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Introduction
The importance of exploring guidelines and regulations regarding implementation for 
different machine learning (ML) and artificial intelligence (AI) techniques increases as 
these techniques become prevalent in various settings that involve private individual 
data. In the US, in the context of health-related data and protected health information 
(PHI), the Health Insurance Portability and Accountability Act (HIPAA) of 1996 defines 
how information must be scrubbed prior to use outside of a protected enclave. HIPAA’s 
primary goals are providing regulation to facilitate the portability of the data and pre-
venting leakage of PHI. It has been shown that sharing seemingly benign healthcare data 
can result in unintended PHI leaks; for instance, the electroencephalogram (EEG) [1] or 
electrocardiogram (ECG) [2] or even data from sensors of the wearables can be used to 
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re-identify the participant [3], as long as the pool of people from whom you sample is 
relatively small (rendering the approach relatively useless in practice). Another example 
of the potential leak of private data comes from wearable cameras, and one attempt to 
address it is by Stein et al. [4]. They approach the concerns about a camera recording 
sensitive/personal situations in daily use of an augmented reality wearable camera by 
implementing AI to control a physical shutter to block the camera when appropriate.

While these are all examples of raw data (or model raw output) potential for contain-
ing PHI, there are other vulnerabilities to be mindful of. Indeed one of the main con-
cerns in the increased use of deep learning models in the different private data or PHI 
is that these models, with an extensive number of variables and parameters, have the 
potential of encoding personal details [5] and, when shared, can result in an unintended 
data leak [6]. These vulnerabilities seem to be exploitable not only by black box attacks 
[7] using only the outputs of models, but through the calculation of the gradients, loss, 
and other derivable parameters of the model and different inputs [8, 9].

To mitigate the problem of an information leak in deep learning or other machine 
learning models, differential privacy (DP) has a mathematically robust foundation to 
calculate and manage the privacy costs in the training of a model [10, 11]. While very 
impressive, DP has several shortcomings that prevents it from being utilized in all 
machine learning and deep learning model training. One of the issues is the difficulties 
in the proper implementation of the DP in models. While there has been a significant 
effort to ease the implementation of DP in different platforms, such as the TensorFlow 
privacy or Opacus library for PyTorch, incorrect implementation or incorrect privacy 
cost calculations can lead to a false sense of security [12] which can be very danger-
ous (even for large multinational corporations [13]). Moreover, the performance of the 
application models can suffer drastically when DP is used, especially when the size of 
the training set is limited [14, 15]. While there have been efforts to balance between the 
model performance and the mathematical guarantee of the preservation of privacy [11], 
there are many applications that are very sensitive to the accuracy of their model, where 
even a slight drop in the performance of the model can render the whole model obsolete 
(including the model investigated in this work [16]). Maybe even more disturbing is that 
this impact is enhanced in under-represented and marginalized groups and enhances 
the unfairness of the models [17], even with small data imbalances and loose privacy 
guarantees [18]. The issue of fairness is a critical concern in healthcare in general and 
machine learning approaches in healthcare in particular. We are obligated both ethically 
and in terms of the requirements of funding institutions to be cognizant of these biases. 
There are known biases (such as the color of the skins of participants) present in our 
cohort too, and even disregarding the potential unknown biases, any practice that exac-
erbates those biases is undesirable. Adding the model’s sensitivity to the accuracy of the 
gaze estimations, DP would not be suitable for our case.

Convolutional neural networks (CNN) can be particularly complex. The increased 
adoption of CNNs in the context of facial analysis and medical imaging [19, 20] raises 
concerns over their ability to encode private data. This work, therefore, explores a 
CNN-based model to stress-test under inference attacks, developed for an eye-
tracking task [21], designed to estimate the severity of illness in cognitively impaired 
individuals [21]. It has been shown that eye-gaze activity data can be used to infer 



Page 3 of 12Seyedi et al. BioMedical Engineering OnLine           (2022) 21:67  

insights on many other medical conditions, where personal information security is 
paramount, such as the diagnosis of or autism disorder [22]. Moreover, researchers 
have been developing privacy-preserving methods to address concerns about the 
encoding of identities in eye-gaze data [23–27]. In this work we address whether a 
specific deep neural network used for eye-tracking [21] encodes information about 
individual identities, in addition to the eye-gaze coordinates generated by the net-
work. This eye-tracking model can be divided into three parts. The first part involves 
a regression tree for face and eye detection. This detects the face and eyes from each 
frame in a recording. The second part, which is CNN-based and is the core of the 
pipeline, consists of three CNNs, one for each eye and one for the face, followed by 
a fully connected (FC) neural network for eyes, face, and face grid. Then, the outputs 
of three fully connected network come as inputs to another fully connected network 
to estimate the eye gaze relative to the camera position. These parts are illustrated in 
more detail in Fig.  1. The third part involves a support vector regression over each 
recording to enhance the accuracy in the eye-tracking model, but is not included in 
this study, since it compresses inputs into two numbers (coordinates on a screen) and 
has little potential for encoding individual information. The main potential vulnera-
bility lies in the CNN component of the system, where the face and eyes are processed 
by a large number of weights, and could, therefore, have the potential to memorize 
the facial features of the participants. More details of the target model can be found 
in Haque et al. [21].

The key contributions in this paper are (1) The formulation of the privacy attack 
model and (2) the demonstration that the algorithm that analyzes aspects of the 
human face is not specific to any individual (at least with the complexity observed 
in our real-world model) and is unlikely to leak PHI. The order in which this article 
is presented is as follows; First, the results of the research are presented in “Results” 
section. “Discussion” section includes discussions on the interpretation of the results. 
In “Conclusion” section, the summary and conclusion can be found. In “Materials and 
methods” section, all materials and methods are presented. For a deep and critical 
understanding of the work, one might find it more helpful to jump to “Materials and 
methods” section before continuing from the result section.

Fig. 1 Eye gaze: illustration of the main part of the target model, which is the focus of the attack: FCs refer 
to different fully connected layers, while CNNs are convolutional neural network parts. After face and eye 
detection with regression tree, the left-eye and the right-eye are fed into CNN-E, which is CNN for eyes 
(shared weights) and a separate CNN, where face crop is the input (CNN-F). The photograph of the face is a 
modified from a publicly available image [28] under the Unsplash License [29]
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Results
For the membership inference step of the pipeline, (“Record membership inference”) the 
performance of the support vector machine (SVM) is illustrated in Figs. 2 and 3, where the 
receiver operating characteristic (ROC) curve and precision–recall (PR) curve and trape-
zoidal area under the receiver operating characteristic curve (AUROC) and average preci-
sion (AP) have been shown for both validation and test sets with instance and person labels. 
The accuracy, F1-score, AUROC and AP are shown in Table 2.

Table  3 summarises the performance when considering only the records, where the 
instance and person labels are different.

Fig. 2 ROC curve (SVM on labeling video recordings): the dash-lines correspond to the validation set, while 
the solid lines are for the test set. The area under the curve for all sets and labels has been shown in the 
legend. While the blue and green are for the data set with instance labeling, the orange and red indicate 
values for the data set with person labeling

Fig. 3 PR curve (SVM on labeling video recordings): the dash lines correspond to the validation set, while the 
solid lines are for the test set. Average precision scores are also provided in the legend as AP. While the blue 
and green are for the data set with instance labeling, the orange and red indicate values for the data set with 
person labeling
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Discussion
The three-stage pipeline was designed to attack the target model in order to investigate 
the potential memorization of participants’ facial information within the model weights. 
One should note that the labels of the target model are the gaze coordinates of partici-
pants. It is far more challenging to harvest information from such a model, compared to 
a typical classification model, (for example the model used in Ref. [8]), because the facial 
properties of a person are not correlated with the labels in a general sense. For instance, 
two people with very different facial features can look at exactly the same place in an 
image. In addition, it is worth noting that there are other attack models for other types 
of target models, for example, generative models [30–32]. For instance, Chen et al. [32] 
propose a novel and widely applicable method for membership inference attack and pri-
vacy analysis in Generative models. However, since the target model of this study is not 
generative, we do not emphasize those works.

The pipeline design was adopted, because the target model is not a simple network 
and there are different lengths of frames for recording. In addition, this design reduces 
the number of learning parameters of the membership inference model. Therefore, the 
record membership inference and frame classifier were not trained together in an end-
to-end manner. Table 1 shows that the use of only outputs of the target model for the 
frame labeling part of the attack confers no advantage over a random classifier. This indi-
cates that a simple black-box attack that only uses outputs is likely to fail.

As seen from Table 1, adding different gradients and also labels and loss of the target 
model make the classification network much more useful to decipher the correct labels 
both for the person and instance labels/models. The model with the highest perfor-
mance on the validation set was selected for this part of the pipeline. The labels for each 
frame were taken as the input for the next step, where a linear SVM was selected as it 
gave the highest values for AP and AUROC. The values in Table 2 and also Figs. 2 and 3 
show the performance of this third part of the pipeline. These results demonstrate that 
the labeling was reasonably successful in determining if a recording has been part of the 
target model training set or not. This success may be illustrated even more when com-
pared to the accuracy of attacks with values ranging from 58.4 to 75.4% listed in table IX 
from Nasr et al. [8].

One may, therefore, deduce that some part of the participants’ information is recorded 
in the trained network and can be extracted successfully to identify them. However, this 

Table 1 Validation loss (binary cross-entropy) scores for different inputs for the frame labeling 
network (instance, person)

For reference, the baseline (binary cross‑entropy of random guesses for a balanced data) would be − log(1/2) = 0.693.
a Takes the two last outputs (the target model output and the layer just before it) of the target model as the input
b Takes the two last outputs and also the two gradients before the last gradient of the target model
c Takes all the “+2 grad” and also the last gradient of three different sections of the target model (boundary, face, eyes)
d Takes the two last layers outputs and also the two before the last gradient and label and loss of target model
e Takes the two last layers outputs and also the three last gradients and label and loss of target model

2  outputa +2  gradb +5  gradc +2 grad + loss + 
 labeld

+3 grad 
+ loss + 
 labele

lossInstance 0.7 0.61 0.61 0.57 0.57

lossPerson 0.7 0.61 0.62 0.59 0.58
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does not translate to an identifiable information leak. First, for this attack, the assump-
tion is that the attackers not only have full access to the target model but also access to a 
third of the recordings with the knowledge that they have been in the training set of the 
target model. Moreover, they have access to the other two-thirds of the training record-
ings, although they are mixed with a similar number of recordings which were not in the 
training set. The attacker, therefore, only has to infer which half of those belong to the 
training set. However, the full face cannot be recovered, and therefore, the attacker has 
no new information over and above membership in the training set.

The results in Table 3 support the above assertion. While for the training set 16 out of 
19 recordings are identified, which in terms of significance produce the P value = 0.004, 
the validation and test set performance drops to 8 out of 14 and 12 out of 21, which is 
close to random. This suggests that the high performance of the pipeline in differenti-
ating between the instances or people in and out of target training set does not come 
from the facial features of the participants but other aspects and features of the specific 
frames in the set. One limitation of this conclusion is that the number of training sam-
ples here is much smaller than the number of recordings of people with single appear-
ance in the data set and the conclusion can potentially be changed with more recordings 
from each individual. However, the argument that more data can change the results can 
always be raised in any specific data-dependent analysis.

While techniques such as differential privacy (DP) can guarantee mathematically 
provable privacy preservation and robustness against many attacks [10], as discussed in 
“Introduction” section, it has other limitations for implementing in cases such as our 
target model, especially the drop in accuracy and bias against underrepresented commu-
nities. In practice, the availability and portability of the data are also critical. While one 

Table 2 Performance metrics for SVM in validation and test data with both instance and person 
label

Threshold have been adjusted to achieve the best performance on the validation set in each model (0.68 for instance and 
0.8 for person model).

Validinstance Validperson Testinstance Testperson

Accuracy 0.85 0.81 0.79 0.77

F1-score 0.82 0.80 0.80 0.79

AUROC 0.92 0.90 0.88 0.86

AP (average precision) 0.92 0.91 0.87 0.91

Table 3 Performance for people with multiple recordings

a The total number of recordings in each set that belongs to a person who has another recording present in the training set 
of the target model (eye‑tracking model)
b Only provided for the sake of completeness and is the number of picked recordings as inside (predicted label 1), despite 
being trained on them with labeling as outside (label 0)
c The number of these recordings that had been picked as inside (predicted label 1) in model trained on person labels

Train Valid Test

Totala 19 14 21

Instance
modelb 11 4 11

Person
modelc 16 8 12

1 − P-valuePerson 0.996 0.21 0.44
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needs to take all the measures to protect sensitive or private data, it is also essential to be 
aware that no golden bullet is present to implement in every context.

Conclusions
While the proposed pipeline exhibits good performance for differentiating between 
recordings in and out of target model training, an analysis with multiple recordings cap-
tured from given individuals demonstrates that the performance of a classifier drops to 
the level of a random guess when attempting to identify whether an individual appeared 
in the training set. This provides strong evidence that it is unlikely that recognizable 
facial features are recorded in the target model. In conclusion, the key contribution to 
the field in this work is the demonstration that it is possible to process facial charac-
teristics that are related to behavior and health without encoding individual-specific 
behavior or information. While this does not preclude future successful attacks that 
may reveal information about an individual, the results indicate this is unlikely with cur-
rent technology. It is important to note that Nasr et  al. [8], who took a similar attack 
approach as the one presented here, found that the models they attacked did seem to 
encode identities, while we found the opposite. This is because the success or failure of 
an attack is a function of the model structure and data composition, as well as the attack 
itself. The purpose of this study was to ask this question about the specific model we are 
using, and the population we are studying. In this specific case, we demonstrated that 
this combination of a model and data did not create a significant risk of privacy leakage, 
and therefore, we are confident the presented model can be used in a clinical environ-
ment without significant risk or exposing the identity individuals used to develop the 
algorithm, or any user undergoing testing with the framework. One limitation of this 
work is that it cannot exhaustively prove this is true for all data and all models, and as 
such, any new training data or change in model architecture would require the reassess-
ment of the risk using a framework such as the one presented in this article.

Materials and methods
Data set

The data set used in this work contains 610 video recordings from 493 participants in 
the Emory Healthy Aging Study undergoing an eye-tracking-based evaluation of neuro-
logical function and are described in Haque et al. [16, 21] and Jiang et al. [20]. The videos 
are recorded in 30 frames per second and are closeups of participants. IPad Air 9.7 inch 
tablets with screen 154 × 203 mm (resolution 1536 × 2048 pixels) and camera resolution 
720 p were used [21]. The error rate at this section is about 3.9 (cm) [21]. Each video is 
4–5 min long.

Methodology

The primary approach of this study in investigating the potential memorization of facial 
information in an eye-tracking model [21, 33] (herein referred to as the “target model”) 
is in two general aspects. The first aspect is the analysis of pipeline performance over the 
membership inference of recordings. To evaluate the performance, well-known statisti-
cal tools and metrics such as receiver operating characteristic (ROC curve and PR curve 
and AUROC and AP would be implemented and measured. In this approach, the overall 
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success of the attacking pipeline in differentiating between recordings used in the target 
model training and the recordings that were not would be a metric for the amount of 
data memorization in the target model.

The second aspect is to inspect if the recorded data in the model and investigated in 
the first aspect is related to the facial futures of the participants or just memorization of 
the recording settings. To this goal, the token path is the further analysis of people with 
multiple recordings, where one recording has been used to train the target model, and 
the other has not. These cases are of particular interest, because the same face has been 
used in the target training but not the same recording. Due to this, any boost in the per-
formance of the attacking pipeline for these cases would be indicative of the memory of 
facial information in the target model.

Our goal is to create an attack model on the previously designed eye-tracking [21, 
33]. For training this target model (eye-tracking model), the model was initially pre-
trained on the GazeCapture data set [33] which consists of approximately 1.5 million 
frames from 1450 participants with an 80%, 10%, 10% train, validation, and test split. The 
hyperparameters of the training are 35 epochs with batch size 16, weight decay 0.0001, 
momentum 0.9, global learning rate 0.0001 was used and decayed by a factor of 10 every 
five epochs. The features for the CNN are left and right eye crops in addition to face 
crop and the grid location of the face (Fig. 1). Then, using the pre-trained model weights 
(transfer-learning), the model was trained [21] on our separate data set with the same 
hyperparameters. The private recordings of participants with single recording were ran-
domly divided into training, validation, and test sets. The remaining recordings related 
to participants with multiple recordings were randomly divided into the training, vali-
dation, and test set while keeping different recordings of the same individuals in differ-
ent sets. The numbers of recordings in each set can be seen in Table  4. Note that we 
have all the information (the recordings, their labels, and if they are used in training of 
the target and which frames were used in the training and if they are from individuals 
with other recordings available) about the training set of the target at this point in the 
study. In our attack model, recordings of participants with a single recording were ran-
domly divided into three separate sets: training, validation, and test sets. There were 54 
participants with multiple recordings, where they have at least one recording inside the 
training set of the target model and at least one recording not in the training set of the 
target model. The recordings from these 54 participants were divided into in_training 

Table 4 Data distribution

a The labels are set to 1 if the recording was used in the target network’s training.
b The labels are set to 1 if at least one recording of the person was used in the target network’s training

Train Valid Test

Number of records

 Total 242 170 198

 Yinstance =  1a 140 73 93

 Yperson =  1b 159 87 114

Number of frames

 Total 83477 66755 73857

 Yinstance = 1 46515 30072 35999

 Yperson = 1 50654 32950 41456
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(those recordings used in the target model’s training set) and out_training (those record-
ings not in the target model’s training set). The in_training recordings were all put in the 
attack model training set as well. The out_training recordings were randomly divided 
into training, validation, and test sets for the attack model (Table 4).

For the labeling of the attack model(s), (Y), two were produced. In Yinstance , the labels 
were set to (1) for all the frames if the recording was in the target network’s training set 
and (0) otherwise. In Yperson , labels were set to 1 if at least one recording of the person 
was used to train the target network. In other words if there are two recordings of per-
son A, A1 and A2, then if A1 was used in the training of target network but not A2, then 
Yinstance(A1) = 1 , Yinstance(A2) = 0 , but Yperson(A1) = 1 and Yperson(A2) = 1.

Classification pipeline

There are two classification pipelines used as attacks on the target model. The first one 
labels the recording based on whether the recording has been in the training data or not 
(instance). The second one labels the recording based on whether the participant has 
been in the training data or not (person). They both have very similar architectures, dif-
ferent only in the last step with different labels. The pipeline can be divided into three 
parts, parameters collection, classifier/frame labeling, and record membership inference.

Parameter collection The original trained eye-tracking model (for more on the model, 
one can refer to Haque et al. [21]) was used to derive not only the activations, output, and 
label but also the gradients and loss for each frame in each recording. This was performed 
by feeding the trained network the frame and label and extracting the calculated param-
eters (with different dimensions (x)).

Classifier/frame labeling This part can be viewed as a two-step section, encoding and 
frame classifying. In the encoding part, for any frame, the parameters from the previous 
step were fed to a separate fully connected network [dimension (x, 128) with dropout 
0.2], with one hidden layer [dimension (128, 64)], so that the information will be encoded 
with specific encoders for each parameter type. For each input, they would be encoded 
to a 64 dimension. Then, the outputs of the encoding parts will be fed to another fully 
connected network with three hidden layers [(64+· · ·+64, 256), (256, 128), (128, 64), (64, 
1), followed by a Sigmoid function instead of ReLU at last step], to train for classification 
using the encoded information (similar to the work by Nasr et al. [8]). The output of this 
second part is a number between 1 and 0 which is the probability the model assigns to the 
frame being in the training set for the original eye-tracking model or not. The rectified 
linear unit (ReLU) was chosen as the activation function on all layers except the final one, 
which was chosen to be a Sigmoid function, to produce the output probabilities. Binary 
cross-entropy was used as the loss function for the training of the labeling network. The 
training hyperparameters for this part are 100 epochs with batch size 16, weight decay 
0.0001, momentum 0.09 and learning rate of 0.0005.

Record membership inference The outputs of the classifier part are for each frame. How-
ever, any recording either has been part of the target model training or not. In this step, 
the labels of all the frames from each recording (the number of frames is different for dif-
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ferent recordings) are used to produce a final membership inference for each recording. 
Here different moments (mean, variance, skewness, and kurtosis) and the entropy have 
been captured for each recording to train the SVM from the sklearn library from python 
with linear kernel and tolerance for stopping 10−3 to label each record. In short, SVM uses 
parameters of labels of all frames gathered from each recording to label that recording.

Patient membership inference

The infrastructure of “Classification pipeline” is utilized here to give labels not based 
only on the recordings being in the training or not (“Record membership inference”), but 
based on participant/patient being part of the training set or not. This is tackled by rely-
ing on specific participants who had more than one recordings. In these cases, the focus 
is on the analysis of those where one recording of a participant is in the training of the 
target model and another recording of the same participant is not in the training of the 
target model.

Experiments

All the sections in “Classification pipeline” have been applied in two experiments. The 
Instance model (trained on the data set with Instance label); and the Person model 
(trained on data set with Person label). Fifty-four records have different Instance labels 
and Person labels. These records have been assigned to the training, validation, and test 
sets.

To ascertain if the recorded data include facial specifications of the participants 
recorded in the network, or properties of the specific frame used in the training set (the 
second aspect of methodology), we analyzed the images from participants with more 
than one recording. Table 3 shows that from 54 of such recordings, 19 had been used in 
the attack model’s training set, while 14 were in the validation set and 21 in the test set. 
These are the recordings that are not used in the training of the target model directly 
but are from the people who have other recordings present in that training set. Suppose 
the facial features of participants recorded in the network are making the predictions of 
the first part possible. In that case, they should show their effectiveness in the “Person” 
model (model trained by Person Y labels) in labeling these participants, because they are 
from the same people but only different recordings.

Different sets of parameters collected in the parameter collection step of the classifi-
cation pipeline (“Parameter collection”) were used to determine which ones provided 
helpful information to improve the model results in the frame labeling step of the clas-
sification pipeline (“Classifier/frame labeling”). The loss (binary cross-entropy) on the 
validation data set for several sets of parameters can be seen in Table 1. The first set of 
parameters include the output of the two last layers of the target model (FC2 and FC1 in 
Fig. 1). The second set, in addition to parameters from the first set, includes the two last 
gradients before the last gradient of the target model. The third parameter set contains 
three additional gradients in comparison to the second parameter set (FC-FG2, FC-F2 
FC-E1 also added, Fig. 1). The fourth set of parameters contains parameters of the sec-
ond set in addition to loss and label from the target network. The fifth parameter set 
contains three gradients instead of two of the set four. While adding more parameters 
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provides more data from the target model, this inspection of different sets of parameters 
is useful for understanding the contribution of different parameters from different lay-
ers of the target neural network. The model with two outputs, three gradients, and loss 
(from target model) and label as input was selected for the rest of the work, because it 
has the lowest loss.
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