gaussian filtering [17], 
and histogram equalization. In detail, we first performed flipping on the initial data set 
for augmentation twice, and then Gaussian filtering was performed on the initial data set 
with the flipped data set for augmentation forth. Finally, the histogram equalization was 
performed for eighth augmentation.

Training

The training was divided into two stages: first, when training CNN, we performed five-
fold cross-validation on a Tesla V100 (NIVIDA) GPU with 16-GB VRAM. The primary 
software environment included: Python 3.6, CUDA 10.0, and TensorFlow-GPU 1.14.0. 
In this article, the following parameters were set: the number of iterations was 700; the 
batch size was 10; the learning rate was 1e−3 initially and dropped gradually; L1 was 
regularized to 1e−6, L2 was regularized to 1e−4; RmsProp [18] was used as an opti-
mizer. Second, when training DU-Net, we performed fivefold cross-validation on a 
GeForce RTX 2080 Ti (NIVIDA) GPU with 11-GB VRAM. The primary software envi-
ronment included: Python 3.6, CUDA 10.0, Keras 2.3.1, and TensorFlow-GPU 2.0.0. In 
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this article, the following parameters were set: the number of iterations was 500; the 
batch size was 1; the learning rate was 5e−4 initially and decreased to 1/2 of the last time 
if the validation loss did not improve within 10 iterations, training would be stopped 
after 50 epochs without the validation loss improving; Adam was used as an optimizer. 
The training curves of the CNN and DU-Net in one of the folds are shown in Fig. 4.

Statistical analysis
The following metrics were used for evaluation: DSC, Hausdorff Distance (HD), and 
Volumetric Similarity (VS). GT was the abbreviation for ground truth which was 
based on the manual segmentation of three junior radiologists and the final check 
was performed by a senior radiologist with experience of 21  years. Moreover, Pred 
referred to prediction. The formulas of these metrics are shown in (2), (3), (4):
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