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Abstract

Facial paralysis (FP) is an inability to move facial muscles voluntarily, affecting daily
activities. There is a need for quantitative assessment and severity level classification of
FP to evaluate the condition. None of the available tools are widely accepted. A com-
prehensive FP evaluation system has been developed by the authors. The system
extracts real-time facial animation units (FAUs) using the Kinect V2 sensor and includes
both FP assessment and classification. This paper describes the development and
testing of the FP classification phase. A dataset of 375 records from 13 unilateral FP
patients and 1650 records from 50 control subjects was compiled. Artificial Intel-
ligence and Machine Learning methods are used to classify seven FP categories: the
normal case and three severity levels: mild, moderate, and severe for the left and right
sides. For better prediction results (Accuracy = 96.8%, Sensitivity = 88.9% and Specific-
ity =99%), an ensemble learning classifier was developed rather than one weak clas-
sifier. The ensemble approach based on SVMs was proposed for the high-dimensional
data to gather the advantages of stacking and bagging. To address the problem of an
imbalanced dataset, a hybrid strategy combining three separate techniques was used.
Model robustness and stability was evaluated using fivefold cross-validation. The results
showed that the classifier is robust, stable and performs well for different train and
test samples. The study demonstrates that FAUs acquired by the Kinect sensor can be
used in classifying FP. The developed FP assessment and classification system provides
a detailed quantitative report and has significant advantages over existing grading
scales.

Keywords: Facial paralysis, Grading, Ensemble classification, Machine learning, Kinect,

Facial animation units

Introduction

Facial paralysis (FP) is a loss of facial movements due to facial nerve pathology. It results
in impairment of functions of voluntary facial muscles innervated by the facial nerve
leading to facial asymmetry [1]. FP is clinically classified into two categories: peripheral
or lower motor neuron (LMN), and central or upper motor neuron (UMN) [2]. Periph-
eral FP is a nerve disturbance in the pons of the brainstem. It affects the facial muscles
in the lower, middle and upper regions of one facial side. Central FP (due to stroke) is a
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nerve dysfunction in the motor cortical areas, only the lower half of the face on one side
is affected [3].

The majority of FP patients suffer from peripheral facial palsy. Since it affects most of
the facial muscles of one side of the face, it is difficult for the patient to perform the nor-
mal movements of the eyes, eyebrows, and mouth.

The causes of peripheral FP are divided into four: idiopathic, traumatic, infectious, and
neoplastic [4]. Idiopathic paralysis or Bell’s palsy is the common cause of peripheral FP.

The precise diagnosis and early treatment of FP helps in rapid improvement and recov-
ery. There is currently no standardized clinical assessment for lower motor impairment
and most of the available grading tests are subjective, time consuming and not applied in
routine daily practice. An accurate, non-invasive, quantitative, and objective evaluation
and classification system of FP is still required. Such a system is essential in selecting
treatment and rehabilitation protocols as well as evaluating improvement in the follow-
up phase.

Current facial paralysis classification systems

The methods of extracting features which depend on facial asymmetry for FP classifica-
tion are divided into two categories: hand-crafted features based or deep learning-based
methods [5]. The hand-crafted methods depend on prior knowledge for extracting the
facial asymmetrical features. On the other hand, deep learning-based methods can learn
and automatically extract the palsy-specific features. One example of the deep learning
approach [5] applied convolutional neural networks (CNNs) on FP images to automat-
ically extract palsy-specific features. These features were then used to classify five FP
grades.

Several works have employed machine learning using facial features for FP classifica-
tion. In one work [6], an ensemble of regression trees was used for iris extraction and
facial salient points on 2D images and were found to provide improved FP classification.
The facial symmetry score is evaluated from the ratio of both iris area and the distances
between certain facial landmarks in both sides of the face. Different classifiers (e.g., ran-
dom forest, decision tree, etc.) were employed to classify between peripheral palsy (PP)
and central palsy (CP).

In [1], a CNN model was used for FP classification using 2D images, and was found to
achieve high accuracy compared to neurologists’ diagnosis. To reduce the subjectivity
factor, the dataset was divided into seven categories: normal, left mild dysfunction, left
moderate dysfunction, left severe dysfunction, right mild dysfunction, right moderate
dysfunction, and right severe dysfunction. The triple-check approach was used in labe-
ling of the dataset.

When using CNNss, overfitting may occur which means that there is a biasing towards
the training set causing small training error and large testing error. This limitation of
CNNs can be resolved by applying data augmentation. One study applies a generative
adversarial network (GAN) to augment the training dataset by synthesizing face images
with varying facial palsy grades [5].

In another work [7], a parallel hierarchy convolutional neural network (PHCNN) was
developed to assess and classify FP and was applied to the publicly available databases:
YouTube Facial Palsy (YFP) [8] and Extended CohnKanade (CK+) [9]. This method was
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able to distinguish between normal and FP subjects based on dividing the facial area into
two palsy regions.

An approach was proposed to assess and classify the FP stage based on the analysis of
facial skin perfusion from the facial blood flow image [10]. Facial blood flow distribution
characteristics are extracted using an advanced segmentation technique. Three classi-
fiers; K-nearest neighbor (K-NN), SVM, and Neural Network (NN) are then applied to
provide a quantitative evaluation of FP based on the House—Brackmann scale.

In clinical assessment of FP, both the static facial asymmetry at different facial move-
ments and the dynamic change of movement are considered. However, most of the cur-
rent research uses only the asymmetrical facial features in FP evaluation. One research
study presents an approach for automatic FP classification based on the static and
dynamic features [11]. It is based on SVM in quantifying the static asymmetry and clas-
sifying the degrees of FP in each facial movement. The rate of features change in both
sides of the face is used to evaluate the dynamic asymmetry.

In 2018, Banita and Tanwar [12] proposed an approach of classifying the FP sever-
ity into one of the three categories: patient can be cured, patient cannot be cured, and
patient may or may not be cured. Based on the House—Brackmann system, grades II-V
reflects patient with FP (can recover or not), whereas grade VI in House—Brackmann
system reflects a patient with total FP who cannot recover. The methodology gives better
accuracy based on the 3D images with the fuzzy logic.

Anguraj and Padma [13] developed a method for classifying the severity level of FP
into three categories: mild, moderate, severe beside the normal case. First, Salient Point
Selection Algorithm (SPSA) is used to assign a grade for facial movements. Then, Feed
Forward Back Propagation Neural Network (FFBPN) is achieved to classify the sever-
ity of the disease. The few number of images (9 images) is one of the limitations of this
study.

Table 1 summarizes a comparison of recent FP classification systems. The fields of
comparison are the targeted facial movements, the traditional grading system consid-
ered as a ground truth, the tools and the machine learning algorithms used for the clas-
sification process, and the specifications of the dataset used. Also the limitations of each

system are shown in the table.

Limitations of computerized facial paralysis grading systems

Most of the present techniques are unable to cope with the most prevalent demanding
conditions [14]. Wearing accessories is one of these challenges (e.g., glasses) in addition
to the face’s odd appearance (mustache, haircut, etc.). Furthermore, the existing systems
have numerous inter-personal variations in their outcomes. This means that the person
cannot maintain the same expression all of the time.

The majority of studies in this area are based on datasets of 2D images [6, 13] with
small number of cases and lack in severity levels variety. As a result, they have limited
classification accuracy and hence, are not suitable for large-scale applications.

Face capture utilizing 2D imaging techniques has a number of drawbacks, including
motions, occlusion between extremities, and lighting variations. In addition, external
face asymmetry produced by position, orientation, illumination, and shadows [12].
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References Objective Facial Ground Tools Dataset Performance Limitations
movements truth
Chaoqun FP classifica- HB LSCl scan- RGBimages  Accuracy
Jiang et al. tion ners blood flow NN 96.77%
2020 [10] (6 FP grades) K-NN SVM images K-NN 67.74%
NN 80 unilateral  SVM 86.77%
FP patients
Xin Liu et al. FP classifica-  Rest HB PHCNN- YouTube Accuracy Few public
2020 [7] tion Open mouth LST™M Facial Palsy ~ PHCNN-LSTM FP databases
(3 severity Closure the Database 0.9481% available
levels) eyes lightly Extended Lack of various
Elevation of Cohn- facial expres-
eyebrows Purs- Kanade sions in the
ing lips Database datasets
etc.
Jocelyn Health Rest RLR 440 2D Sensitivity No evaluation
Barbosa etal.  classification  Raising of RF images RLR 85.9% of FP degree
2019 [6] (normal/ eyebrows SVM 60 normal RF 92.3% No classifica-
patient) Screwing-up of DT subjects SVM 72.5% tion of facial
FP classifica-  nose NB 40 PP DT 90.2% paralysis grade
tion (PP/CP)  Smiling with Hybrid patients NB 79.9% Small dataset
showing of 10CP
teeth patients
Anping Song  FP classifica-  Rest FNGS2.0 IDFNP 2Dimages  Accuracy
etal.2018[1]  tion Eye closed (Inception 860 FP 97.5%
(7 catego- Eyebrows v3 CNN patients
ries) raised +
Cheeks puffed DeeplD
Grinning CNN)
Nose Wrinkled
Whistling
Muhammad FP classifica- HB CNNs 2Dimages  Accuracy
Sajid et al. tion GAN 2000 92.60%
2018 [5] (5 grades) Patients
Banita and Evaluation HB Fuzzy logic 3D images
Tanwar. 2018 of FP 82 patients
[12] 3 categories
for patient
(can be
cured,
cannot be
cured, may
or may not
be cured)
Ting Wang FP clas- Raise eyebrows HB FPASMs 62 FP
etal. 2015 sification (6 Close eyes SVM (RBF patients
[11] grades) Screw up nose Kernel) single-side
Plump cheeks and both-
Open mouth side
Angurajand  Classifying Closing of eye SPSA 9images Accuracy 2D grayscale
Padma 2015  theseverity  Raising of FFBPN (2D and 94% images
[13] of facial eyebrows grayscale) Sensitivity Small number
paralysis Opening of 90% of images
(normal- mouth
mild-moder- Screwing of
ate-severe)  nose

CNNs: Convolutional Neural Networks, HB: House-Brackmann, LSCI: laser speckle contrast imaging, K-NN: K-nearest
neighbor, SVM: Support Vector Machine, NN: Neural Network, PHCNN: Parallel Hierarchy Convolutional Neural Network,
LSTM: Long Short-Term Memory, FNGS2.0: Facial Nerve Grading System 2.0, IDFNP: Inception-Deep Facial Nerve Paralysis,
GAN: Generative Adversarial Network, FPASMs: Facial Paralysis Active Shape Models, RF: Random Forest, RLR: Regularized
Logistic Regression, DT: Decision Tree, NB: Naive Bayes, SPSA: Salient Point Selection Algorithm, FFBPN: Feed Forward Back
Propagation Neural Network
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Optical motion devices with reflective markers on the subject’s face are utilized to cap-
ture 3D facial motions [15]. These systems are costly, and they require a professional
clinician to place the markers in the proper locations. These markers may also cause
patients to become uncomfortable and distort their facial movements.

In some studies, hand-crafted features methods are used to pick the suitable facial
aspects for classifying the levels of FP [16, 17]. This may not be the best facial represen-
tation, leading to low performance evaluation.

Classifying approaches based on AdaBoost algorithm suffer from large sensitivity to
noisy data [18]. Some recent studies use CNNs in classifying the degree of FP [1, 19].
Overfitting in results is an inherent limitation of CNNs. Augmentation of the dataset is
essential to overcome overfitting caused while using CNNs [5].

There are some issues with systems that use the Kinect 1.0 to capture facial anima-
tion units (FAUs) [20]. This is due to the fact that only six FAUs are available, which
is insufficient for upper and lower face characteristics [20]. In addition, the values of
these six FAUs are unstable in real-time. Lip corners could also not be accurately tracked
with Kinect 1.0. Furthermore, Kinect 1.0 was unable to capture minor differences in eye
characteristics.

Aim of the current study

The current study is part of a comprehensive FP evaluation system based on Artificial
Intelligence (AI) and Machine learning (ML) approaches. The system uses the Kinect V2
and the SDK 2.0 (Microsoft, USA) to automatically extract facial landmarks and Facial
Animation Units (FAUs) from FP patients. The evaluation system consists of two phases:
FP assessment and FP classification.

The work presented in this paper focuses on the FP classification phase and is an
extension of previous research by the authors [21]. The previous study presented a sys-
tem to classify six normal facial functions: smiling, eye closure, raising the eyebrows,
blowing cheeks, whistling, and resting.

The FP classification phase described in this paper classifies between right and left FP
in three severity levels of paralysis: mild, moderate, and severe. This is performed for the
five voluntary facial movements in addition to the resting state. An ensemble-based clas-
sifier with two learning levels is used. To the best of our knowledge, this methodology of
FP classification has not been reported in the literature.

Results

This section describes the results of testing and evaluating the FP classification module.
This module is responsible for classifying the severity level of FP based on the resultant
features acquired from the FP assessment stage. Seven severity categories were consid-
ered: left mild FP, left moderate FP, left severe FP, right mild FP, right moderate FP, right
severe FP, and normal.
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Table 2 Maximum cross-validation accuracy and its corresponding best values of C and gamma for
the five SVM classifiers (without data augmentation)

Classifier #1 Smiling #2 Closing eyes #3 Raising #4 Blowing #5 Whistling
eyebrows cheeks

Accuracy % 96 91 84 90 91

C 107 100 107 108 100

Gamma 1 10 10 0.1 10

The ranges of C and gamma are (103,107 ....... 10%) and (1073,1072........ 10%), respectively

Table 3 Maximum cross-validation accuracy and its corresponding best values of hyperparameters
for the five Random Forests classifiers (without data augmentation)

Classifier #1 Smiling #2 Closing #3 Raising #4 Blowing #5 Whistling
eyes eyebrows cheeks

Accuracy % 76 56 61 88 91

max_depth 6 8 8 8 10

n_estimators 100 30 100 50 30

The values of max_depth and n_estimators are (1, 2 .... 10) and (5, 10, 20, 30, 50,100), respectively

As an initial stage, five SVMs classifiers are considered, each classifier is trained on
the features of a specific facial movement. In the second stage, the ensemble learn-
ing strategy is added to improve the prediction results based on the learning of more
than one classifier.

Single classifier

Five classifiers are developed, each single classifier learns on the features of one
facial movement. SVMs, K-NN, and random forests classifiers were trained and
tested to choose the best one with the highest performance.

Table 2 shows the maximum CV accuracy with its corresponding best values of C
and gamma for the five SVM classifiers after undersampling but without data aug-
mentation. Table 3 shows the maximum CV accuracy with its corresponding best
values of hyperparameters (maximum depth and number of estimators) for the five
random forests classifiers after undersampling but without data augmentation. Fig-
ure 1 shows the accuracies of each one of the five classifiers versus the number of
nearest neighbors. The results show that SVMs classifiers have the maximum per-
formances rather than Random Forests and K-NN.

The performance of each individual SVM classifier was evaluated using the test
set as shown in Table 4 in two cases: with and without threshold changes. Perfor-
mance metrics are the accuracy, precision, sensitivity, F1-score, and specificity. Per-
formance is shown for five SVM classifiers: smiling, closing eyes, raising eyebrows,
blowing cheeks, and whistling). The performance of the single classifier (as shown
in Table 2) was found to be not good enough to take the decision on the level of FP.
This is because the severity level of FP is affected by the performance of all the five

movements simultaneously and not just a single movement.
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Fig. 1 Variation of K-NN accuracies with changing the number of nearest neighbors parameter (from 1 to 9)
in the five classifiers: a smiling, b closing eyes, ¢ raising eyebrows, d blowing cheeks, and e whistling

Table 4 Performance measure of the five individual SYM classifiers (with and without threshold
change) and the ensemble-based classifier

Classifier #1 Smiling #2 Closing #3 Raising #4 Blowing  #5Whistling Ensemble
eyes eyebrows cheeks

Threshold change? ~ No Yes No Yes No Yes No Yes No Yes Yes
Accuracy % 936 952 904 92 872 92 904 936 776 872 968
Precision % 38 92 80 84 72 84 80 88 48 72 96
Sensitivity % 815 852 741 778 667 778 741 815 444 667 889
F1-score % 846 885 769 808 692 808 769 846 462 692 923
Specificity % %9 98 949 959 929 959 949 969 867 929 99

Ensemble-based classifier
To improve the performance results of classifying FP, a new ensemble-based classifier
was developed. It combines the advantages of the bagging and stacking approaches. In
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Table 5 Performance measure for each individual category using the ensemble-based classifier

Class N L_MiI R_MI R_MO R_S
Accuracy % 88 92 100 96 92

Sensitivity % 100 713 100 875 100
Specificity % 84.2 100 100 100 100

Table 6 Confusion Matrix for the ensemble classifier

Predicted class N L_MI R_MI R_MO R S
Normal (N) 40 0 0 0
Left Mild (L_MI) 10 25 0 0
Right Mild (R_MI) 0 0 10 0
Right Moderate (R_MO) 5 0 0 35 0
Right Severe (R_S) 0 0 0 0 10

The bold indicates the true predicted values

Table 7 SYM models performances measures using fivefold CV (with and without data
augmentation)

Classifier #1 Smiling #2 Closing eyes  #3 Raising #4 Blowing #5 Whistling
eyebrows cheeks

Augmentation?  No Yes No Yes No Yes No Yes No Yes

Accuracy % 90+7 98+1 86+4 98+ 73£8  94+3 8248 9343 87+£5 96+4

Sensitivity % 89+£11 98+£2 78+10 98+ 70£10 93+4 84+5 93£4 874 96+3

1
Precision % 90£10 98£2 81£9 98%x1 71£15 94+4 87£5 93£3 90+6 95+4
1
F1-score % 88£12 98+£2 779 98%+1 68+14 93+4 84+£5 934 85+6 95£4

addition, it is suitable for use with the high-dimensional feature space in the dataset.

The ensemble-based learning classifier involves two levels of classification: first level
and second level. In the first level, the individual learners are the five SVMs classifiers
used in parallel. The prediction results from the individual classifiers are then used as
features to train the rule-based classifier in the second level. The resultant category
predicted by the final classifier indicates the severity level of FP.

The performance of each individual classifier versus the performance of the new
developed ensemble learning approach is shown in Table 4. The performance meas-
ures for each individual category using the ensemble learning classifier are shown in
Table 5. The confusion matrix of the ensemble classifier is described in Table 6.

Robustness and stability of the FP classifiers

In the case of using single classifiers (SVMs with RBF kernels), the model robustness
is evaluated using fivefold CV in two cases: with and without applying data augmen-
tation. The performances of the models (accuracy, F1-score, precision, and sensitiv-
ity) were computed five consecutive times with different splits each time. The average
results and standard deviation (STD) of accuracy, precision, sensitivity, and F1-score

were then calculated as shown in Table 7.
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Discussion

There is ongoing research in the field of classification and grading of FP, and this is
because a fast, quantitative, objective and clinically feasible system is still needed. Cur-
rent research by the authors involves designing, developing and testing a comprehensive
automated assessment and classification system for FP. The work presented in this paper
is the final module of this system, and is the module responsible for classifying the sever-
ity level of FP. Seven severity categories were considered: left mild, moderate and severe
FP, right mild, moderate and severe FP as well as the normal.

The first stage of the work was selecting the facial features to be used and the method
of extracting them. The majority of previous studies related to FP classification used
two-dimensional dataset images which are affected by orientation and lighting [12]. In
some studies, manual and thus subjective landmark detection was performed [15, 37].
Other studies use deep learning and specialized feature recognition software to extract
features from 2D images [5]. For 3D facial capture, optical systems have been previously
used [15]. However, these systems are expensive and need a specialized clinician to place
markers on the face. These markers may disturb the patients and distort their facial
movements.

The Kinect V2, with SDK 2.0, overcomes several of these limitations for 3D facial data
acquisition. It is automatic, fast, accurate and eliminates the need for a specialized cli-
nician or additional feature recognition software. The system uses depth images to
extract FAUs and 3D landmarks, and the data show high performance even with unusual
appearance of the face such as mustache or wearing accessories (e.g., glasses) unlike with
other systems [14]. Also there is no need for markers on the face and hence no physical
contact with the patient which is an advantage during the Covid-19 pandemic. Further-
more, the FAUs reflect the action units (AUs) which in turn separate facial expressions
into separate components of facial muscle movement. Thus the FAUs were selected as
a viable option for features in FP assessment and classification in this work. However,
this posed the first challenge faced which was the unavailability of FP datasets with the
FAUs as features. Second, nothing of the available research is based on similar methods
to compare the results with. This challenge was addressed by creating a dataset of FP
with FAUs as features. The dataset includes 375 records of 13 unilateral FP patients per-
forming the six facial movements.

Another challenge is the imbalanced dataset due to the small number of the FP
cases with respect to the large number of healthy cases. To overcome this problem and
enhance the classification performance, a hybrid strategy of three different techniques
was proposed. The strategy includes undersampling (see “Undersampling” section) and
augmentation (see “Data augmentation” section) techniques in the preprocessing phase
and threshold change in the post-processing phase (in “Post-processing” section).

Table 4 shows that the performance of the new developed ensemble classifier is bet-
ter than the performance of each individual classifier. Also, it is shown that the perfor-
mances of the classifiers were improved after using the threshold change technique after
the learning process.

Table 7 shows that the performance of the model is better when using augmenta-
tion than without using augmentation. Also, the values of the standard deviations
when using augmentation before training are less than the standard deviations



Gaber et al. BioMedical Engineering OnLine (2022) 21:65 Page 10 of 20

without using augmentation. This means that augmentation of the data leads the
model to be more robust and stable and perform well for different train and test
samples.

The work presented in this paper to the best of our knowledge is unique in provid-
ing 5-categorical severity classification of paralysis. The procedure is quantitative,
objective, and does not involve any discomfort.

This study includes some valuable contributions. One of the contributions is pro-
viding a comprehensive approach for FP evaluation including static and dynamic
facial features. In addition, showing that the FAUs which are automatically extracted
by the Kinect V2 may be employed as features in classifying FP. Furthermore, dem-
onstrating a new ensemble learning technique for classifying seven severity levels of
FP. Combining multiple classifiers in the ensemble learning gives higher prediction
results (as shown in Table 4) than using just a single weak classifier. The newly devel-
oped ensemble approach was established for the high-dimensional data to gather the
advantages of stacking and bagging.

The study’s limitations include the small number of FP patients tested and the lack
of particular severity categories, such as left moderate FP and left severe FP. This
is because the most prevalent cause of FP is the upper respiratory infection (e.g.,
influenza, cold). As a result, the number of FP patients rises at the start of the winter
season and then drops during the remainder of the year. Another reason that has
limited the number of FP patients visiting hospitals and clinics in the last two years
is the corona virus pandemic.

The SVMs algorithm is the best choice for training as it is difficult to obtain a large
enough training dataset of FP patients having different levels of severity. Also, apply-
ing data augmentation overcomes the lack of samples and enhances the performance
of the classifier.

Conclusion
This research is part of a comprehensive and automated framework for FP evalua-
tion that is not invasive and provides accurate quantitative results. The current work
describes the FP classification stage. A novel approach was proposed using the FAUs
acquired by the Kinect sensor to automatically classify FP. The severity of FP is clas-
sified as one of seven categories: left mild FP, left moderate FP, left severe FP, right
mild FP, right moderate FP, right FP, and normal. A new ensemble learning approach
was developed based on SVMs as estimators to improve the prediction results rather
than using just one weak classifier. The final decision is based on the developed rule-
based classifier combining the results from the individual SVM classifiers. For han-
dling the problem of imbalanced dataset, a hybrid strategy which consists of three
different techniques was applied. Undersampling and data augmentation techniques
were applied in the preprocessing phase, whereas changing the discriminating
threshold was applied in the post-processing phase.

More FP patients with various FP severity levels should be considered. The work
can be extended to assist in diagnosing patients having problems such as Alzhei-

mer’s disease (AD) and autism.
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Fig. 2 Block diagram of Facial Paralysis Evaluation system

Methods

The block diagram of the whole comprehensive FP evaluation system being developed is
shown in Fig. 2. The FP classification module presented in this paper is used to classify
three severity levels of both right and left unilateral FP. This is performed for five volun-
tary facial movements in addition to the resting state. The following sections describe
building the dataset, feature selection and extraction followed by the feature process-
ing and classification stages. The symmetry indices and degrees of performing the facial
movements are computed from the FAUs and used as inputs to the classification module.

Data acquisition

Patients were recruited for this study at the Al Kasr El Aini and Al Azhar hospitals,
Cairo, Egypt. A total of 13 patients with various degrees of unilateral FP, mostly idi-
opathic, were included in the study. Characteristics of the patients are shown in

Page 11 of 20
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Table 8 Characteristics of FP patients

Patient# Gender Age (years) Paralysisside Duration of Degree of paralysis Type of paralysis
having FP
(weeks)
1 Female 30 Left 8 Mild Chronic
2 Female 32 Left 9 Mild Chronic
3 Female 40 Right 10 Moderate Chronic
4 Female 38 Right 11 Moderate Chronic
5 Male 17 Right 3 Moderate Subacute
6 Male 16 Right 4 Moderate Subacute
7 Male 18 Right 3 Mild Subacute
8 Male 13 Left 12 Mild Chronic
9 Female 55 Right 10 Moderate Chronic
10 Female 60 Right 2 Severe Acute
11 Male 52 Right 1 Severe Acute
12 Female 58 Left 2 Mild Acute
13 Female 50 Right 2 Severe Acute

Table 8. The characteristics include age, gender, paralyzed side, severity and duration
of the condition. Each person sat on a 50-cm-high seat in a room with good lighting
conditions, one meter away from the Kinect V2 sensor. The patients were instructed
to perform five voluntary facial movements: raising eyebrows, closing eyes, smiling,
blowing cheeks, and whistling. Data were captured during each of these movements
in addition to the resting state. Several samples of each movement were acquired to
build the FP dataset which includes a total of 375 records. These multiple samples of
the same movement can be considered as samples from more patients. Sufficient rest-
ing time was allowed between successive samples from the same patient.

Fifty healthy participants were randomly recruited for this study. The participants’
ages ranged between 14 and 65 years. Subjects with any clear type of facial abnormal-
ity or asymmetry were excluded. Each subject was requested to perform the 5 move-
ments. The normal dataset (previously developed by the authors [21]) includes a total
of 1650 records of different states: resting, smiling, eye closure, eyebrows raising,
cheeks blowing, and whistling.

The experimental procedures involving human subjects were approved by the eth-
ics committee of the Systems and Biomedical Engineering department council, Cairo
University. Participants involved in this research and parents of young patients were
informed of the research procedures and signed an informed consent form.

The records acquired from the FP patients and normal subjects were combined in
a complete dataset to be processed for the classification stage. Three levels of uni-
lateral FP were considered in this study: mild, moderate and severe. The dataset was
labeled accordingly by experienced clinicians and these labels are used as the ground
truth. The dataset was then divided into seven categories: left mild FP, left moderate
ED, left severe FP, right mild FP, right moderate FP, right severe FP, as well as the nor-
mal case. The symbols used for these categories and their frequencies in the dataset
are shown in Table 9. As a proof of concept, only five classes were considered in this
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Table 9 Seven categories of FP classification and their frequencies in the dataset

Category Description Frequency
N Normal 289

LM Left mild facial paralysis 127

L_MO Left moderate facial paralysis 0

LS Left severe facial paralysis 0

R_MI Right mild facial paralysis 35

R_MO Right moderate facial paralysis 177

R_S Right severe facial paralysis 36

work: normal, left mild FP, right mild FP, right moderate FP and right severe FP due
to the unavailability of the two classes: left moderate FP and left severe FP.

Feature extraction

The Facial Action Coding System (FACS) is a system for characterizing facial muscles
movements and how the appearance of the face changes with these movements [22].
Certain variations in the facial appearance are the result of several muscle movements,
and some muscles can be involved in multiple actions. FACS analyzes each facial emo-
tion into action units (AUs), which are separate components of facial muscles move-
ments [23].

The SDK 2.0 for the Kinect V2 includes a library for automatically acquiring 3D facial
landmarks and Facial Animation Units (FAUs) which reflect the AUs. 3D facial land-
marks from the Kinect sensor have been used previously in facial functions’ assessment
[24-28], and in FP evaluation [29]. FAUs from the Kinect sensor were previously used as
a features for facial emotion and expression recognition [30—32].

In this study, seventeen FAUs are extracted from each FP patient during performing
the six movements which include: rest, smiling, eye closure, eyebrows lifting, blowing
cheeks, and whistling. Therefore 102 feature values per record are available to be used
for classifying the degree and type of FP. The detailed analysis of features in the whole
block diagram of the study is shown in Fig. 3. The figure shows the number and type
of features used in each stage of FP evaluation starting from the data acquisition until
reaching the final classification of FP severity level.

Feature selection
As inputs to the two modules, symmetry analysis module, and facial functions grading
module for feature transformation, two separate sets of FAUs were selected from the 102
FAUs available per record. The first set of features are the 12 FAUs: FAU2, FAU3, FAU4,
FAUS5, FAU6, FAU7, FAUS, FAU9, FAU10, FAU11, FAU16, and FAU17 for each one of
the six facial movements. These features (72 FAUs) are then fed to the symmetry analysis
module previously developed by the authors to calculate the animation symmetry indi-
ces (ASIs).

The second set of features includes the most affected FAUs involved in each one of the
five facial movements as follows: (FAU2 and FAU3) in eye closure, (FAU4 and FAU5) in
eyebrows lifting, (FAU6 and FAU?) in smiling, (FAU16 and FAU17) in cheeks blowing,
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Fig. 3 Detailed analysis of features in each stage of FP evaluation

and (FAU14, FAU16, and FAU17) in whistling. These eleven FAUs in addition to their
corresponding ones (9 FAUs) in the resting state excluding the repetition of FAU16 and
FAU17 (for whistling and blowing cheeks) form the second set of features. These 20 fea-
tures are the inputs to the facial functions grading module previously developed by the
authors to compute the degree of performing the facial movements.

Most of the features in the second set are included in the first set. Only 2 features
(FAU14 in rest and whistling states) are in the second set and are not in the first set.
Therefore, the total number of features used for these two modules are 74 FAUSs.

Pre-processing

Feature transformation

As described in Figs. 3 and 4, the FAUs selected are not used directly as inputs to the
classification module. Two modules shown in Fig. 2 are used to transform the FAUs fea-
tures into new sets of features.

In the symmetry analysis module, the values of FAUs are compared between the right
and left sides of the face during the 6 movements to evaluate the animation symmetry
indices (ASIs) of the three facial regions: mouth, eyes, and eyebrows. For each one of
the six facial movements, six ASIs are computed from the 12 FAUs provided (as shown
in Fig. 3). The total number of ASIs output from the symmetry analysis module is 36
ASIs. These features vary according to different facial movements, and thus the six ASIs
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Fig. 4 Framework of the classifiers and the corresponding features from the grading and symmetry modules

evaluated while the subject is smiling, for instance, are fed to the smiling classifier (the
classifier that classifies the severity and type of FP based on the smiling behavior).

In the facial functions grading module, the values of FAUs captured during each facial
movement are compared to their corresponding ones in the rest state to evaluate the
degree of achieving the movement. These features therefore indicate the grades of per-

forming the facial movement for both sides of the face.

Undersampling

This problem of classification is an imbalanced domain learning problem in which the
normal class is the majority class and contains a larger number of cases than the minor-
ity classes (FP classes). The training models are more likely to learn the majority class
rather than the minority class (rare cases) [33]. Therefore, it is desired to bias the model
to those rare classes (the classes of interest). A hybrid strategy which consists of three
imbalanced learning techniques in two different phases, preprocessing phase and post-
processing phase, was applied. Undersampling and data augmentation (in “Data aug-
mentation” section) techniques were applied in the preprocessing phase while changing
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the discriminating threshold was applied in the post-processing phase (in “Post-process-
ing” section).

Random undersampling is down-sampling the most represented and less important
class by randomly removing samples. Although applying this technique is simple, useful
data may be discarded. Also, this technique must be applied with caution in small data
sets. In this study, random undersampling technique was applied on the normal class.
The original number of samples acquired from normal subjects was 1650 [21]. After per-
forming random undersampling, the number of normal samples was decreased to 289
samples as shown in Table 9. The total number of samples in the dataset becomes 664
samples (289 normal + 375 different FP cases).

Data augmentation

In this study, the minority classes (FP classes) are equally important in the prediction
problem. Therefore, a data augmentation technique was applied for synthesizing new
samples of the minority classes so that the number of samples in the minority classes
better resembles or matches the number of samples in the majority class (normal class).
Synthetic Minority Oversampling Technique (SMOTE) [34] is an oversampling tech-
nique, in which a new minority class sample is created between a randomly selected seed
sample from that class and one of its K-nearest neighbors.

SMOTE is used to oversample all classes to have the same number of samples (i.e., 289
samples) as the class with the most samples. SMOTE is better than random oversam-
pling as it works by creating synthetic samples from the minor classes instead of creating
copies. One of the limitations of SMOTE appears when the minority class samples are
very sparse which leads to a greater chance of class mixture.

Data splitting and cross-validation

The acquired dataset was divided into training and validation sets and testing set with
the ratio around 4:1. The training and validation set contain about 80% of the dataset
and the other 20% was used for testing. The splitting of data was performed randomly,
but stratified to make sure that all the classes appear in the training and testing data with
the same distribution present in the dataset.

Fivefold cross-validation (CV) was used to divide the training and validation set into
fivefolds. In such fivefold CV, one of the folds is left out as the validation data, whereas
the remaining folds are used as the training data for model building. CV is a resampling
procedure used to evaluate ML models on a limited data sample [37].

Ensemble-based learning
Ensemble learning methods are algorithms that combine the results from more than one
model. They are developed to improve the prediction results based on the learning of
more than one classifier [35]. Different classifier combination approaches were developed
such as bagging, stacking and boosting. Each has its own advantages and disadvantages.
In this study, a new ensemble approach was developed to combine the advantages of
the bagging and stacking algorithms to reduce the high-dimensional dataset. The frame-
work of this approach is described in Fig. 5.
The classification process involves two phases of learning: first level and second level.
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First-level learners

In the first level, five classifiers are employed and trained in parallel on the features from
the five movements independently. Three different models were trained and tested in
this stage: SVMs, K-NN, and random forests. The results showed that SVMs outperform
K-NN and random forests. Therefore, SVMs are chosen as the individual classifiers in
this level of learning. RBF Kernel models with their optimum parameters are used. Each
classifier was trained with a subset of features acquired from a specific facial movement
performed by the FP patient. The result from each classifier will be one of the five FP cat-
egories: normal, left mild FP, right mild FP, right moderate FP, and right severe FP.

The original feature space includes 36 ASIs output from the symmetry analysis mod-
ule and eleven facial grades values output from the facial functions grading module. But
only 30 ASIs (excluding the 6 ASIs from the rest state) are used for the classification with
the 11 facial grades values. Therefore, a total of 41 features are used as inputs to the clas-
sification process. The dataset was partitioned to a subset of features. Each subset has
the features corresponding to a certain facial movement. Six ASIs and two difference
in FAUs from the rest values are considered for each one of the four facial movements:
smiling, raising eyebrows, closing eyes, and blowing cheeks. Six ASIs and three differ-
ence in FAUs from the rest values are considered for whistling (as shown in Fig. 3).

Second-level learner

In the second level, the five prediction results from each classifier in the first phase are
then combined and input to a rule-based classifier (the combiner) to make the final deci-
sion that is one of the five FP categories. The result of the classifier is initially based on
the maximum vote criteria. However, when two classes have the same number of votes
(i.e., two votes for each class), the result will then be based on other conditions as illus-
trated in Fig. 6.



Gaber et al. BioMedical Engineering OnLine (2022) 21:65 Page 18 of 20

Is one of
the class is
“Normal”?
The result is the X1==N?
other class with

the two votes

The two classes are from
different sides

(i.e. 2 votes are right side

and 2 votes are left side)

X1=R_ C&X2=L_D

Are the two

classes from
same side with
different
severity?

Is the fifth
vote is a side
class (RorlL)
X3=R

Yes No

The fifth vote
is “Normal”
X3=N

The result is
the class with
the higher
severity level

The result is the
class with the
same side as X3

The result is
randomly chosen

Fig. 6 Flowchart of the rule-based classifier procedure

The performance of each individual classifier and the performance of the new devel-

oped ensemble learning were evaluated and compared.

Hyperparameters optimization

The performance of the SVMs kernels models is sensitive to the hyperparameter values.
There are two parameters for an RBF kernel: C (cost) and gamma. Hyperparamters tuning
was performed on a specified range of C and gamma values. Grid-search method was used
with the appropriate ranges of values as follows: C (1073, 1072 ....... 10%), and gamma (1073,
1072....... 10%). Fivefold CV technique was used to estimate the accuracy of each parameter
combination in the selected range to find the optimum values of C and gamma. This pro-
cess is performed for each one of the 5 SVM classifiers in the first-level learning.

Post-processing

As mentioned in “Undersampling” section, the other strategy used to overcome the
problems in imbalanced learning is changing the discriminating threshold which is
applied after the learning process [36]. Its goal is to manipulate the predictions of the
models according to the domain preferences and the imbalance of the data. Adjusting
the decision threshold is a good strategy to deal with the class imbalance problem.

After prediction, the probability estimate of the classes is used to set an appropriate value
of the threshold to increase the model performance in classification. By default the SVM
classifier predicts the sample with the class label which has the maximum probability value.
Based on analyzing the initial results of the classifier, it was found that the probability of the
normal class is above 0.4 if the actual class is normal. Otherwise, this probability is below 0.4
if the actual class is one of the FP classes. Therefore, a threshold value of 0.4 was set. If the
normal class has the maximum probability but below 0.4, then it will be excluded from the
classification and the sample will be labeled with the other class having the second rank of
the probability value. Applying this strategy leads to increase in the classifier performance.



Gaber et al. BioMedical Engineering OnLine (2022) 21:65 Page 19 of 20

Acknowledgements
The authors have confirmed that any identifiable participants in this study have given their consent for publication.

Author contributions

AG and MT analyzed and surveyed previous work. AG, MT, NS, and SG contributed in the acquisition of the data and par-
ticipated in the analysis and interpretation of data. AG carried out the experiments and performed the statistical analysis.
AG, MT and MA participated in writing the manuscript. MT and MA conceived of the study and participated in its design
and coordination. All authors have read and approved the final manuscript.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with
The Egyptian Knowledge Bank (EKB). This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Availability of data and materials
All data generated or analyzed during this study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Participants involved in this research were informed of the research procedures and signed an informed consent form
before participation. The experimental procedures involving human subjects described in this paper were approved by
the Ethics committee of the Systems and Biomedical engineering department council, Cairo University.

Consent for publication
The authors have confirmed that any identifiable participants in this study have given their consent for publication.

Competing interests
The authors declare that they have no competing interests.

Received: 13 May 2022 Accepted: 24 August 2022
Published online: 07 September 2022

References

1. Song A, Wu Z, Ding X, Hu Q, Di X. Neurologist standard classification of facial nerve paralysis with deep neural
networks. Future Internet. 2018;10(11):111.

2. Walker W. Facial Paralysis—Physiopedia. [Online]. Available: https://www.physio-pedia.com/Facial_Palsy. [Accessed
11 November 2021].

3. Finsterer J. Management of peripheral facial nerve palsy. Eur Arch Otorhinolaryngol. 2008;265(7):743-52.

4. Mavrikakis I. Facial nerve palsy: anatomy, etiology, evaluation, and management. Orbit. 2008;27:466-74.

5. Sajid M, Shafique T, Baig MJ, Riaz I, Amin S, Manzoor S. Automatic grading of palsy using asymmetrical facial features:
a study complemented by new solutions. Symmetry. 2018;10(7):242.

6. Barbosa J, Seo W-K, Kang J. paraFaceTest: an ensemble of regression tree-based facial features extraction for efficient
facial paralysis classification. BME Med Imaging. 2019;19.

7. LiuX, XiaY,YuH, Dong J, Jian M. Region based parallel hierarchy convolutional neural network for automatic facial
nerve paralysis evaluation. [EEE Trans Neural Syst Rehabil Eng. 2020;10:2325-32.

8. Hsu G-S.YouTube Facial Palsy (YFP) Database. [Online]. Available: https://sites.google.com/view/yfp-database.
[Accessed 15 January 2022].

9. Lucey P, Cohn JF, Kanade T, Saragih J. The extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit
and emotion-specified expression. in IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2010.

10. Jiang C,Wu J, Zhong W, Wei M, Tong J, Yu H, Wang L. automatic facial paralysis assessment via computational image
analysis. J Healthc Eng. 2020,2020(5):1-10.

11. WangT, Zhang S, Yu H, Dong J, Liu L-A. Automatic evaluation of the degree of facial nerve paralysis. Multimed Tools
Appl. 2015;75(19):11893.

12. Banita PT. Evaluation of 3D facial paralysis using fuzzy logic. Int J Eng Technol. 2018;7(4):2325-31.

13. Anguraj K, Padma S. Evaluation and severity classification of facial paralysis using salient point selection algorithm.
Int J Comput Appl. 2015;123(7):23-9.

14. Leo M, Carcagni P, Mazzeo PL, Spagnolo P, Cazzato D, Distante C. Analysis of facial information for healthcare applica-
tions: a survey on computer vision-based approaches. Information. 2020;11(3):128.

15. Hontanilla B, Auba C. Automatic three-dimensional quantitative analysis for evaluation of facial movement. J Plast
Reconstr Aesthet Surg. 2008;61(1):18-30.

16. Kim H, Kim S, Kim Y, Park K. A smartphone-based automatic diagnosis system for facial nerve palsy. Sensors.
2015;15:26757-68.

17. WangT, Dong J, Sun X, Zhang S, Wang S. Automatic recognition of facial movement for paralyzed face. Biomed
Mater Eng. 2014;24:2751-60.

18. HuangV, ChenF, Lv S, Wa X. Facial expression recognition: a survey. Symmetry. 2019;11(10):1189.

19. Raj A, Mothes O, Sickert S, Volk GF. Automatic and objective facial palsy grading index prediction using deep feature
regression. Springer Nature Switzerland, p. 253-266, 2020.


https://www.physio-pedia.com/Facial_Palsy
https://sites.google.com/view/yfp-database

Gaber et al. BioMedical Engineering OnLine (2022) 21:65 Page 20 of 20

20. Mallick T, Goyal P, Das PP, Majumdar AK. Facial emotion recognition from Kinect data—an appraisal of Kinect face
tracking library. in International Conference on Computer Vision Theory and Applications, 2016.

21. Gaber A, Taher MF, Abdel wahed M, Shalaby NM. SYM classification of facial functions based on facial landmarks and
animation Units. Biomed Phys Eng Express. 2021;7(5).

22. Ekman P, Friesen WV. Manual for the facial action coding system, Consulting Psychologists Press, 1977.

23. Ekman P, Friesen WV, Hager JC. Facial action coding system Investigator’s Guide, Salt Lake: UT: Research Nexus, 2002.

24. Gaber A, Taher MF, Wahed MA. Automated grading of facial paralysis using the Kinect v2: a proof of concept study.
in International Conference on Virtual Rehabilitation ICVR, Valencia, 2015.

25. Gaber A, Taher MF, Wahed MA. Quantifying facial paralysis using the Kinect v2.in International Conference of the
IEEE Engineering in Medicine and Biology Society, EMBC'15, Milan, 2015.

26. Gaber A, Taher MF, Abdel wahed M. A pilot study on automated quantitative grading of facial functions. Vibroengi-
neering PROCEDIA. 2020;30(4):109-15.

27. Guanoluisa GM, Pilatasi JA, Andaluz VH. GY MEDIC: analysis and rehabilitation system for patients with facial paraly-
sis. in Integrated Uncertainty in Knowledge Modelling and Decision Making IUKM, 2019.

28. Guanoluisa GM, Pilatasi JA, Flores LA, AndaluzEma VH. GY MEDIC v2: quantification of facial asymmetry in patients
with automated Bell's Palsy by Al. in Augmented Reality, Virtual Reality, and Computer Graphics AVR, 2019.

29. Carro RC, Huerta EB, Caporal RM, Herndndez JC, Cruz FR. Facial expression analysis with Kinect for the diagnosis of
paralysis using Nottingham system. [EEE Lat Am Trans. 2016;14(7):3418-26.

30. Alabbasi HA, Moldoveanu F, Moldoveanu A. Real time facial emotion recognition using Kinect V2 sensor. IOSR J
Comput Eng (IOSR-JCE). 2015;17(3):61-8.

31. Mao Q-R, Pan X-Y, Zhan Y-Z, Shen X-J. Using Kinect for real-time emotion recognition via facial expressions. Front Inf
Technol Electron Eng. 2015;16(4):272-82.

32. Alabasi HA, Moldoveanu F, Moldoveanu A, Shhedi Z. Facial emotion expressions recognition with brain activities
using Kinect sensor V2. Int Res J Eng Technol (IRJET). 2015;2(2):421-8.

33. RaederT, Forman G, Chawla NV. Learning from imbalanced data: evaluation matters. In Data Mining: Found & Intell
Paradigms, Verlag Berlin Heidelberg, Springer, 2012, p. 315-331.

34, Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intel
Res. 2002;16(2002):321-57.

35. PiaoY, Piao M, Jin CH, Shon HS, Chung J-M, Hwang B, Ryu KH. A new ensemble method with feature space parti-
tioning for high-dimensional data classification. Math Probl Eng. 2015;2015:1.

36. Esposito C, Landrum GA, Schnei N, Stiefl N, Riniker S. GHOST: adjusting the decision threshold to handle imbalanced
data in machine learning. J Chem Inf Model. 2021;61(6):2623-40.

37. Sforza C, Ulaj E, Gibelli D, Allevi F, Pucciarelli V, Tarabbia F, Ciprandi D, Dolc C, Biglioli F. Three-dimensional superimpo-
sition for patients with facial palsy: an innovative method for assessing the success of facial reanimation procedures.
Br J Oral Maxillofac Surg. 2018;56(1):3-7.

38. Murthy JMK, Saxena AB. Bell’s palsy: treatment guidelines. Ann Indian Acad Neurol. 2011;14:570-2.

39. Hsu G-SJ, Huang W-F, Kang J-H. Hierarchical network for facial palsy detection. in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



	Classification of facial paralysis based on machine learning techniques
	Abstract 
	Introduction
	Current facial paralysis classification systems
	Limitations of computerized facial paralysis grading systems
	Aim of the current study

	Results
	Single classifier
	Ensemble-based classifier
	Robustness and stability of the FP classifiers

	Discussion
	Conclusion
	Methods
	Data acquisition
	Feature extraction
	Feature selection
	Pre-processing
	Feature transformation
	Undersampling
	Data augmentation

	Data splitting and cross-validation
	Ensemble-based learning
	First-level learners
	Second-level learner

	Hyperparameters optimization
	Post-processing

	Acknowledgements
	References




