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Abstract 

Background: Advances in sports medicine, rehabilitation applications and diagnostics 
of neuromuscular disorders are based on the analysis of skeletal muscle contractions. 
Recently, medical imaging techniques have transformed the study of muscle contrac-
tions, by allowing identification of individual motor units’ activity, within the whole 
studied muscle. However, appropriate image-based simulation models, which would 
assist the continued development of these new imaging methods are missing. This is 
mainly due to a lack of models that describe the complex interaction between tissues 
within a muscle and its surroundings, e.g., muscle fibres, fascia, vasculature, bone, skin, 
and subcutaneous fat. Herein, we propose a new approach to overcome this limitation.

Methods: In this work, we propose to use deep learning to model the authentic intra-
muscular skeletal muscle contraction pattern using domain-to-domain translation 
between in silico (simulated) and in vivo (experimental) image sequences of skeletal 
muscle contraction dynamics. For this purpose, the 3D cycle generative adversarial 
network (cycleGAN) models were evaluated on several hyperparameter settings and 
modifications. The results show that there were large differences between the spatial 
features of in silico and in vivo data, and that a model could be trained to generate 
authentic spatio-temporal features similar to those obtained from in vivo experimental 
data. In addition, we used difference maps between input and output of the trained 
model generator to study the translated characteristics of in vivo data.

Results: This work provides a model to generate authentic intra-muscular skeletal 
muscle contraction dynamics that could be used to gain further and much needed 
physiological and pathological insights and assess and overcome limitations within the 
newly developed research field of neuromuscular imaging.

Keywords: Domain adaptation, Noise adaptation, Generative adversarial network, 
Neural networks, Skeletal muscle, Ultrasound, Plane wave, High frame rate imaging, 
Fascia, Simulation model
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Introduction
Investigation of skeletal muscle contraction is commonly conducted in many sports 
medicine applications, rehabilitation, and diagnosing neuromuscular disorders. State-of-
the-art methods rely on investigating the smallest functional units, i.e. the motor units 
(MUs), and record the electrical activity of their muscle fibres (electromyography). These 
methods are, however, limited to a small field-of-view [1, 2]. Recently, this limitation has 
been addressed by introducing large-field-of-view methods for imaging individual MUs 
of the skeletal muscle contraction, using tissue mechanics acquired by ultrafast ultra-
sound imaging and magnetic resonance imaging [3–9]. While the bioelectrical methods 
only record the electrical activity of muscle fibres, the mechanical activity is more com-
plex due to the composition of the muscle tissue.

The skeletal muscle tissue comprises muscle fibres embedded in a multilevel complex 
web of connective tissues. In addition, skeletal muscle tissue includes vascular tissue, 
skin and subcutaneous fat, potential fibrosis, fat tissues within the muscle, bone, etc. 
However, due to large variations in the amount of these components, there is a lack of 
knowledge on the effect of mechanical coupling on its physiology [10–13]. To model the 
full complexity and heterogeneity of skeletal muscle tissue, a 3D continuum-mechanical 
approach is essential. Such models are rare. Moreover, most of these models follow a 
phenomenological modelling approach to describe a skeletal muscle’s mechanical behav-
iour, e.g., [14–17]. Furthermore, these studies investigate muscles in isolation, i.e. with-
out taking into account their mechanical state at rest (e.g., pre-stretch), adjacent tissues, 
or heterogeneous material descriptions. They rely on constitutive model parameters 
obtained by fitting phenomenological constitutive laws to experiments (often conducted 
in animals). Some exceptions exist. For example, they consider the inclusion of the elec-
tro-physiological behaviour of skeletal muscle fibres [18], or develop micro-mechanical 
models investigating the mechanical behaviour of a few muscle fibres or fascicles [19, 
20]. All these models yet appeal to bulk properties. The inclusion of heterogeneous 
material distributions is feasible but typically not considered. To realistically model vari-
ations in collagen distributions and dispersion within the extracellular space and deduce 
from that the overall mechanical behaviour of the muscle tissue, a new class of skeletal 
muscle models based on novel homogenization techniques have been proposed [21, 
22]. These, however, currently only consider the passive mechanical properties. Fully 
dynamic models that take into account the microstructure are currently missing, but 
are needed to improve image-based model assessment of muscle contractions. Further, 
from a computational point of view, the requirements on spatial and temporal resolution 
(0.1mm and kHz range) to simulate skeletal muscle contraction make the use of models 
described above nearly infeasible. A simulation model to generate data with authentic 
features would provide a valuable tool to advance the research field on imaging MUs in 
skeletal muscle contraction.

Deep learning generative models have recently been proposed as a tool to simulate 
medical images [23–25] and, in specific, ultrasound images [26–28] with authentic fea-
tures. However, these models generate 2-D images, whereas skeletal muscle contractions 
are characterized by repeated contractions (twitches) of the activated fibres [29]. As a 
consequence, a model including spatio-temporal features is required to simulate authen-
tic skeletal muscle contractions (i.e. image sequences, e.g., 2-D + time), but studies 
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on such application are lacking. Domain-to-domain translation is a particular branch 
of deep learning generative models, which allows to transfer data from one domain to 
another with different feature distributions while retaining content [30–36]. Thus, such 
models may offer a solution to generate authentic experimental domain (in vivo) spatio-
temporal data from simulated domain (in silico) spatio-temporal data.1

In this work, we aim to model intra-muscular skeletal muscle tissue contractions, by 
generation of authentic image sequences using in silico (simulated) to in vivo (experi-
mental) domain translation. We modified and trained a 3D cycle generative adversar-
ial network (cycleGAN) model [35, 37, 38] using unpaired in silico and in  vivo image 
sequences, and evaluated hyperparameter settings on the domain adaptation perfor-
mance by quantitative comparison of spatial and temporal domain features. Our goal 
in this work is to learn a mapping where the underlying content is preserved while the 
domain-specific features of the experimental data should be transferred to the simulated 
content. To the best of our knowledge, there are no previous works on domain adap-
tation of ultrasound image sequence data (video), where spatio-temporal consistency 
needs to be retained when adapting to the new domain.

Our main contributions are: 

1. A modified 3D cycleGAN model to generate authentic image sequences of skeletal 
muscle tissue contraction from in silico image sequences (while maintaining spatio-
temporal consistency of the content in the in silico data),

2. A description of the spatial features of authentic in vivo and the in silico data for the 
first time, and a demonstration that there are large differences,

3. The use of difference maps between the input–output paired data (in silico and 
translated domain) to assess the learned characteristic feature representation of the 
model’s generator, and

4. The first study applying domain–domain translation on medical image sequences.

Generative models in medical image synthesis
Generative adversarial networks (GANs) have gained popularity for their ability to gen-
erate authentic synthetic medical image data [23–25, 35, 37, 39]. GANs are increasingly 
becoming popular in the medical imaging and medical ultrasound imaging research 
community [23]. Recently, Lennart et  al. [27] proposed SpeckleGAN for ultrasound 
image simulations. The architecture is a GAN model with the exhibition of speckle noise 
to reflect more realistic distribution. Cronin et al. [40], demonstrated the use of GANs 
for synthesis of musculoskeletal B-mode ultrasound images from synthetic segmented 
masks. The model is a traditional cycleGAN for 2D images. Hu et al. [41] have demon-
strated the use of conditional GANs for simulating foetal ultrasound images. The GAN 
is conditioned on calibrated pixel coordinates in global physical space. For low-resolu-
tion portable ultrasound devices, Wang et al. generated super resolution with the help 
of GANs [42]. The model uses two generators with U-Net architecture to build a sparse 

1 The terms simulation domain, in silico and domain A refer to the same domain and are used interchangeably in this 
paper. The terms experimental domain, in vivo and domain B refer to the same domain and are used interchangeably in 
this paper. Note. Sim: simulation domain. Exp: experimental domain
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skip connection U-Net. Fujioka et  al. [26] used deep convolutional GAN to generate 
breast ultrasound images and to express virtual interpolation images of tumours. The 
readers may also be interested in the survey paper on the applications of GANs for syn-
thesis of radiology images [43].

Most of the GAN-based studies applied to ultrasound imaging (and generally, in medi-
cal imaging) focus on the generation of 2D synthesized data. These studies are limited 
to image-to-image translation approaches with no inclusion of temporal features. In 
comparison to these works, the present work addresses the task of US image sequence 
generation—a video-to-video translation.

For medical image volume data, Abramian et al. [44] demonstrated synthesis of func-
tional magnetic resonance imaging (fMRI) volumes from T1-weighted volumes using 
a 3D cycleGAN architecture. Similarly, synthesis of 3D volumes of MRI was described 
by Zhang et al. [35] where they used a shape-consistency loss for the generators of the 
GAN to achieve a synthesis with authentic features. These two approaches can also be 
regarded as volume-to-volume translation application of GANs in medical imaging.

There are a few studies on video-to-video translation for video of natural scenes. 
For example, Bansal et al. [33] presented the Recycle-GAN model to synthesize future 
frames. By using a temporal predictor, a cycle-consistency was explored across both 
domains as well as along time. In addition, Chen et  al. [34] applied a motion-guided 
cycleGAN to explore both structure appearance and temporal continuity for video-to-
video translation tasks such as flower-to-flower translation. However, to the best of our 
knowledge there are no proposed models for medical and ultrasound image sequence 
(video-to-video) translation, and in particular not for skeletal muscle contraction 
dynamics.

Results
Comparison between domain A and domain B features

The spatial features of the simulated (domain A ) and experimental (domain B ) data were 
different (see Fig. 5 later in the text), both at the level of individual frames of an image 
sequence, as well as the computed variation maps. In particular, in the simulated data 
individual MUs could be seen as regions with oscillating intensities (black to white). 
Regions with oscillating intensities could also be observed in the experimental data, but 
the spatial pattern was more complex. This dissimilarity was also verified in the quan-
titative assessment with high DBhat (0.33), low Corr (0.54), and low SSI values (0.32) 
(Table 1, first row, No-translation case). In contrast, the temporal content was similar, 
as shown by a high correlation of the power spectral content (Corr Psd 0.96) between 
simulated and experimental data, which was also on the same order as when comparing 
experimental sequences with other experimental sequences (0.98) (Table 1, first and last 
rows). Examples of time signals and their Psd from both domains can be seen in Fig. 2.

Evaluation of translation performance

Figure  1 shows three examples of the original domain A and B data and their corre-
sponding five different translations. Table 1 shows the quantitative results of comparing 
spatial, temporal, and spatio-temporal features between the translated and the experi-
mental data.
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Spatial features

The 2D cycleGAN and recycleGAN models had the lowest spatial feature similarity 
compared to the experimental data as indicated by the high DBhat and low Corr values. 

Fig. 1 A Examples of spatial variance maps (var map) and their spatial features represented in histogram and 
K-space (positive frequencies only), from domain A and B data, respectively. B Examples of spatial variance 
maps resulting from the trained translation models 2D cycleGAN, reCycleGAN, and the 3D cycleGAN models. 
The translated examples are derived from 1-3 in (A). The image sequences are here represented by a variance 
map, its corresponding histogram, and K-space (2D Fourier transform, positive frequencies)

Table 1 Performance evaluation of domain–domain translation models

Spatial and temporal features were computed as cross‑comparisons between translated and experimental sequences

D Bhat Spatial features were compared using Bhattacharyya distance, Corr histogram correlation,SSI  structural similarity 
index of K‑spaces, and  Corr Psd temporal features was compared using correlation of power spectral densities . xCorr The 
consistency of the signal content in the translations was assessedusing cross‑correlation  and Lag the corresponding time 
lag

Direction Translation 
model

Frames Spatial features Temporal 
features

Translated content 
consistency

DBhat ↓ Corr ↑ SSI ↑ Corr Psd ↑ xCorr ↓ Lag, ms ↓

Sim to Exp No transla-
tion

– 0.33 (0.11) 0.54 (0.26) 0.32 (0.18) 0.96 (0.01) – –

-”- 2D cycleGAN 1 0.43 (0.10) 0.32 (0.19) 0.49 (0.12) 0.90 (0.02) 0.61 (0.09) − 2.0 (64.6)

-”- Recycle GAN 3 0.39 (0.11) 0.39 (0.20) 0.65 (0.14) 0.96 (0.01) 0.51 (0.07) − 1.9 (70.8)

-”- 3D cycleGAN 
default

32 0.25 (0.09) 0.67 (0.21) 0.49 (0.08) 0.90 (0.02) 0.89 (0.04) 1.3 (2.4)

-”- 3D cycleGAN 
(Stride=1)

32 0.27 (0.12) 0.65 (0.25) 0.63 (0.09) 0.97 (0.01) 0.93 (0.03) − 1.7 (2.2)

-”- 3D cycleGAN 
(Stride 1 + 
Noise)

32 0.25 (0.10) 0.69 (0.23) 0.65 (0.10) 0.97 (0.01) 0.93 (0.03) 1.4 (2.2)

Exp to Exp No transla-
tion

– 0.26 (0.11) 0.66 (0.25) 0.74 (0.12) 0.98 (0.01) – –
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The 3D cycleGAN models had similar performance in generating authentic spatial fea-
tures, and was similar to when comparing experimental data with itself (DBhat 0.25–
0.27 vs 0.26; Corr 0.65-0.69 vs 0.66). The SSI was highest for the 3D cycleGAN models 
with stride 1 (0.63 and 0.65) but not as high as when comparing experimental data with 
itself (0.74). In Fig. 1, it can be seen that the default 3D cycleGAN model presented var-
iation maps with a smoothed spatial features. The 3D cycleGAN model with stride 1 
resulted in a relatively periodic spatial pattern, and the 3D cycleGAN model with stride 
1 and noise injection presented visual features similar to those of the experimental data. 
Taking the spatial features together, the stochastic noise injection model produced the 
most authentic spatial features based on having the highest Corr (0.69), SSIM as high as 
the best of all models (0.65) and with DBhat as low as the best of all models (0.25).

Temporal features and translated content consistency

Figure 2 shows examples of the typical oscillatory content of the signals and indicates 
large differences between the translations. In general, the Corr Psd was similar among 
the translation models (0.90-0.97) and was comparable to that of the experimental data 
(Corr Psd 0.98), but the 2D cycleGAN model had the lowest similarity (Table  1). The 
2D cycleGAN model and ReCycleGAN models had poor performance in translating the 
content (low xCorr values and large variation in the lag). In contrast, the 3D cycleGAN 
models translated the content to a large extent (xCorr 0.89-0.93, lag close to zero and 
low standard variation).

Fig. 2 Examples of two sets of translated time signals (A and D), their corresponding power spectral 
densities (Psd) (B and E), and cross-correlation with the input simulated signal (C and F). The original signal 
as well as that the outputs from the different translations are shown in different colours in time traces. 
Content similarity was computed as the maximal cross-correlation between the translated signals and 
the original simulated signal. It can be seen that the translations of the 3D cycle GAN models were similar 
to the simulated signals, whereas the translations from the 2D GAN and the recycle-GAN models were 
not and came with large amount of noise. G Shows an example of an experimental time signal, and H its 
corresponding psd. It should be stressed that the oscillatory pattern is similar in simulated and experimental 
signals. ∗ = modification 2 (stride 1), ∗∗ = modification 1+2 (stride 1 and noise injection) 
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Taken together, the 3D cycleGAN models retained spatio-temporal consistency, and 
produced spatial and temporal features similar to those of comparing experimental data 
with itself. The model with stochastic noise injection produced the most authentic spa-
tial features while simultaneously having the top rank performance on temporal feature 
authenticity Corr Psd (0.97) and top rank performance on preserving the temporal con-
tent xCorr (0.93). Thus, it had the most authentic spatio-temporal features.

Assessment of the learned mapping of the generator

Figure  3A and B shows examples of simulated and translated image frame pairs of a 
sequence for the 3D cycleGAN model (stride 1 and noise injection), and their corre-
sponding difference maps. The resulting sum of the difference maps of a sequence was 
denoted similarity map (Fig.  3C) and this was used to assess the spatial features that 
the generator had learned to translate to the simulated data. The translated spatial fea-
tures, as assessed by the similarity maps, were similar but not identical in the translated 
sequences (Fig. 3D), and it was similar to the spatial features of the experimental data 
frames (Fig. 3F). In the similarity maps, the difference was approximately 0 (large simi-
larity) but with a granular pattern of holes with regional differences (1–2 mm diame-
ters). The experimental images presented a similar spatial texture pattern of variations in 
tissue velocity. The translated data had lower velocities in the subcutaneous (superficial) 
region (Fig. 3E).

Discussion
In this work, we evaluated different domain–domain translation models to generate 
authentic image sequences of intra-muscular contraction dynamics. The main find-
ings of this work are: (1) there were large differences between the spatial features of the 
simulated and experimental domains before translation; (2) a domain–domain transla-
tion model can be trained to generate authentic data and that a 3D but not 2D model is 
required to obtain spatio-temporal consistency, and (3) mapping of differences between 
input and a translated sequence showed a spatial texture which was similar to that of 
experimental data. This work is the first work on video-to-video domain translation task 
on medical image sequences, and in particular ultrasound image sequences.

Differences between simulated and experimental domains

First, there was a large difference in the spatial features of the two domains (Fig. 1 and 
Table 1). This was expected and demonstrate that the experimental in vivo data com-
prise complex mechanical interactions between the fascia, muscle fibres, vasculature, 
skin and subcutaneous tissues, etc., that are not represented in the simulation domain. 
These results also highlight the impact and magnitude of these complex interactions on 
the micro-mechanical dynamics within the muscle. This has, to the best of our knowl-
edge, not been shown before, and these findings also motivate the importance of the 
present work.

Performance of domain translation models

All models resulted in adaptation towards spatial-temporal features of the experimen-
tal domain, but the 3D models performed the best. The 2D and few-frame models (2D 



Page 8 of 19Ali et al. BioMedical Engineering OnLine           (2022) 21:46 

cycleGAN and recycleGAN) resulted in similar spatial features as those of experimen-
tal data, however, temporal content was poorly translated. This was expected since the 
skeletal muscle contractions comprise activations of the MUs that produce an oscillating 
dynamical sources. Thus, in order to retain spatio-temporal consistency, a spatio-tempo-
ral model is required (3D, i.e. 2D+time).

In general, the translated sequences of the 3D cycleGAN models had a high similar-
ity in spatial features compared with experimental data, and with a retained temporal 
consistency. The 3D model with deterministic generator as well as stochastic generator 
gave similar performance in the evaluated metrics, however visual inspection showed 
that checker-boarding pattern was reduced in the stochastic version. The checkerboard 
pattern was seen in the output of several models as repeating patterns in the variance 

Fig. 3 Exploration of the learned mapping of the generator model. A Examples of simulated (in silico), 
translated tissue velocity images, B their corresponding differences at three different time frames of an 
image sequence, and C is the similarity map computed as the sum of difference maps of the whole image 
sequence. D Similarity maps for three translated examples. E Similarity as a function of depth for all 64 
translated examples. The similarity was low in superficial subcutaneous region. F Examples of experimental 
tissue velocity frames. It can be seen by visual inspection that the texture pattern of the similarity maps (D) 
shared similar features with the texture pattern of the experimental velocity maps (F)
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maps as well as lines in the K-space representations (Fig. 1), particularly for the default 
2D and 3D cycleGAN models. The pattern was mainly present in areas with low activity 
or with no active MUs. These areas correspond to low entropy and thus, these will not 
be optimal as priors to the pseudorandom number generators in the deterministic cycle-
GAN models.

One of the 3D cycleGAN model modifications was to use a stride value 1 in the third 
dimension corresponding to the temporal information. A value higher than one would 
down-sample the data and lose temporal information about the muscle contraction. 
While our choice of stride value was empirical, this value has also been used for 3D 
CNNs of other cycleGANs models for medical imaging, for example, generating func-
tional magnetic resonance imaging (fMRI) volumes [44]

The stochastic 3D cycleGAN model showed less repeated spatial patterns and pro-
vided the best spatial feature authenticity compared to the other models (Fig.  1 and 
Table 1). Thus, the introduction of stochastic noise to the latent space helped achieve 
a generalized behaviour of the generator. This finding is in line with results obtained in 
the computer vision domain, for example, in face synthesis [45], where noise input has 
been used to improve the stochastic variation in generated images. From an anatomical 
and physiological perspective, the skeletal muscles of different subjects will have both 
common and diverse geometries and constituents [13] that should cause an inter-subject 
variation in some features of the texture pattern of the intra-muscular dynamics. There-
fore, another advantage of the stochastic model is that it provides a new spatial feature 
pattern for each generation, which might be preferred from a simulation point of view.

Taken together, the 3D cycleGAN model with stochastic noise injection performed 
the best and is best suited for the purpose of translating authentic experimental data 
features.

Assessment of the learned mapping of the generator

The difference maps showed a general high similarity between the images, but with a 
mesh of circular regions scattered in the images (1–2 mm diameter). Such texture pat-
tern could be caused by the skeletal muscle fascia structures. In particular, the primary 
perimysium surrounds some hundreds of muscle fibres encapsulated by a layer of con-
nective tissue. The observed circular regions in this work are on the same order of size 
as the typical perimysium structures [46]. One function of the perimysium is believed to 
facilitate deformation of the muscle during contraction, due to presence of hyaluronic 
acid between perimysia fascicles. Neither perimysium, nor other fascial structures are 
present in the simulated data and therefore these observations in the translated data 
indicate that the difference mapping may provide an important tool to study the intra-
muscular contractions and its complex interactions.

Potential applications

The model and approach used in this work could be used for several purposes.
First, the model allows realistic modelling of the intra-muscular contraction patterns 

which could be used in method development and evaluation. The recent advent of imag-
ing techniques for motor unit identification and quantification [3–9] utilize dynamics of 
intra-muscular contraction patterns, and the model may assist in further development of 
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imaging methods. For example, the simulation model could be used for data augmenta-
tion and training of deep learning models for MU identification such as in Ali et al. [47] 
when large amounts of training data are required. The initial simplified simulation model 
provides the labelling of the data and the domain transfer adapts the data to authentic 
experimental spatio-temporal features.

Second, the proposed assessment of the learned mapping of the generator (similarity 
maps) may provide a way to get insights into the characteristic tissue dynamical features 
of other muscles or conditions. This is important because the dynamics of the interac-
tion of, e.g., the fascia and muscle fibres in vivo is poorly understood [11, 48]. For exam-
ple, as different muscles have different compositions and architecture [46], retraining the 
translation model on simulated data (domain A) and corresponding experimental data 
from a specific muscle (domain B) may allow muscle-specific modelling and assessment 
of its detailed tissue dynamic texture. Moreover, skeletal muscle tissues may be affected 
by different diseases and ageing (sarcopenia) [13]. Therefore, the influence of, e.g., age on 
the mechanical dynamics pattern could potentially be studied by retraining the model to 
translate between data of young (domain A) and old (domain B) subjects. Applying the 
similarity map concept might then be used to study the influence of age between data of 
the young subjects, and their corresponding old-translated versions.

Limitations

In the present work, we applied cycleGAN models. There are many other models that 
may have provided equal or better performance, such as starGAN [49] or DiscoGAN 
[50]. In addition, influence of hyperparameters, such as the number of frames of the 
3D cycleGAN model may have influenced the performance. However, in this work we 
were primarily interested in proof-of-concept. Moreover, the choice of 32 frames for 
the 3D models corresponded to approx 64 ms, and was limited by memory issues, but 
experiments with downsampling the ultrasound image sequence by a factor 2 to 256 Hz 
(providing an effective receptive field of 128 ms) did not change performance (data not 
shown). Therefore, we believe that this was not a critical parameter.

A mixed-precision modification to the model was used to combine 16-bit and 32-bit 
computations. However, caution is advised when training is done in mixed precision to 
handle the memory resources properly.

To explore the learned mapping of the generator, we applied similarity maps. Other 
methods should also be assessed in future studies, e.g., the concept of exploring the 
trained generator latent space [26].

The choice of simulation model may have influenced the results. As previously pointed 
out, there are many different simulation models including a variety of parameters. For 
example, MU territories were here modelled as circular territories, but in reality they can 
have different shapes [6]. In order to understand how critical the simulation model was, we 
also trained the 3D cycleGAN model using a simplified version of the simulation model: 
territories were reduced to single spatial point, and twitch signal was reduced to a single 
Dirac pulse (i.e. the firing pattern). In order for the gradient descent approach to work in the 
training of the models, the spatio-temporal derivatives need to be smooth, and therefore we 
first added white noise ( N (0, 0.1) ) to the sequence and then applied a spatio-temporal (3D) 
convolution (low-pass filter). The translated data of the resulting model presented similar 
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features as the models trained on the full simulation model (results not shown). This indi-
cated that the precise choice of simulation model was not critical for our results.

Conclusion
In this work, we evaluated different cycleGAN models to generate authentic image 
sequences of skeletal intra-muscular contraction dynamics. Prior to translation, there were 
large differences in spatio-temporal features of simulated and experimental domain data. 
Results showed that a 3D (2D+time) cycleGAN model but not a 2D cycleGAN model could 
be used to generate authentic tissue velocity image sequences. Taken together, the model 
could learn a mapping between in silico and in vivo ultrasound image sequences where the 
underlying content was preserved while the domain-specific features of the in  vivo data 
were transferred to the in silico data. To the best of our knowledge, this is the first study 
on domain–domain translation of ultrasound image sequence data (video), where spatio-
temporal consistency needs to be retained when adapting to the new domain.

Methods
3D CycleGAN architecture

In this work, we propose to achieve the domain–domain translation using the concept 
of the cycleGAN model [37] extended to 3D, inspired by previous applications on medi-
cal image volumetric data [35, 44] and natural videos [33, 34]. The cycleGAN model [37] 
exploits an architecture with two GANs working in the opposite direction, i.e. transforma-
tion A → B by generator GB and transformation B → A by generator GA . The cycleGAN 
includes a cycle-consistency loss that improves the overall quality of the generated domain 
data. Unlike pix2pix GAN [38] where paired data are required for training, in cycleGAN, 
the examples from the two domains do not have to be paired. This implies that we can 
provide a training set consisting of {ai}Ni=1(ai ∈ A) and {bj}Mj=1

(

bj ∈ B
)

 , with no one-to-
one mapping required between the examples of the two domains. This is a requirement 
by our application where the in silico and in vivo domain data are un-paired. The genera-
tors GB : A → B and GA : B → A are functions used to create a mapping between the two 
domains. The two adversarial discriminators DA and DB try to determine whether a given 
example is from real data or generated data.

In cycleGAN there are two objective functions, one for each  domain and they are typi-
cally expressed as:

where a ∼ p data (A) and b ∼ p data (B) denote the data distributions, respectively.
The discriminators will try to maximize these objectives by correctly classifying real 

and fake (generated) data while the generators try to minimize these objectives by gener-
ating data that the discriminator incorrectly classifies as real.

(1)
LGANA = Ea∼pdata(A)[log(DA(a))]

+ Eb∼pdata(B)[log(1− DA(GA(b))],

(2)
LGANB = Eb∼pdata(B)[log (DB(b))]

+ Ea∼pdata(A)[log (1− DB(GB(a))] ,
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The adversarial losses can cause the generated data to match the data distribution of 
the target domain. It will, however, not constrain the optimization to produce a desired 
mapping between the domains where the contents of the image are preserved while only 
changing the domain-related part. CycleGAN attempts to produce the desired mapping 
by constraining the mapping functions to be cycle-consistent, i.e. real data from domain 
A should be able to be translated to domain B and then translated back to domain A 
with a minimal difference between the original data in domain A and the cycled data.

The corresponding losses L cycle A
 and L cycle B

 can be expressed as:

With hyperparameters �A and �B , the total loss becomes:

Implementation

The implementation was based on the official implementation of CycleGAN2. The 
hyperparameters were set to default values unless stated otherwise. All convolutional 
layers, padding layers and instance normalization layers were replaced by their 3D coun-
terparts. We used the ResNet6 block architecture for the generators and PatchGAN 
[38] for the discriminators. The GAN objective function was set to least-square GAN 
loss (LSGAN) that has proved to overcome vanishing gradients and loss saturation [51]. 
Fig. 4 illustrates the generator architecture of the cycleGAN and highlights some of the 
modifications that were implemented.

Modification 1—stochastic noise injection

The cycleGAN generators are deterministic and will have to fabricate experimental spa-
tial features using pseudorandom number generators that are conditioned on the input. 
However, as described by [45], this consumes network capacity and hiding the intrinsic 
periodicity of the generated signal is difficult. Here, this problem was addressed as in the 
StyleGAN model [45] where per-pixel noise is added after every convolution. The added 
noise only affects stochastic features, leaving the overall composition and content intact 
[45].

In our implementation, the noise was added to the ResNet blocks and was broadcasted 
across the temporal dimension in an attempt to maintain the spatial features across all 
frames of the sequence (Fig. 4B). This modification makes the generator stochastic and it 
was only applied in the GB generator.

Modification 2—stride in the temporal dimension

The 3D cycleGAN has a stride parameter which works in three dimensions—compared 
to a standard two-dimensional stride operator for 2D CNNs. Choosing any value higher 

(3)
L cycle A

=

∥

∥A cycle − A real

∥

∥

1
= Ea∼p data (A)�GA(GB(a))− a�1,

L cycle B
=

∥

∥B cycle − B real

∥

∥

1
= Eb∼p data (B)

∥

∥GB(GA(b))− b
∥

∥

1
.

(4)L total = LGANA + LGANB + �AL cycle A
+ �BL cycle B

.

2 https:// github. com/ junya nz/ pytor ch- Cycle GAN- and- pix2p ix.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Page 13 of 19Ali et al. BioMedical Engineering OnLine           (2022) 21:46  

than 1 at any layer will effectively down-sample the input to the layer. Hence, in the 3rd 
dimension of the 3D cycleGAN, which represents the temporal aspect of our data, we 
empirically chose a stride of 1 (default value is 2). This was implemented to ensure a 
maximal receptive field and temporal information of the muscle contractions.

Modification 3—mixed precision format

The cycleGAN model is computationally and memory demanding. To reduce these 
issues, the number of features in the generator was halved similar to what [44] did. The 
models were also modified to run in mixed precision where most operations including 
convolutions operate on 16-bit floats instead of 32-bit floats which is significantly faster 
on modern GPUs and also reduces the memory consumption. Some layers like normali-
zation layers require more precision and continue to operate on 32-bit floating points. 
Proper training with mixed precision achieves the same accuracy as single precision 
training [52].

Modification 4—regularization of the generator

CycleGAN lacks supervision with a direct reconstruction error between GB(A) and B or 
GA(B) and A, which brings some uncertainty and difficulties towards the desired out-
puts. When data are transformed from one domain to the other, it can become distorted 
[53]. The distortion can then be recovered when the data are transformed back to the 
original domain. If the distortion does not impact the synthesized data, the undesired 
behaviour will not be penalized by the discriminator and the bijective transformation 
that causes the distortion will not be noticed in the cycle-consistency loss causing the 
distortion to remain. This problem also occurred when transforming image sequences 
between the simulated and experimental domains as the generators invert the activa-
tion of the MUs. For example, when transforming a contracting MU from the simulated 
domain to the experimental domain it becomes relaxed and then, when transforming 
it back to the simulated domain, it becomes contracted again. Ideally the discriminator 
should be able to notice this behaviour since motor units spend more time in relaxed 
state than in contracted state but the discriminators might not have enough frames to 

Fig. 4 A Illustration of the cycleGAN generator architecture GB , including two of the modifications made to 
the original model of cycleGAN [35]. B Illustration of the modification 1 made to the ResNet block in order to 
make the generator stochastic. Solid lines show the parts where modifications were made. The approach is 
similar to the StyleGAN model [45]
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detect this pattern. This problem was solved by regularizing the generators with the 
identity mapping [54]:

Training parameters

Training was performed on two RTX 2080 Ti GPUs. With a batch size of 2, the train-
ing took around 24 hours. The model was allowed to train for 80 epochs with a con-
stant learning rate of 0.0002. The optimal performance was received after 60 epochs. The 
training dataset contained 100 examples for each domain with each example consist-
ing of 1024 frames (2 seconds). During training, these image sequences were split into 
32 image sequences of 32 frames each. During inference, however, we can process as 
many images as fits into memory since the generators are 3 dimensional and fully convo-
lutional. Image sequences were randomly selected during training and vertical flipping 
was applied as data augmentation.

The number of parameters in the different included models are described in detail in 
Table 2 of the Appendix. The number of parameters were similar in all proposed modifi-
cations of the 3D cycleGAN model.

Evaluation of translation performance

Several models for translation were compared. First, three models with various number 
of frames: 2D Cycle GAN (1 frame), recycle GAN (3 frames) and 3D Cycle GAN (32 
frames). Note that 1 frame corresponds to approximately 2 ms, and 32 frames corre-
spond to 64 ms, which should be enough to capture the contraction phase of the content 
signals [3–5]. Next, different modifications to the 3D CycleGAN model were compared: 
Original 3D CycleGAN, modification to stride 1 in 3rd dimension of the convolutions, 
and noise injection. Features of the translated data were compared with those of experi-
mental data to determine the performance. All sequences (N=64) of the translated data 
were cross-compared with all sequences (N=64) of another domain and the mean and 
standard deviation of the performance metrics were computed. Three categories of met-
rics were compared: 1) spatial features, 2) temporal features, and 3) translated content 
consistency. Note: In this work, we consider image sequences of skeletal muscle contrac-
tions at a constant force. During such contractions, the central nervous system main-
tains force by repeated electrical depolarizations of the muscle fibres at a typical rate of 
8-20Hz, resulting in an oscillating mechanical motion (consecutive contraction-relaxa-
tions) on a micrometre-level [5] (see Fig. 5B and 2A, D, G).

Spatial features were assessed using variance maps of the image sequences (Figure 5C, 
E). The variance maps were log-transformed to suppress potential high amplitude peaks 
of MU activations while retaining the spatial texture. The spatial features of translated 
sequences and experimental sequences were compared using several metrics. First, the 
distributions were compared using Histogram correlation and Bhattacharyya distance 
[55]. In addition, the spatial frequency content was compared using the structural simi-
larity index measure (SSIM) [56] of a variance map’s corresponding K-space (2D Fourier 
transformed space, kx > 0 and ky > 0 ). The SSIM computes a similarity metric based on 

(5)
L idtA = Ea∼p data (A)�GA(a)− a�1,

L idtB = Eb∼p data (B)�GB(b)− b�2.
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luminescence, contrast and structure features and ranges from 0 to 1 (high value indi-
cates high similarity).

Temporal features were compared using correlation between the log-transformed 
power spectral densities (Corr Psd) of translated and experimental sequences. The Psd 
of a sequence was computed as the average of the Psds of the time signals of all the pixel 
positions.

Translation content consistency was assessed using cross-correlation between the 
paired time signals of an input sequence (in silico) and its corresponding translated 
sequence, from each pixel position. The maximal correlation and corresponding lag was 
computed. For each compared combination of input–output sequences, the mean and 
standard deviation of the correlations and lags were computed.

Assessment of the learned mapping of the generator

In order to assess the mapping that the generator GB had learned, we computed differ-
ence maps between the paired input (simulated) and output (translated) domains. The 
difference maps were calculated for each frame and then averaged over all frames of a 
sequence (Fig. 3B).

Datasets
The image sequences used in this work represent tissue velocity image sequences (TVI) 
from a cross-sectional plane of skeletal muscle tissue (Fig.  5A) contracting in an iso-
metric mode (constant force, stable pool of active MUs). Thus, they are not grayscale 
B-mode ultrasound images representing structures and anatomy, but rather provide 
information on the subtle mechanical dynamics during contraction. Assuming that the 
fibres of the muscle are aligned approximately parallel, a cross-sectional plane will pro-
vide a representation of all MUs within that field of view. [5]. Domain A and B datasets 

Fig. 5 Examples of image sequences of skeletal intra-muscular contraction patterns from a cross-sectional 
image plane A of the biceps brachii muscle at a constant low force level. B Represents a simulated (in silico, 
domain A) image sequence, and in C its corresponding variance map (Var map), computed as the variance 
of the time signals at each pixel in the image-sequence. D Represents an experimental (in vivo, domain 
B) image sequence, and E its corresponding variation map. In both sequences, the oscillating behaviour 
of different spatial regions can be seen (putative contractions of motor units). The experimental images 
presented different spatial features as compared to the simulated ones. The time between consecutive 
frames is here 2 ms and images show colour-coded tissue velocity
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correspond to simulated (in silico) data and experimental (in vivo) data, respectively. All 
image sequences from both the experimental and simulated domains have the dimen-
sions of 128×128×1024 (corresponding to a cross–sectional area of the muscle of 40× 40 
mm2 and 2 seconds). Prior to training we standardized the datasets to N (0, 1).

Simulation dataset—domain A

In silico data of a skeletal muscle contraction at low contraction level (1-5% of maximal 
voluntary contraction level, MVC), were simulated using a previously described model 
in a cross-sectional image plane of a muscle [29]. The model simulates a TVI sequence 
of a contracting muscle at a constant force level based on superposition of mechanical 
twitches from included MUs. The simulation parameters were set to mimic the low MVC 
isometric contractions of the experimental data. The number of active MUs were 4-10 
(uniform distribution), the positions of MUs were randomly distributed (uniform distri-
bution in whole cross–section), and firing rate (FR) was between 8 and 13Hz (uniform 
distribution). The inter-pulse-interval was N (1/FR, 0.2× 1/FR) , 10% of a given MU’s 
firings were synchronized with firings of other MUs, and MU territory was assumed 
to be circular with diameters between 2.5 to 10mm (uniform distribution). It should be 
stressed that this simulation model only generates information on the contraction of the 
MU’s muscle fibres, and no interaction with other tissues are included. 128 sequences 
for training and 64 sequences for testing were generated using the simulation model.

Experimental dataset—domain B

The experimental domain data, consisting of 64 image sequences, were acquired in a 
previous study [5]. Ultrasound image sequences were recorded from nine healthy sub-
jects (27-45 years old, four men and five women) at weak isometric force level lasting 
2 seconds. High frame rate (2kHz) plane wave ultrasound imaging was carried out in 
a cross-sectional image plane at 40 mm depth of the biceps brachi using a SonixTouch 
system (Ultrasonix Medical Corporation, Richmond, CA), L14-5 probe and DAQ mod-
ule. 128-channel radiofrequency-image sequences were reconstructed using beamform-
ing. TVI sequences were subsequently computed using a 2-D autocorrelation approach 
[57]. All processing details can be found in Rohlén et  al. [5]. The temporal signals for 
each pixel of a TVI sequence was then passed through a 4th-order Butterworth band-
pass filter at 5 to 50Hz. All images of a sequence were then passed through a 2D median 
filter with a kernel size of 1x1mm. Finally, to match the dimension of the simulated data, 
the filtered TVI sequence was down-sampled using bicubic spline interpolation to the 
dimensions 128 px × 128 px × 1024 samples and a sample rate of 512Hz. From a total of 
64 examples of experimental data, 56 were randomly selected for training purpose and 
the remaining 8 were used for testing purpose. The subjects gave written informed con-
sent, and the project conformed to the Declaration of Helsinki and was approved by the 
Swedish Ethical Review Authority (dnr 2019-01843).

Appendix
Table 2 shows the number of parameters for each model.
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