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Background
Brain-computer interfaces (BCIs), as tools that directly connect users’ brains and exter-
nal devices, are widely used in education [1, 2], entertainment [3, 4], and clinical dis-
ability assistance research [5–7]. Based on BCIs, researchers have developed many 
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interesting applications, one of which is the brain-controlled wheelchair (BCW) [8–10]. 
Due to their noninvasive nature, relatively high time resolutions, and low costs, elec-
troencephalogram (EEG) signals have been used in many BCW studies [10–12]. An 
EEG-based BCW collects EEG signals from the user’s scalp and decodes user commands 
from the collected signals. Currently, EEG signals mainly include P300 signal [10, 12], 
steady-state visually evoked potential (SSVEP) [11], and sensorimotor rhythms (SMRs) 
[6]. According to the EEG signals used, current BCWs mainly include the P300-based 
BCWs [11, 12], the SSVEP-based BCWs [11, 13], and the SMRs-based BCWs [14, 15]. 
A P300-based BCW has relatively high accuracy and a high information transfer rate 
(ITR), tends not to elicit fatigue and is easy to use [12]. In this study, we developed a 
P300-based BCW. We used visual stimuli to evoke the P300 signals. Row–column para-
digm and single-character (SC) paradigm are two widely used visual stimulation para-
digms. The number of options provided by P300-based BCWs is usually small (< = 10), 
and relevant BCW studies often use the SC paradigm [16]. In this study, we used the SC 
visual stimulation paradigm to develop our BCW system. We used five electrodes (FC1, 
FC2, CP1, CP2, and Cz) to collect P300 signals for each user.

Since Tanaka et al. [8] proposed the first EEG-based BCW paradigm, many BCW sys-
tems have been developed. Currently, BCWs can be categorized as automatic and semi-
automatic. Semiautomatic BCWs refer to BCWs without navigation abilities, and they 
are typically used to help users move in indoor environments. Users control semiauto-
matic BCWs by directly sending steering commands. For example, Wang et  al. devel-
oped a semiautomatic BCW based on P300 signal, which had seven movement options: 
forward, backward, left, right, acceleration, cancellation, and stopping [17]. When a user 
wants to move forward, he or she needs to select the option "forward" in the user inter-
face, and then the BCW will move forward, and so forth for other movement options. 
Relevant studies have suggested that SSVEP-based BCIs [18] and SMRs-based BCIs [6] 
can be used in semiautomatic BCWs. Yu et al. proposed an asynchronous BCW based 
on sequential motor imagery. By sequentially imagining the movements of the left and 
right hands, this BCW could provide six options for its users [6]. A recent study by Li 
et  al. developed a semiautomatic BCW controlled by a hybrid BCI (P300 signal and 
SSVEP) [11]. Automatic BCWs refer to BCWs with automatic navigation abilities. After 
a user selects a target, the automatic BCW will automatically reach it. Currently, several 
navigation strategies are available. For example, Rebsamen et al. realized the navigation 
function by predefining a path between each candidate target and the BCW. After a user 
selects a candidate target, the automatic BCW automatically reaches the target along 
the predefined path [19]. Lopes et  al. [20] and Zhang et  al. [21] used another naviga-
tion strategy: constructing environment maps for their BCWs in advance. After the user 
selects a target, the automatic navigation algorithms embedded in their BCWs plan a 
path according to the environment map and guide the BCWs to the target.

Although the progress achieved by the existing BCW studies is encouraging, 
we can still improve the performance of current BCWs. In our study, we intend to 
improve the target selection speeds of current BCWs and improve the practicability 
of BCWs in unfamiliar environments, where the environmental information cannot 
be calibrated in advance. Computer vision (CV) can be used in various environ-
ments and can detect many categories of objects [22, 23]. Combining CV with BCWs 
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may improve the BCW performance [9, 10]. To this end, in this study, we propose 
a BCW combined with CV and augmented reality (AR) technology or CVAR-BCW. 
Our CVAR-BCW uses a CV module to automatically detect objects in the immediate 
environment and encodes the detected objects as BCW options. When the user wants 
to select a target, they can simply choose the target of interest in the user interface, 
and then the CV module will automatically guide our BCW to the target. In the CV 
research field, compared with the two-stage CV algorithms, the YOLOv3 [24] algo-
rithm has relatively high mean average precision and relatively high frames per sec-
ond. Therefore, our CVAR-BCW uses the YOLOv3 algorithm.

Traditional BCWs use computer screens to display their user interfaces [8–10]; this 
approach has two major disadvantages: (1) computer screens are not wearable, and 
(2) the fields of view of computer screens are relatively small. When a user selects 
BCW options on a computer screen, they cannot simultaneously observe the cur-
rent environment. If some obstacles are present in the environment and the user does 
not observe them, traditional BCWs may not be safe [25]. Using a translucent head-
mounted display (HMD) can well address these issues. For our CVAR-BCW, we use 
an HMD and a video see-through AR technique [26, 27] to build an immersive user 
interface, which simultaneously shows the real environment and the virtual stimuli 
employed to evoke the user’s P300 signal.

Our CVAR-BCW provides an end-to-end interaction strategy. Compared with cur-
rent semiautomatic BCWs, the proposed CVAR-BCW can reach the targets selected 
by users faster. Our CVAR-BCW system does not require hard-coded environmental 
information, since the CV module can detect environmental information in real time, 
making our system usable in unfamiliar environments. Due to the integration of AR 
technology, compared with BCWs based on computer screens, our CVAR-BCW can 
display environmental information in a more intuitive and immersive way. In addi-
tion, our user interface is wearable.

The degrees of fatigue and the workloads of users are important factors in the 
research and development of BCWs. Relevant studies [28–31] often use the National 
Aeronautics and Space Administration-Task Load Index (NASA-TLX) [32] to meas-
ure user workload and the Fatigue Questionnaire proposed by Trudie et  al. [33] to 
measure user fatigue. In our study, after completing the experiments, each user was 
asked to complete the NASA-TLX and the Fatigue Questionnaire. The NASA-TLX 
includes six subscales: mental demand, physical demand, temporal demand, per-
formance, effort and frustration. The full score of each subscale is 100, and the total 
score of NASA-TLX is the average score of all subscales. The higher the score, the 
greater the workload. For example, if a user X scores 100 and another user Y scores 
50, the workload of user X is greater than that of user Y. The full score of the Fatigue 
Questionnaire is 100. The questionnaire includes 14 items, and each item is approxi-
mately seven marks. Similarly, a high score on the Fatigue Questionnaire indicates a 
higher degree of fatigue.

In the rest of this paper, the Methods section describes the subjects, the structure and 
principle of the proposed CVAR-BCW, the experimental procedure, the EEG collection 
and processing algorithm, and the utilized performance metrics. The Results section 
describes the experimental results. The Discussion section discusses the significance and 
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limitations of this study, as well as future work ideas. The Conclusion section concludes 
this study.

Results
P300 signals

We collected EEG signals from five electrodes (FC1, FC2, CP1, CP2, and CZ). Accord-
ing to the collected EEG signals, we calculated the average signals and the correspond-
ing error bands for each EEG channel; we showed them in Fig. 1. For the target signals, 
after the stimuli appeared for approximately 400  ms, obvious P300 components were 
observed in all channels, and the largest P300 amplitude appeared in Cz (approximately 
2 μV). The non-target signals were relatively small, and the amplitudes were all less than 
0.5 μV. Figure 2 shows the target signals and non-target signals of all subjects. Despite 
individual differences, obvious P300 components could be observed in the target sig-
nal of each subject (between 200 and 500  ms, the amplitudes were all approximately 
1–3 μV). Similar to Fig. 1, the amplitudes of all non-target signals were much smaller 
than those of the target signals (all less than 1 μV).

BCW performance

We generated Table 1 according to the performance of all subjects in the online experi-
ment. The average accuracies and average ITRs for the subjects in the semiautomatic 
mode and automatic mode were almost the same: 84.1% (the maximum and minimum 
values were 95.2% and 75.8%, respectively) and 8.3 bits/min (the maximum and mini-
mum values were 11.4 bits/min and 6.3 bits/min, respectively) for the semiautomatic 
mode and 83.6% (the maximum and minimum values were 100% and 71.4%, respec-
tively) and 8.2 bits/min (the maximum and minimum values were 13.4 bits/min and 5.5 
bits/min, respectively) for the automatic mode. However, the average time and average 

Fig. 1  The signals recorded from each EEG channel. The green lines are the average target signals of all 
subjects, and the yellow lines are the average non-target signals of all subjects. The shaded areas are the 
corresponding error bands
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number of commands taken by the CVAR-BCW to reach each target in the two modes 
were different. In the semiautomatic mode, the average time spent was approximately 
93.4 s (the maximum and minimum values were 120 s and 78 s, respectively), and the 
average number of commands given was approximately 2.7 (the maximum and mini-
mum values were 3.5 and 2.1, respectively); in the automatic mode, the average time 
spent was approximately 42.4 s (the maximum and minimum values were 54 s and 36 s, 
respectively), and the average number of commands given was approximately 1.2 (the 
maximum and minimum values were 1.4 and 1.0, respectively). Intuitively, the automatic 
mode was faster than the semiautomatic mode. We used SPSS (version 21.0), which is 
widely used in statistics, to analyze the data shown in Table 1. The results showed that 
at the significance level of 0.05, the accuracy, ITR, average time and average number of 
commands recorded in each of the two modes did not follow a normal distribution. We 
could not use a paired t test, so in this study, we used the Mann–Whitney U test. The 
results showed that there were no significant differences in the accuracy (the statistical 

Fig. 2  The target and non-target signals of each subject
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value was −0.380, the p value was 0.718, and the effect size was −0.165) and ITR (the 
statistical value was −0.339, the p value was 0.738, and the effect size was −0.003) 
between the two modes at the level of 0.001, while the average time (the statistical value 
was −5.442, the p value was 0.000, and the effect size was −5.338) and average number 
of commands (the statistical value was −5.436, the p value was 0.000, and the effect size 
was −5.324) in the automatic mode were significantly smaller than those in the semiau-
tomatic mode.

In Fig. 3, we showed the motion trajectory of subject X and the time spent reaching 
each target. The experiment was conducted in a room with a size of 4.0 m × 6.0 m. The 
first target chosen by subject X was the chair (i.e., labeled as 1_chair on the interface). In 
the automatic mode, the CVAR-BCW directly reached the target, and the time to reach 
the target was 26  s. In the semiautomatic mode, the CVAR-BCW could not directly 
reach the target because the semiautomatic mode did not have navigation capability. 
The CVAR-BCW first moved forward and then translated left. The total time spent in 
semiautomatic mode was 58 s. The second target chosen by subject X was the computer 
(i.e., labeled as 3_computer on the interface). In the automatic mode, the CVAR-BCW 
could directly reach the target, and the time spent (23 s) by subject X was less than that 
(46 s) in the semiautomatic mode. An obstacle was located between the second target 
and the third target. In the automatic mode, the CVAR-BCW directly reached the third 
target person (i.e., labeled as 1_person on the interface) within 39  s. In the semiauto-
matic mode, the CVAR-BCW did not have navigation capability and could not directly 
reach this target. Subject X had to plan an appropriate path and move the CVAR-BCW 
along the path to reach the target, which took the subject 116 s. For the remaining tar-
gets, the motion trajectories in the semiautomatic mode were similar to those in auto-
matic mode. However, due to the lack of navigation capability, the semiautomatic mode 
required more time.

Workload and degree of fatigue

Table  2 shows the scores yielded by each subject on the NASA-TLX and the Fatigue 
Questionnaire. Although there were some individual differences, the average scores 
that the subjects received were relatively low compared with the full scores of 100. The 

Fig. 3  The motion of a subject X in the online experiment. A Shows the motion trajectory, and B shows 
the time cost to reach each target. There were three persons, three chairs, three computers, one bottle, and 
several obstacles in the room. To distinguish objects belonging to the same categories, we added a number 
before each object, e.g., 1_person was the first person in the room
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average scores of mental demand, physical demand, temporal demand, performance, 
effort, frustration, fatigue were 23.5, 22.3, 24.8, 22.3, 21.5, 17.5, and 20.8, respectively. 
According to relevant studies [32, 33], the workload and degree of fatigue of our CVAR-
BCW were relatively low.

Effect of the number of flashes

Using the data collected from the optimization experiment, we plotted Fig.  4. When 
the number of flashes was small, increasing the number of flashes quickly improved the 
decoding accuracy and the ITR since more flashes provided more P300 features to the 

Table 2  Scores of the NASA-TLX and the Fatigue Questionnaire

Subject Mental 
demand

Physical 
demand

Temporal 
demand

Performance Effort Frustration Fatigue

S1 25 50 50 40 40 25 36

S2 25 5 45 45 50 45 36

S3 20 30 30 25 5 15 21

S4 50 35 30 30 25 20 29

S5 25 20 40 45 20 20 14

S6 25 20 20 55 25 15 29

S7 15 15 10 5 5 10 7

S8 15 15 25 25 20 20 14

S9 10 5 20 25 20 15 21

S10 5 20 15 5 25 5 7

S11 15 20 10 15 20 10 14

S12 40 35 5 5 40 5 21

S13 45 20 30 10 5 5 21

S14 20 25 15 10 25 5 21

S15 30 5 40 10 5 50 48

S16 15 15 20 25 25 5 7

S17 40 35 20 10 10 10 14

S18 15 15 25 5 25 20 14

S19 15 25 20 30 20 20 21

S20 20 35 25 25 20 30 21

AVG ± STD 23.5 ± 12.0 22.3 ± 11.8 24.8 ± 12.0 22.3 ± 15.3 21.5 ± 12.2 17.5 ± 12.6 20.8 ± 10.6

Fig. 4  The effect of the number of flashes on the accuracy and ITR
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classifier. However, when the number of flashes was larger than an optimal value, the 
classifier reached its limit, and the decoding accuracy gradually stabilized. More flashes 
cost more time, decreasing the ITR. According to the experimental results in Fig.  4, 
when there were four flashes, the ITR reached the maximum value of approximately 10 
bits/min. In this study, we chose four flashes in the online experiment.

Errors occurring in automatic mode

In the online experiment, once the CVAR-BCW failed to reach a target, we orally asked 
the subjects about the possible reasons for this phenomenon and recorded them. In the 
semiautomatic mode, the CV module was turned off. If the CVAR-BCW did not reach a 
target, the reason was usually a BCI decoding error, so we did not analyze the errors that 
occurred in the semiautomatic mode. In the automatic mode, the possible errors were 
more complicated. We divided the number of each error type by the total number of all 
errors to obtain the percentage of each error type and plotted the following pie chart. In 
our experiment, the largest error that occurred was the decoding error (approximately 
48%), followed by the navigation error (approximately 28%). The percentages of these 
two errors were larger than those of the remaining errors.

Discussion
In the automatic mode, the P300 decoding algorithm and the number of options were 
the same as those in the semiautomatic mode, so the accuracies and ITRs between the 
two modes were almost the same. In the automatic mode, after the user selected a tar-
get, the wheelchair could automatically reach the target. However, in the semiautomatic 
mode, if the user wanted to reach a target, the user needed to continuously send steering 
commands to control the BCW, e.g., when to move forward and when to move left. The 
wheelchair control strategy in the automatic mode was simpler than that in the semiau-
tomatic mode, so it took less time and fewer commands to reach the target in the auto-
matic mode.

Currently, there are two categories of BCWs: semiautomatic and automatic. Users 
directly employ steering commands to control semiautomatic BCWs [17, 34]. For exam-
ple, a recent study by Yu et  al. developed a semiautomatic BCW with 11 movement 
options. The user controls the BCW to move forward, stop, accelerate and decelerate 
through P300 signal and SMRs [34]. Automatic BCWs usually have navigation modules. 
The control strategy for automatic BCWs is different from that of semiautomatic BCWs, 
and the user controls an automatic BCW by selecting the target of interest [19–21]. For 
example, Rebsamen et al. developed a BCW for indoor environments in which the posi-
tions of all objects were calibrated in advance [19]. The user could select a target in the 
user interface, and then the wheelchair would automatically reach the target along the 
calibrated path. The automatic BCW developed by Zhang et al. can construct a global 
environmental map in advance. After the user selects a target, the navigation module 
embedded in their BCW plans a path and guides the BCW to the target. The above stud-
ies improved the practicability of BCWs and enriched their applications. Our CVAR-
BCW can be regarded as an extension of existing relevant studies. The advantage of our 
CVAR-BCW is that we used CV to automatically detect and encode objects in the envi-
ronment, and the BCW could show the detected objects to users through an end-to-end 
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interaction strategy. After the user selected a target, the proposed CVAR-BCW could 
directly reach the target. The users did not need to frequently send steering commands. 
The target selection speed of our CVAR-BCW was faster than that of semiautomatic 
BCWs, and our system reduced the user’s workload to some extent. Compared with 
automatic BCWs, our CVAR-BCW did not require an environment map and could be 
better used in unfamiliar environments. In addition, our CVAR-BCW has an automatic 
mode and a semiautomatic mode. Users can select the appropriate mode according to 
their current environment. If the user wants to quickly reach a target, e.g., to grasp a 
bottle of water, he or she can choose the automatic mode; if the user wants the BCW to 
help them move in a room, e.g., move forward several meters, the user can choose the 
semiautomatic mode, which is useful for users with impaired motor function.

Currently, there are many BCW studies [6, 21] and robotic arm studies [35, 36]; how-
ever, few studies combine both topics. A BCW combined with a robotic arm is useful for 
many scenarios. For example, if a paraplegic user wants to drink water, the robotic arm 
installed on the BCW can grasp a bottle of water and help the user drink. The combina-
tion of BCWs and robotic arms can also promote the interdisciplinary development of 
relevant studies. In this study, we installed a multidegree-of-freedom robotic arm on our 
CVAR-BCW.

Current BCWs typically use computers screen to build their user interfaces [17, 19, 
21, 34]. Paraplegic patients might be uncomfortable sitting beside a computer screen for 
a long time [37]. In this study, our CVAR-BCW used an HMD as the user interface and 
AR technology to display information. Theoretically, a patient can see the surrounding 
environment from the first-person perspective and select targets through the HMD in 
any place. When the patient is lying in bed, he or she can even remotely control the 
BCW to bring him or her a bottle of water. Our system provided paraplegic users with 
a more user-centric interaction strategy and a good framework that can be integrated 
with many interesting technologies, such as the metaverse [38, 39] and teleoperation 
approaches [40–42].

The proposed CVAR-BCW has some limitations; the performance of the developed 
CVAR-BCW may be affected by light since the CV module we used cannot accurately 
detect objects in a dark environment. In addition, although six options are suitable for 
various tasks, users may need more BCW options for some complex scenarios. Although 
our CVAR-BCW can automatically reach the target selected by the user, the chosen path 
might not be optimal. We need to integrate a more advanced navigation framework into 
our CVAR-BCW. We did not measure the influence of the learning effect on our results. 
In semiautomatic mode, error types (1) and (2) were usually caused by the misoperation 
of users and might not be related to the CVAR-BCW, and we did not calculate error 
types (1) and (2). In semiautomatic mode, error types (3) and (5) were not observed. In 
semiautomatic mode, if the CVAR-BCW did not reach the target, error type (4) was the 
main reason. In semiautomatic mode, error type (6) might occur, but we did not analyze 
this error type, which is a limitation of our study.

In automatic mode, we analyzed possible error types caused by combining CV and AR 
with BCWs. As shown in Fig. 5, most errors were navigation and decoding errors. In the 
future, we will use more advanced P300 decoding algorithms, such as a Bayesian linear 
discriminator [43], to develop the classifier. In addition, Fig. 4 shows that increasing the 
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number of flashes can improve the accuracy of our approach to some extent. In future 
work, we will use a dynamically changeable number of flashes: for users with high accu-
racy, we will use fewer flashes; for users with low accuracy, we will use more flashes. 
The study conducted by Yin et al. [44] indicated that a hybrid BCI may have better per-
formance than a traditional P300-based BCI. Li et al. developed a BCW controlled by 
a hybrid BCI (combining a P300 signal with an SSVEP signal) [11]. Their experimental 
results suggested that the hybrid BCI improved the accuracy and response time of the 
wheelchair. In the future, we will modify the CVAR-BCW based on hybrid BCIs. In the 
future, we can put an SSVEP stimulus and a P300 stimulus on each option to simultane-
ously evoke the user’s SSVEP signal and P300 signal and then decode the target from 
these P300 and SSVEP signals. The simultaneous localization and mapping (SLAM) 
algorithm can be used in unfamiliar environments where information cannot be cali-
brated in advance. The A* algorithm is a commonly used navigation algorithm. We 
intend to improve the performance of our CVAR-BCW in unfamiliar environments. In 
the future, we can use a visual SLAM framework based on a Kinect sensor to construct a 
global environment map and then use the A* algorithm to navigate our wheelchair to the 
targets of interest [21].

Conclusion
In this study, we developed the CVAR-BCW, a BCW combined with CV and AR. Our 
CVAR-BCW had two modes: automatic and semiautomatic. In the automatic mode, the 
CVAR-BCW could automatically detect the current environment and navigate to targets 
selected by the user. In the semiautomatic mode, users could control each movement of 
the CVAR-BCW. The experimental results showed that our CVAR-BCW performed well 
in indoor environments, and the workload and degree of fatigue of users were low. In the 
automatic mode, the average accuracy was 83.6%, the average ITR was 8.2 bits/min, and 
the average time required to reach one target was 42.4 s. In the semiautomatic mode, the 
average accuracy, ITR, and time to reach one target were 84.1%, 8.3 bits/min, and 93.4 s, 

Fig. 5  The error types recorded in the automatic mode
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respectively. Our CVAR-BCW may be useful for disability assistance and provides a pos-
sible direction for the development of user-centric BCWs.

Methods
Subjects

This study was approved by the Ethics Committee of Xiangya Hospital, Central South 
University. All processes of the study were in line with the 1964 Declaration of Helsinki. 
All subjects provided written consent before the experiment. This study recruited 20 
healthy subjects with normal vision or normal vision after correction (ranging from 24 
to 33 years old, 7 females and 13 males). Relevant studies have shown that drinking stim-
ulating beverages (such as coffee), staying up late, and sleeping for too short a period can 
affect people’s cognition and brain activity [45]. To reduce the influences of these factors 
on our study, we asked the subjects recruited not to drink stimulating beverages, not to 
stay up late, and to sleep more than eight hours before the experiment. The experiment 
was conducted in a bright room that was approximately 4.0 m × 6.0 m in size. During the 
experiment, all doors and windows were closed to maintain silence (minimum 40.2 dB, 
maximum 52.9 dB, mean 46.4 dB), and no one was allowed to stay in the room except 
the researchers and subjects. Before the experiment, we illustrated the experimental 
procedure and how to use our CVAR-BCW in detail. Subjects could try the CVAR-BCW 
until they were completely familiar with it.

System architecture

Figure 6 shows the system architecture and an actual picture of our CVAR-BCW. The 
length, width, and height of our BCW were approximately 1.0  m, 1.1  m, and 1.5  m, 
respectively. The BCW consisted of four modules: a signal processing module, a com-
puter vision (CV) module, a user interface, and a wheelchair module. We used a local 
area network and a nonblocking user datagram protocol for communication between 
the modules:

Fig. 6  The actual picture and architecture of our CVAR-BCW. A is the actual picture, and B is the system 
architecture
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a)	 In the signal processing module, we first used Ag/AgCl electrodes to collect EEG sig-
nals from the user’s scalp. Then, we used an actiCHamp amplifier (Brain Products, 
Germany) and a bandpass filter to preprocess the collected raw EEG signals. Next, 
a BCI2000 platform [46] was used to decode the user commands from the preproc-
essed signals.

b)	 In the CV module, we used a Kinect Xbox 360 depth sensor (Microsoft, USA) to col-
lect environmental information in real time. The depth sensor could simultaneously 
output the RGB video captured in the current environment and the point cloud data 
of all objects in the current environment. We used a Darknet-53 framework-based 
YOLOv3 platform to detect environmental objects in the captured RGB video [24]. 
Then, the CV module automatically encoded the detected environmental objects as 
the BCW options. The CV module processed the point cloud data in real time to 
obtain a depth map of the current environment. Next, in the depth map, the CV 
module used a depth measurement algorithm to measure the depth information 
of each object (e.g., the distance from each object to the CVAR-BCW). The depth 
information was sent to the wheelchair module.

c)	 We used an EPSON BT350 HMD (Seiko Epson Corporation, Japan) to develop the 
user interface. The user interface showed the BCW options (from the CV module), 
the visual stimuli used to evoke the user’s P300 response, and the decoding results 
(from the signal processing module). Figure 7 shows an example of the user interface.

d)	 The purpose of this study is to provide a BCW that can work stably in indoor envi-
ronments. Relevant BCW studies have suggested that a mecanum wheel can trans-
late and rotate in any direction [47] and is thus suitable for indoor environments [6]. 
A Kinova robotic arm (Kinova Robotics, Canada) can flexibly grasp many objects in 
our daily life, e.g., bottles and cups [48], which may be useful in indoor scenarios. The 

Fig. 7  User interfaces for automatic mode and semiautomatic mode. The CVAR-BCW is developed for indoor 
environments. The color of the BCW options and the color of stimuli should be different from most objects 
in indoor environments to reduce visual interference. In indoor environments, there are relatively few red, 
purple, and orange objects. Therefore, we set the target option, the non-target options, and the stimuli 
of our BCW to red, purple, and orange, respectively. The orange stimuli were set to be translucent so that 
users could simultaneously see stimuli and the environment. At the top of the user interfaces, the system 
automatically displayed the current target (after the text "Target"), the current decoding result (after the text 
"Result"), and the current BCW mode (after the text "Mode")
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wheelchair module of the CVAR-BCW consisted of a chassis with four mecanum 
wheels and a Kinova robotic arm installed on the wheelchair. When the user selected 
a target, the wheelchair module would immediately read the decoding result derived 
from the signal processing module, read the depth information obtained from the 
CV module, and plan a path to the target. Next, the chassis would move to the target, 
and the robotic arm would grasp the target.

In indoor environments, BCWs combined with CV provide a fast end-to-end inter-
action strategy for users. However, when a user only wants to move forward or back-
ward, rather than select a certain target, such BCWs cannot complete the task well. To 
develop a BCW suitable for various scenarios, our CVAR-BCW contained two modes: 
an automatic mode and a semiautomatic mode. In automatic mode, the CVAR-BCW 
uses the CV module to detect and encode environmental objects and can automatically 
navigate to the targets selected by the user. In semiautomatic mode, the navigation func-
tion is turned off, and the user can control each movement of the CVAR-BCW. Similar 
to traditional BCWs, in semiautomatic mode, the user can decide when the CVAR-BCW 
moves forward and when the CVAR-BCW moves backward through their P300 signal. 
We installed a switch on the CVAR-BCW, by which a user can change the mode.

Figure 7A shows the user interface of the semiautomatic mode. There were six options 
in the user interface: "Forward", "Left Turn", "Left Translation", "Right Turn", "Right 
Translation", and "Backward". A red visual cue was used to mark the current target, i.e., 
the current target was "Left Translation". Orange rectangular stimuli were used to elicit 
the user’s P300 response. Figure  7B shows the user interface of the automatic mode. 
We used the same visual cue and stimuli. In automatic mode, the BCW options were 
the environmental objects detected by the CV module. The number of environmental 
objects may not be constant, so the number of BCW options is changeable. In this study, 
we wanted to keep the number of options in the automatic and semiautomatic modes 
the same. In semiautomatic mode, the number of options is six. If there were too many 
objects (> 6) in the current environment, in automatic mode, the user interface would 
randomly show six of them. If the number of environmental objects was less than six, 
the user interface would introduce fake options to fill the inadequate options. For exam-
ple, in Fig. 7B, the user interface included four options from the current environment 
("1_bottle", "2_computer", "3_chair", and "4_person") and two fake options. Fake options 
were set as invisible to prevent distractions. If a fake option was decoded as the current 
result, the CVAR-BCW would not execute the command because a fake option did not 
represent any target.

Wheelchair navigation and robotic arm control strategy

This study aimed to test the advantages of combining CV and AR with traditional BCWs. 
The wheelchair navigation and robotic arm control strategies used in our CVAR-BCW 
were relatively simple. In this study, we predefined the current position of the CVAR-
BCW as the origin of a Cartesian coordinate system, and the positive directions of the 
X axis, Y axis and Z axis were horizontal right, vertical down and horizontal forward, 
respectively. The depth sensor collected the environmental information within four 
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meters in front of the BCW, and then the CV module processed the collected informa-
tion in real time. After finding a target, the CVAR-BCW would directly go to the target. 
For example, if the target "person" was three meters away from the CVAR-BCW and was 
in the left front, the CVAR-BCW would first turn left and then move forward for three 
meters. If an obstacle was found on the path, the CVAR-BCW would randomly rotate or 
translate until it avoided the obstacle (this path may not be optimal).

Before conducting experiments, we needed to calibrate the grasping posture of the 
Kinova robotic arm [49]. For different objects, the grasping postures were different. For 
each target, we needed to manually operate the robotic arm to grasp the target and then 
select the end effector of the robotic arm on the depth map. Next, we needed to turn on 
the CV module. The CV module automatically recorded the coordinates of the selected 
end effector in the three-dimensional world. According to the recorded coordinates, the 
algorithm integrated into the robotic arm determined the appropriate grasping posture. 
In experiments, the robotic arm could only repeat the calibrated posture, which meant 
that the robotic arm could not grasp moving or uncalibrated objects.

Experimental procedures

Before the experiment, each subject participating in this study was informed of the 
experimental procedure and the experimental purpose. Subjects could try the CVAR-
BCW several times until they were fully familiar with our system. The experiment 
included three parts: (a) an offline experiment, (b) an optimization experiment, and (c) 
an online experiment. After the experiments, each subject was asked to immediately 
complete the NASA-TLX and the Fatigue Questionnaire so that we could measure the 
workload and degree of fatigue of each subject. The scores of the NASA-TLX and the 
Fatigue Questionnaire are shown in Table 2.

Figure 8 shows the time course of the experiments. First, a subject was asked to select 
a mode within 5000 ms. The subjects could select modes through a switch installed on 
our CVAR-BCW. If the switch was pressed within 5000 ms, the automatic mode would 
be immediately activated; otherwise, the semiautomatic mode would be activated. At 
this stage, the HMD only showed the RGB video captured by the depth sensor but did 
not show the visual cue and stimuli. Next, the HMD showed the corresponding user 
interface and the visual cue. One thousand milliseconds later, the user interface showed 

Fig. 8  The time course. In the offline experiment, the time course included four stages: the mode selection 
stage, cue stage, flash stage, and decoding stage. In the flash stage, we used orange rectangular stimuli to 
construct the flash. Each flash lasted for 400 ms, each stimulus appeared for 200 ms and then disappeared for 
200 ms, and four flashes appeared for each option. The parameters used in the optimization experiment were 
the same as those used in the offline experiment, but the number of flashes in the optimization experiment 
increased from 2 to 8. The parameters used in the online experiment were the same as those used in the 
offline experiment, and the flash stage also contained 4 flashes. However, the online experiment included 
one more stage: the execution stage, in which the BCW executed the decoding results
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the visual stimuli to evoke the subject’s P300 potential. According to the oddball para-
digm [50], we used a stimulus onset asynchrony of 400 ms, i.e., each stimulus appeared 
for 200 ms and disappeared for another 200 ms. After the flash stage, the BCW decoded 
user commands within 1000 ms. In the offline experiment and the optimization experi-
ment, our BCW would not execute user commands and would only return the decod-
ing results through the user interface. The time courses of the offline experiment and 
the optimization experiment included four stages: choosing mode, cue stage, flash stage, 
and decoding stage. In the online experiment, our CVAR-BCW executed the decoding 
results, and the time course included an additional execution stage.

Offline experiment

In the offline experiment, each subject was asked to use the automatic mode and semi-
automatic mode to select 15 targets, respectively. The order of the two modes was not 
important. For example, a subject could use the automatic mode to select the first 15 tar-
gets and then use the semiautomatic mode to select the last 15 targets, or vice versa. In 
the offline experiment, the number of flashes was four. The purpose of the offline experi-
ment was to collect enough EEG signals to train the classifier [51] needed in the online 
experiment. After the offline experiment, each subject rested for two minutes.

Optimization experiment

The number of flashes might affect the performance of a BCI [44, 52]. In the optimiza-
tion experiment, we wanted to test the effect of the number of flashes on the CVAR-
BCW performance. Each subject was asked to finish seven blocks with ten targets each. 
The number of flashes increased with the number of blocks: there were two flashes in 
the first block, three flashes in the second block, and so forth until the last block (eight 
flashes). For each block, each subject was asked to select five targets from the semiau-
tomatic mode and the other five targets from the automatic mode. The order of the two 
modes was not important. The visual cue and stimuli used in the optimization experi-
ment were the same as those in the offline experiment.

Online experiment

In the semiautomatic mode, when the CVAR-BCW reached the target, subjects needed 
to press the switch on the BCW to stop it. In the automatic mode, the BCW could auto-
matically stop near the target. In the online experiment, each subject was asked to use 
the semiautomatic mode and automatic mode to reach 10 designated targets in the 
room, respectively. The targets were 1_bottle, 1_person, 2_person, 3_person, 1_chair, 2_
chair, 3_chair, 1_computer, 2_computer, and 3_computer. To distinguish objects belong-
ing to the same category, we added a number before each object. For example, if there 
were two persons in a room, we would name them 1_person and 2_person, respectively. 
In semiautomatic and automatic modes, the subjects had to successfully reach each tar-
get. If the subjects did not reach a target, they had to retry until they succeeded. Accord-
ing to each subject’s performance, we generated Table 1 and Fig. 5.
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EEG data collection

We used an actiCHamp amplifier and its electrodes to record a user’s scalp EEG sig-
nals. In this study, the recording electrodes were FC1, FC2, CP1, CP2, and Cz, the refer-
ence electrodes were TP9 and TP10, and the ground electrode was Fpz. The sampling 
frequency was 200  Hz. In the experiments, the impedance of all electrodes was kept 
below 10 kΩ. To reduce the interference induced by the electromyography signal and 
electrooculogram signal, we used a 0.5  Hz-to-50  Hz bandpass filter to preprocess the 
recorded raw EEG signals.

EEG signal processing

When the user turned on the CVAR-BCW, our EEG amplifier started recording EEG 
signals. Obvious P300 component could only be recorded after visual stimuli appeared 
for several hundred milliseconds. In our study, we would read an EEG signal for each 
option after stimuli appeared (700 ms long). Since the sampling frequency used in our 
study was 200 Hz, each signal included 140 sample points. To reduce the data size, we 
used a downsampling filter with a sampling rate of one tenth to filter each signal. The 
signal after downsampling included 14 points. As described in the Experimental Proce-
dures section, there were four flashes on each option. Therefore, the total signal of each 
option included 14 × 4, i.e., 56 sample points. The stepwise linear discriminant analysis 
algorithm is often used for P300 feature extraction [53, 54]. The principle is to multi-
ply the collected EEG signal by an optimal weight matrix. The larger the product is, the 
more obvious the P300 features contained in the EEG signal. In this study, we used the 
optimal weight matrix W  obtained in the offline experiment to multiply the 56 sample 
points of each option. For each option, we could obtain a product. Finally, we used the 
bubble sort algorithm to sort the products, and the option with the largest product was 
the decoding result:

Here, i is the ith option. N  is the number of flashes required to decode one target. 
For the offline experiment and online experiment, N was four, but for the optimization 
experiment, N was not constant and varied from two to eight. W  is the optimal weight 
matrix. Xik is the EEG signal recorded for the ith option in the kth flash, and Si is the 
product of the ith option.

Performance metrics

Relevant studies typically use the accuracy and ITR to measure the performance of a BCW 
[35, 55]. In this study, we also used the accuracy and ITR as performance metrics. Differ-
ent from traditional BCIs, in our study, the accuracy of the CVAR-BCW was defined as 
the probability that the CVAR-BCW correctly reached a target. In other words, the CVAR-
BCW not only needed to correctly decode the target but also needed to correctly reach 
it. For example, if a subject wanted to reach a chair, the BCW should successfully decode 
the target chair and then reach the chair and could not collide with any obstacles. In the 

(1)Si =

N
∑

k=1

WXik.
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online experiment, each subject was asked to successfully reach ten targets. We counted 
the total number of commands sent by each subject. For each subject, the total number 
divided by ten was the accuracy of the CVAR-BCW. Using the accuracy, we calculated the 
corresponding ITR.

Equations (2) and (3) illustrate how to calculate ITR. N is the number of options in the 
user interface, which was 6 in our study. P is the accuracy, and T is the time required to 
decode the current target [35, 55]. S is a stimulation parameter, which was 400 ms in our 
experiment. R is the number of flashes required to select the current target. For the offline 
and online experiments, R was 4, but for the optimization experiment, R was not constant 
and varied from 2 to 8. I is the interval between two selections:

In addition, we recorded the total time and total number of commands spent by each 
subject to reach the ten designated targets. The total time divided by ten was the average 
time required to reach one target. The total number of commands divided by ten was the 
average number of commands required to reach one target.

We also wanted to test the advantages and disadvantages of combining CV and AR with 
BCWs. In the automatic mode, we recorded the number of times that our CVAR-BCW 
did not reach targets and classified the errors using the following six types: (1) collision, 
i.e., collided with obstacles; (2) navigation error (the distance to the target was greater than 
0.5 m, or collided with the target); (3) HMD error, e.g., the HMD did not display a complete 
image; (4) BCI decoding error; (5) CV error, e.g., the CV module did not find targets, and 
(6) others, e.g., the subject did not watch the target. The percentage of each error type was 
the number of each error type divided by the total number of all errors. For example, if the 
number of navigation errors was three and the total number of errors was ten, then the per-
centage of navigation error was 30%. Most errors encountered in the semiautomatic mode 
were related to BCI decoding, so we did not analyze the errors in semiautomatic mode.
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