
Sleep postures monitoring based 
on capacitively coupled electrodes and deep 
recurrent neural networks
Shun Peng1†, Yang Li1†, Rui Cui1, Ke Xu2, Yonglin Wu1, Ming Huang3, Chenyun Dai1, Toshiyo Tamur4, 
Subhas Mukhopadhyay5, Chen Chen6 and Wei Chen1,6* 

Introduction
Capacitively coupled electrode (CC electrode) has been widely studied in the last dec-
ade because of its user-friendly characteristic [1]. It senses the electrical potential on 
the body surface through coupling capacitance between the skin and electrodes, which 
allows measuring physiological signals over the clothes without subject awareness. Since 
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Background:  Capacitively coupled electrode (CC electrode), as a non-contact and 
unobtrusive technology for measuring physiological signals, has been widely applied 
in sleep monitoring scenarios. The most common implementation is capacitive electro-
cardiogram (cECG) that could provide useful clinical information for assessing cardiac 
function and detecting cardiovascular diseases. In the current study, we sought to 
explore another potential application of cECG in sleep monitoring, i.e., sleep postures 
recognition.

Methods:  Two sets of experiments, the short-term experiment, and the overnight 
experiment, were conducted. The cECG signals were measured by a smart mattress 
based on flexible CC electrodes and sleep postures were recorded simultaneously. 
Then, a classifier model based on a deep recurrent neural network (RNN) was proposed 
to distinguish sleep postures (supine, left lateral and right lateral). To verify the reliability 
of the proposed model, leave-one-subject-out cross-validation was introduced.

Results:  In the short-term experiment, the overall accuracy of 96.2% was achieved 
based on 30-s segment, while the overall accuracy was 88.8% using one heart beat 
segment. For the unconstrained overnight experiment, the accuracy of 91.0% was 
achieved based on 30-s segment, while the accuracy was 81.4% using one heart beat 
segment.

Conclusions:  The results suggest that cECG could render valuable information about 
sleep postures detection and potentially be helpful for sleep disorder diagnosis.
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the skin–electrode impedance is very large in this non-contact setting, a voltage buffer 
is usually designed at the signal input end of the hardware to increase its input imped-
ance and enhance the anti-interference ability and load capacity of signal acquisition [2]. 
Compared with the conventional wet electrode, CC electrode has many advantages. For 
example, it works without the need of skin preparation and the risk of skin irritation [3], 
and can be used repeatedly [4]. Therefore, CC electrode has been embedded into diverse 
objects including toilet seats [5], bathtubs [6], driver’s seats [7], chairs [2], bedsheets, and 
mattresses [8]. It has found a wide range of applications in many scenarios, such as sleep 
[9], car driving [10] and exercise monitoring [11], as well as during office work and other 
daily life [12]. Capacitive electrocardiogram (cECG) measurement is the most com-
mon implementation of CC electrodes, from which heart-related parameters including 
RR interval, heart rate (HR), and heart rate variability (HRV) are often calculated [13]. 
Based on cECG and heart-related parameters, further researches are carried out, includ-
ing monitoring of arrhythmias such as premature ventricular contraction [14], diagno-
sis of cardiovascular disease (e.g., acute myocardial infarction [15]), fatigue detection 
[16], and man–machine emotional communication [17]. It is worth noting that the lead 
modes of cECG measurement in sleep monitoring are not standard leads, since CC elec-
trodes are usually fixed in the mattress. It senses ECG signal from different positions of 
the body surface when the subjects lie on the bed in different sleep postures. Therefore, 
cECG signals obtained from mattress may contain information that reflects the current 
sleep posture of the subjects and could be used for sleep posture recognition.

Sleep posture recognition, as an effective method for sleep quality assessment, has 
been extensively studied. It has been proved to be helpful in pressure ulcer prevention 
[18] as well as diseases diagnoses and treatment [19, 20]. The most intuitive and visual 
way to recognize sleep posture is camera-based approaches [21], including motion cap-
ture, depth scans, and infrared imaging. However, the main problem with camera-based 
approaches is the invasion of user privacy. Another common way of sleep posture rec-
ognition is based on wearable devices [22], such as accelerometers, magnetometers, and 
gyroscopes. These sensors can monitor sleep posture accurately without privacy con-
cerns and are even used in polysomnography (PSG) which is the golden standard of sleep 
monitoring. However, all of them need to be attached to the body, leading to discomfort 
and inconvenience during sleep. Most recently, sleep posture recognition using a pres-
sure sensor array on the bed, also known as the pressure map [23], has aroused extensive 
attention. It identifies the sleep postures by the pressure distribution map of the subject 
lying on bed and the state-of-the-art accuracy has already exceeded 97% under the high-
density sensor array [24, 25]. However, a large number of sensors lead to a huge increase 
in the complexity of the system and the burden of signal processing.

The only study we found on sleep posture recognition based on cECG was proposed by 
Lee et al. [26]. Capacitive ECG signals from 13 subjects were collected using 12 CC elec-
trodes and a conductive textile sheet. Then, based on the morphological characteristics 
of the QRS complex and three machine learning algorithms, the highest accuracy of the 
sleep posture recognition was 98.4%. However, the CC electrodes they used were made 
of a printed circuit board, which may cause discomfort and seriously disturb natural 
sleep. In addition, too many electrodes may lead to a jumble of wires on the bed. Finally, 
the channel selection caused by small size of CC electrode increases the complexity and 
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difficulty of signal preprocessing. Therefore, the performance of sleep monitoring may 
decrease if the channel selection is performed on-line in real-time monitoring.

In this study, a smart mattress embedded with only three flexible electrodes was pre-
sented. And a classifier model based on deep recurrent neural network (RNN) was 
proposed to distinguish sleep postures. We designed two sets of experiments, the short-
term experiment and the overnight experiment to evaluate the performance of the sys-
tem. To the best of our knowledge, it is currently the first work that recognizes sleep 
posture using ECG signal measured by flexible CC electrode. The main contributions of 
this work can be summarized as follows:

1) A smart mattress based on flexible CC electrode was designed to monitor sleep 
posture. The system only contains three electrodes embedded in the mattress, reduc-
ing the complexity of the sleep posture monitoring system and facilitating its imple-
mentation. It can measure physiological signals comfortably, unobtrusively and with-
out privacy concerns.
2) The bidirectional Long Short-Term Memory (biLSTM) network, was used to clas-
sify sleep posture. The proposed network achieved considerably high accuracy with-
out any manual feature extraction.
3) The overnight experiment was carried out to evaluate the performance of the pro-
posed system in a real sleep scenario. Results suggested that the mattress could be 
potentially promising in long-term sleep monitoring.

Results
Short‑term experiment results

Leave-one-subject-out cross-validation (LOSOCV) was introduced to verify the reliabil-
ity of the classifier model. That is, testing set contained only one subject’s data in each 
validation and the data of each subject was used once for testing. So, the process was 
repeated 15  times in the whole data set. The classifier performance was calculated by 
three indices including sensitivity ( SEN ), accuracy ( ACC ) and Cohen’s kappa coefficient 
( Kappa ), as defined below were used to evaluate the model performance:

wherein TP , FP , TN , FN represent “true positive”, “false positive”, “true negative” and 
“false negative”, respectively, while po and pe stand for the observed and the expected 
agreement, respectively. The calculation method of kappa value can be found in [27].

The confusion matrix of the short-term sleep posture prediction is shown in Fig. 1. 
Table 1 summarizes the posture classification performances of each subject and the 

(1)SEN =
TP

TP+ FN
× 100%,

(2)ACC =
TP+ TN

TP+ TN+ FP+ FN
× 100%,

(3)Kappa =
po − pe

1− pe
,
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whole dataset when the data segment length is one heat beat. Although the sensitivity 
of several cases (such as right lateral of subject 10 and supine of subject 15) was not 
very high, a relatively good result was obtained on the average sensitivity, especially 
in left lateral posture with average sensitivity of 97.6%. Besides, an average accuracy 
of 88.8% was acquired, proving the overall recognition ability of the proposed method 
for three sleep postures. The average kappa value of 0.831 showed an almost perfect 
consistency between ground truth and prediction.

Table 2 summarizes the posture classification performances using 30-s-length seg-
ment. The sensitivities of three sleep postures were 95.3%, 100% and 93.3%, respec-
tively, while the average accuracy and kappa is 96.2% and 0.943.

Fig. 1  Confusion matrices of sleep posture prediction in short-term data where the length of each data 
segment is one heat beat (a) or 30 s (b)

Table 1  Performances of sleep posture classification using 1 heart beat segment

Subject number SEN (%) ACC (%) Kappa

Supine Left Right

1 94.8 100.0 99.4 97.8 0.965

2 97.8 97.5 78.1 91.2 0.867

3 99.7 100.0 95.5 98.4 0.976

4 92.5 98.9 93.6 95.0 0.925

5 96.9 72.6 80.5 83.5 0.752

6 80.3 99.4 71.3 84.3 0.763

7 97.0 100.0 75.8 91.0 0.864

8 81.2 99.1 79.9 86.5 0.796

9 81.5 99.4 79.7 86.6 0.799

10 97.1 100.0 33.2 77.9 0.665

11 98.3 100.0 98.3 98.9 0.983

12 98.4 99.4 66.7 88.2 0.823

13 60.0 100.0 93.5 84.7 0.77

14 57.4 97.6 98.3 84.5 0.767

15 53.1 99.4 98.0 83.4 0.752

Average 85.7 97.6 82.8 88.8 0.831



Page 5 of 15Peng et al. BioMedical Engineering OnLine           (2022) 21:75 	

Overnight experiment results

The confusion matrix of the overnight sleep posture prediction is shown in Fig. 2. And 
the performance indices including sensitivity, accuracy and kappa are shown in Table 3. 
The sensitivities of three sleep postures using one heart beat segment on were 80.8%, 
90.5% and 63.0%, respectively, while the average accuracy and kappa is 81.4% and 0.626. 
The performance was significantly improved based on 30-s segment, with an accuracy of 
91.0% and a kappa of 0.806.

Discussion
Sleep quality assessment has received increasing attention in recent years [28–31]. As 
mentioned in Section I, sleep posture plays an important role in sleep monitoring. Previ-
ous studies have proven that it has a certain influence on the incidence of diseases such 
as bedsores, sleep apnea syndrome, and carpal tunnel syndrome. Recently, unobtrusive 
monitoring has become an important direction in sleep monitoring research [32], which 

Table 2  Performance indices of sleep posture classification using 30-s segment

Subject number SEN (%) ACC (%) Kappa

Supine Left Right

1, 2, 3, 4, 5, 6, 7, 8, 9, 11 100.0 100.0 100.0 100.0 1.000

10 100.0 100.0 10.0 70.0 0.550

12 100.0 100.0 90.0 96.7 0.950

13 90.0 100.0 100.0 96.7 0.950

14 70.0 100.0 100.0 90.0 0.850

15 70.0 100.0 100.0 90.0 0.850

Average 95.3 100.0 93.3 96.2 0.943

Fig. 2  Confusion matrices of sleep posture prediction in overnight data where the length of each data 
segment is one heat beat (a) or 30 s (b)

Table 3  Performance indices of sleep posture prediction in overnight data

The length of segment SEN (%) ACC (%) Kappa

Supine Left Right

1 heart beat 80.8 90.5 63.0 81.4 0.626

30 s 90.7 95.7 80.0 91.0 0.806
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sets stricter requirements on the flexibility of sensors and the convenience of the system. 
A large number of sensors in a system may cause hardware complexity and wire clutter. 
This increases the instability of measurement under unconstrained sleep for more than 
6 h, and disturbs users’ natural sleep. In this work, a smart mattress based on flexible 
conductive fabric which has only three CC electrodes was used for sleep posture recog-
nition. It provided an inexpensive solution to facilitating the convenience of operation, 
increasing the stability of the measurement, and improving comfort of the subjects.

Table 4 presents some representative studies in the sleep posture recognition meth-
ods. Since it is a novel method to recognize sleep posture using ECG signal measured 
by flexible CC electrodes, it is inappropriate to directly compare the classification accu-
racy between our work and other researches. Pressure-sensing mats with large number 
of sensors in reference [23, 24, 33] may cause hardware complexity and wire clutter, and 
data size in reference [34] was too small. As mentioned above, reference [26] is the only 
similar study we have found. ECG signal was measured using 12 electrodes made of hard 
materials, which may disturb natural sleep. In reference [35], hard CC electrodes were 
also used to detect sleeping positions. Unlike reference [26], it was based on changes in 
capacitance distribution when changing body posture, rather than cECG. In comparison 
with other works, our work is the only one that can unobtrusively monitor sleep posture 
with very few sensors. Although the accuracy of our method is not the best of all the 
studies listed, the gap between them is not large. Moreover, the smart mattress we used 
can unobtrusively obtain ECG signal throughout the night. The promising results of the 
overnight experiment showed that the proposed method could be able to monitor sleep 
posture in real sleep scenarios with considerably high accuracy.

It was worth noting that the classification based on 30-s segment demonstrated supe-
rior performance over one heart beat in both short-term experiment and overnight 

Table 4  The comprehensive comparison between our method and other research

References Sensor type Number of 
sensors

Data size Number of 
identified 
postures

ACC (%) Kappa Notes

[23] Pressure sen-
sors

64 × 32 13 subjects 3 (left, right 
and supine)

82.7 – Large amount 
of sensors

[24] Textile pres-
sure sensors

64 × 27 12 subjects 4 (left, right, 
supine and 
prone)

97.9 0.972 Complex sys-
tem design

[26] Hard CC 
electrodes

13 13 subjects 4 (left, right, 
supine and 
prone)

98.4 0.967 Hard materials

[33] Pressure sen-
sors

14 × 32 180 subjects 3 (left, right, 
and s/p, i.e., 
supine and 
prone were 
merged as 
one)

94.1 0.866 Large amount 
of sensors

[34] Long-narrow 
force sensors

16 2 subjects 3 (left, right 
and supine)

78.7 0.681 Data size is too 
small

[35] Hard CC 
electrodes

20 × 15 5 subjects 3 (left, right 
and supine)

92.76 – Hard materials

Proposed 
method

Flexible CC 
electrodes

3 15 subjects 3 (left, right 
and supine)

96.2 0.943 Non-contact 
soft materials
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experiment. It suggested that a relatively longer time-length may help the classifier 
model to extract more features in comparison with a single heartbeat and conclusions 
drawn from a longer period (such as 30 s) may be of more clinical value.

There are several limitations in this study. First, only three sleep postures were focused 
on and the prone posture was not studied. It has an important effect on gas exchange, 
and is of great significance for daily monitoring and early warning of patients with sleep 
apnea syndrome and cardiovascular diseases. Although prone posture is relatively rare, 
it should also be taken into consideration in the follow-up work. Second, the data size of 
our study, especially in the overnight experiment, was relatively small, and the experi-
ments were implemented in the sleep lab. Further validation with larger samples in a 
variety of environments, including but not limited to sleep labs, student dormitories, 
and family bedrooms, is warranted. Third, respiratory signals were not extracted from 
the mattress signals by baseline extraction, heart rate variability calculation, and R-wave 
amplitude. In future work, joint analysis of respiration signals and ECG signals will be 
carried out to improve the performance of sleep posture recognition.

Conclusion
This paper provided a novel method for sleep posture recognition based on capacitive 
ECG signals. A smart mattress embedded with only three flexible electrodes was intro-
duced first. It can unobtrusively measure two channels of cECG signal through clothes 
without privacy concerns. Then two sets of experiments (the short-term experiment and 
the overnight experiment) were designed to evaluate the effectiveness of the proposed 
system for sleep posture recognition. The overall accuracy of 96.2% was achieved in the 
short-term experiment was, while the accuracy was 91.0% in the unconstrained over-
night experiment. In comparison with existing studies, the proposed system can achieve 
a considerable classification performance unobtrusively and comfortably. The results 
suggested that the CC electrode-based smart mattress is potentially promising in sleep 
posture recognition and sleep quality assessment.

Methods
Capacitive ECG and sleeping positions

ECG is the projection of cardiac electrical activity on the body surface. Since the elec-
trodes are attached to different positions on the body surface, ECG waveforms vary in 
different leads. Figure  3a shows the projections of electric vector during ventricular 
depolarization in three standard leads. Similarly, according to reference [32], the CC 
electrodes fixed on the mattress contact different positions of the body through clothes 
when subjects sleep with different postures. As shown in Fig. 3b, projections of electric 
vector changes as the sleep postures change. In this work, data mining techniques were 
used to discover the underlying differences in different ECG vector projections, so as 
to distinguish cECG signals into three categories, namely supine, left lateral and right 
lateral.

System design

A mattress that can monitor ECG signals unobtrusively is proposed. The mattress sys-
tem consists of four modules, namely CC electrodes, signal acquisition module, data 
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transmission module, and user interface, as shown in Fig. 4a. Three CC electrodes are 
embedded in the mattress and the signal acquisition module is used to detect and con-
vert the ECG from the analog signal to the digital signal. Then, ECG signals are trans-
mitted from signal acquisition module to microcontroller unit (MCU) through serial 
peripheral interface (SPI) and finally transmitted to user interface by Wi-Fi. Through the 
user interface, we can process ECG signals, observe ECG waveforms and record ECG 
data in real-time.

The signal acquisition module is composed of buffers designed by an operational 
amplifier (AD8606, Analog Device Inc., Norwood, MA, USA), a programmable gain 
amplifier (PGA), and an analog-to-digital converter (ADC), as shown in Fig.  4b. The 
PGA, the ADC, and the SPI are implemented by an integrated circuit ADS1292 (Texas 
Instruments, Dallas, Texas, USA), which has two analog signal channels and is very suit-
able for ECG acquisition at low cost. The data transmission module is composed of the 
MCU and Wi-Fi module. The hardware prototype of the proposed system is shown in 
Fig. 4c.

The silver fiber conductive fabric is chosen as the main material of the electrodes due 
to its flexible and user-friendly characteristics. The electrodes length is 80  cm, which 
ensures the stability of unconstrained ECG measurement during the whole night even 
if the subject may move or change sleep postures frequently. Besides, the electrodes are 
flexible and thin (only about 0.1 cm), and will not disturb the user’s sleep. The detailed 
information about size and arrangement of three electrodes is shown in Fig. 4d and the 
prototype of the smart mattress is shown in Fig. 4e.

Data collection

We designed two sets of experiments, the short-term experiment and the overnight 
experiment. Both experiments were conducted in a sleep lab at the Center for Intel-
ligent Medical Electronics, Fudan University. The experiment was a non-clinical 

Fig. 3  ECG vector projection onto the three limb leads (leads I, II and III) (a) and the cECG of three sleep 
postures (b) [36]. The ring-shaped dotted line represents the ECG vector during ventricular depolarization. 
Three sleep postures include supine, left lateral and right lateral
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study without any harmful procedure and followed the principles of the Declaration 
of Helsinki strictly. All subjects were required to read experimental instructions and 
sign informed consent before the experiment.

The short‑term experiment

Fifteen healthy subjects (10 males, 5 females) aged between 21 and 35 volunteered 
to participate in the first experiment. The subjects came to the sleep lab wearing 
their own cottas or shirts. Prior to formal recording, each subject was asked to lie 
in supine position on the smart mattress for at least 3 min to allow the stabilization. 
During the experiment, the subjects lay in three sleep postures (including supine, 
left lateral and right lateral) according to their own habits. After enough relaxation, 
they kept each sleep posture for 5–6 min and the experiment operator recorded the 
cECG signals and sleep posture information simultaneously using the user interface. 
The sampling frequency of cECG signal was set to 500 Hz. The experimental scene 
is shown in Fig. 5.

Fig. 4  Smart mattress: a the system frame; b ECG acquisition channel; c the hardware of data acquisition and 
transmission; d the mattress structure; e the prototype of the smart mattress
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The overnight experiment

Considering the differences between the data measured under simulated sleep and real 
sleep, an overnight experiment under unconstrained sleep was carried out to evaluate 
the performance of the proposed system in a real sleep scenario. A new subject was 
invited to participate. The testing time was based on the subject’s sleep habits, from 
about 12:00 pm (midnight) to 6:00 am next day. To record the reference sleep posture, 
a position sensor of a PSG product (Grael, Compumedics, Victoria, Australia) was used. 
In this experiment, the subject was wearing pajamas and the position sensor of PSG was 
attached to a chest strap tied to the body. The cECG signals measured by the mattress 
and sleep postures recorded by PSG overnight are shown in Fig. 6.

Data preprocessing

For the data of the short-term experiment, first, large motion artifacts caused by changing 
sleep postures were removed, and 5-min continuous ECG was cut out from the data of each 
sleep posture, so that the 15-min signal corresponding to the three postures were obtained. 
In each 5-min ECG signal, all data were retained without specifically removing motion arti-
facts caused by small movement. Thus, the data set of 15 subjects contains 225 min data, 
including two channels of ECG signals and labels for 3 sleep postures. Further, raw ECG 
signals were bandpass filtered with high and low cut-off frequency of 0.5 Hz and 40 Hz, 
respectively. Then R-wave peaks of ECGs were extracted automatically based on multiscale 

Fig. 5  The experimental scene images: a raw signal of channel 1; b filtered signal of channel 1; c raw signal 
of channel 2; d filtered signal of channel 2
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morphological derivative transform [37]. The RR interval time series were formed by the 
intervals of adjacent R-wave peaks.

For the overnight experiment, the total test time is about 366 min. All motion artifacts 
with amplitude exceeding 5 mV were searched and cut out. After removal, the length of 
effective data for algorithm evaluation is 337  min, accounting for 92.1% of the total test 
time. Further, the obtained ECG signals were processed according to the above short-term 
experiment, and were then put into the following classifier.

Classifier model

In this study, a recurrent neural network (RNN) model based on bidirectional long short-
term memory (biLSTM) was used to classify sleep posture. The idea of using RNN model 
came from the temporal nature of the sleep posture [38] and ECG signals [39]. The long 
short-term memory (LSTM) network, a special variant of RNNs, has been widely used in 
time-sequence modeling task. It can capture the temporal dependencies in both short-term 
and long-term sequences, and avoid the gradient explosion or disappearance commonly 
existed in artificial neural networks through three control gates in the neuron [40, 41]. The 
LSTM network can be computed as follows:

(4)gt = σ(xtWxc + ht−1Whc + bc),

(5)it = σi(xtWxi + ht−1Whi +Wci ⊗ ct−1 + bi),

(6)ft = σf (xtWxf + ht−1Whf +Wcf ⊗ ct−1 + bf ),

(7)ct = ft ⊗ ct−1 + gt ⊗ it,

(8)ot = σo(xtWxo + ht−1Who +Wco ⊗ ct−1 + bo),

(9)ht = ot ⊗ σ(ct),

Fig. 6  Simultaneously recorded body position signal (L: left lateral. S: supine. R: right lateral) and cECG signal 
in the overnight experiment
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where xt is the input data and it, ft, ct and ot represent the input gate, forget gate, cell and 
output gate, respectively. And σ denotes the activation function while σi, σf and σo are the 
logistic sigmoid function of the input gate, forget gate and output gate, respectively. The 
symbol denotes the scalar product between two vectors. Additionally, W and b denote 
the corresponding weight coefficients and bias vectors.

As an improved version of LSTM, biLSTM can read the input from the forward and 
reverse directions of the data sequence, so as to acquire the contextual semantic infor-
mation [42]. In our previous work, BiLSTM has been proven an efficient end-to-end 
approach for noisy photoplethysmography (PPG) segmentation and denoising [43] [44]. 
This makes biLSTM more suitable for analyzing complex ECG waveforms and extract-
ing significant information from the details.

The model for sleep posture classification contains three biLSTM layers and one dense 
layer, as shown in Fig. 7. The first biLSTM layer has 200 neurons and two data segments 
acquired from two channels of cECG signal are input into it. The second and third lay-
ers contain 100 neurons and 50 neurons, respectively. The last layer is a dense layer 
with activation function of SoftMax. It is used to connect the third layer and output the 
category of the sleep posture, namely supine ( Sp ), left lateral ( Lp ) and right lateral ( Rp ). 
Detailed training parameters are summarized in Table 5.

In previous sleep posture studies based on ECG signal, the input signal segment 
was RR interval or segment with different window lengths. The window length of 
the input signal segment in reference [26], the only study we found on sleep pos-
ture recognition based on CC electrodes, is 30 s. Considering that 30-s length is the 
epoch length usually used for sleep staging, we defined two types of window length 
of the input signal, namely one heart beat (i.e., RR interval) and 30  s in this study. 

Fig. 7  Network structure of the model for sleep posture classification
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Each cECG segment was normalized and resampled to 250 samples to avoid different 
lengths of different input segments due to variable heart rate. Taking the dataset of 
the short-term experiment as an example, the 5-min data of each subject in one sleep 
posture were divided to 10 data segments with the length of 30 s, and only one sleep 
posture prediction was estimated in each 30-s segment. If the outputs of the proposed 
classifier in each 30-s segment contain two or more sleep postures, the posture with 
the most occurrences is chosen as the final prediction.
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