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Introduction
Colorectal cancer (CRC) represents one of the most prevalent malignant tumors world-
wide. Although several therapeutic strategies toward colorectal cancer have been widely 
reported during the last decade, its poor prognosis after lymphatic metastasis or dis-
tant organs remains the principal cause of high mortality and low overall 5-year survival 
rate [1, 2]. Except for surgery, first-line chemotherapeutic drugs for CRC, such as 5-fluo-
rouracil, irinotecan, and oxaliplatin, are the most used drugs for routine treatments or 
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Background:  CPT-11 (irinotecan) is one of the most efficient agents used for colorec-
tal cancer chemotherapy. However, as for many other chemotherapeutic drugs, how to 
minimize the side effects of CPT-11 still needs to be thoroughly described.

Objectives:  This study aimed to develop the CPT-11-loaded DSPE-PEG 2000 targeting 
EGFR liposomal delivery system and characterize its targeting specificity and therapeu-
tic effect on colorectal cancer (CRC) cells in vitro and in vivo.

Results:  The synthesized liposome exhibited spherical shapes (84.6 ± 1.2 nm to 
150.4 nm ± 0.8 nm of estimated average sizes), good stability, sustained release, 
and enough drug loading (55.19%). For in vitro experiments, SW620 cells treated 
with CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome showed lower survival 
extended level of intracellular ROS production. In addition, it generated an enhanced 
apoptotic cell rate by upregulating the protein expression of both cleaved-caspase-3 
and cleaved-caspase-9 compared with those of SW620 cells treated with free CPT-11. 
Importantly, the xenograft model showed that both the non-target and EGFR-targeted 
liposomes significantly inhibited tumor growth compared to free CPT-11.

Conclusions:  Compared with the non-target CPT-11-loaded DSPE-PEG2000 liposome, 
CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome treatment showed much 
better antitumor activity in vitro in vivo. Thus, our findings provide new assets and 
expectations for CRC targeting therapy.
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following surgery [3]. Long-term and systematic application of chemotherapeutic drugs 
generates dose-dependent toxicity on untargeted cells, tissues, and organs. Oral admin-
istration is generally recommended, even though it results in a short circulation half-life 
and severe side effects, which significantly reduce the efficiency of many first-line anti-
cancer reagents and lead to chemotherapy failures [4].

Increasing numbers of reports have previously highlighted effective and promising 
features for drugs delivery through nano-carriers like liposomes and nanoparticles [5, 6]. 
Liposomes are the lipid bilayers composed of phospholipids and cholesterol similar to 
the cell membrane with high biocompatibility [7]. They are easily stored in tumor tissues 
and can be easily targeted by specific antibodies [8]. Recent studies have demonstrated 
that liposomes loaded with antitumor reagents like doxorubicin and docetaxel promoted 
tumor uptake and lowered systemic toxicity [9].

Epidermal growth factor receptor (EGFR) is among the most prominent targets in 
colorectal cancers (CRCs) treatments. The EGFR-targeted nanoparticles delivery effec-
tively enhanced the inhibition of colorectal cancer growth in a mouse model, suggesting 
EGFR as a promising target for liposomal drug delivery systems [10, 11]. Interestingly, 
the concentration of CPT-11, mainly used for CRC treatment, was reported to be highly 
enhanced in the glioblastoma xenograft tumors cells treated with CPT-11 loaded lipo-
some [12]. In addition, SN-38 proteins, the active metabolites of irinotecan, were less 
expressed in colon and liver cancer cells [13, 14], while SN-38-loaded targeted liposome 
induced a much lower IC50, continuous release of SN38 than the non-liposomal SN38 
[15]. Unfortunately, SN38 exerts its anticancer effects by blocking the DNA synthesis 
[16]; it also produces severe side effects like vomiting, myelosuppression, nausea, and 
diarrhea [17]. Nowadays, the utilization of nanoparticles for drugs delivery to various 
tumor tissues represents a promising method for cancer chemotherapy. Yet, to our 
knowledge, this is the first report on EGFR-targeted liposomes as CPT-11 delivery sys-
tem for cancer therapy.

Our study aimed to prepare EGFR-targeted DSPE-PEG2000 liposomes as CPT-11 
delivery systems for colorectal cancer therapy. It evaluated the newly developed drug 
delivery system’s systemic toxicity, drug release, and antitumor efficacy. The deliv-
ery of CPT-11-loaded DSPE-PEG 2000 targeting EGFR liposome to colon cancer cells 
enhanced the antitumor activity of CPT-11 in SW620 cells in vitro. Thus, EGFR-targeted 
DSPE-PEG2000 liposomes as CPT-11 delivery systems could be a promising road for 
CRC treatment.

Results
Characterization of CPT‑11‑loaded DSPE‑PEG2000 liposome

The CPT-11-loaded DSPE-PEG2000 liposome (Lipo-CPT-11) was synthesized by a 
self-assembly method as described in the previous studies [18]. Subsequently, the 
monoclonal antibody of EGFR-targeted was coupled with CPT-11-loaded DSPE-
PEG2000 liposome to form the complex of CPT-11-loaded DSPE-PEG2000 targeting 
EGFR liposome (EGFR-Lipo-CPT-11). The EGFR-targeted liposome exhibited spheri-
cal or irregular shapes through TEM (Fig. 1A). Before preparing the CPT-11-loaded 
liposome, the average size of particle commercialized DSPE-PEG2000-NH2 was about 
75 nm in diameter. After assembly with CPT-11, the particle sizes of CPT-11-loaded 
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DSPE-PEG2000 liposomes displayed an increased average size of 84.6 ± 1.2  nm in 
diameter (Fig. 1B), indicating that the liposomal nanocarriers successfully loaded the 
irinotecan to form CPT-11-loaded DSPE-PEG 2000. After that, the EGFR antibody 
was coupled to the PBS solution, and the characterizations of the CPT-11-loaded 
DSPE-PEG 2000 targeting EGFR liposome were further evaluated. Finally, the aver-
age sizes of EGFR-coated CPT-11-loaded DSPE-PEG2000 liposomes were about 
150.4 nm ± 0.8 nm in diameter (Fig. 1C), suggesting the successful coating of EGFR.

Physical stability, cumulative release, and drug loading of CPT‑11‑loaded DSPE‑PEG2000 

targeting EGFR liposome in vitro

To evaluate the physical stability of EGFR-Lipo-CPT-11, we investigated both the 
liposome expansion and the drug release rate at the 1st and 14th days after assem-
bly. The results in Fig.  2A showed how the particle size on the 1st day was almost 

Fig. 1  The morphology and particle size of CPT-11-loaded DSPE-PEG2000 liposome. A The morphology 
of CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome; B CPT-11-loaded DSPE-PEG2000 liposome; C 
the particle size of CPT-11-loaded DSPE-PEG2000 liposome targeting EGFR. CPT-11-Lipo: CPT-11-loaded 
DSPE-PEG2000 liposome; EGFR-Lipo-CPT-11: CPT-11-loaded DSPE-PEG2000 liposome coated with 
anti-epidermal growth factor receptor (EGFR) antibody

Fig. 2  The physical stability and cumulative release profile of CPT-11-loaded DSPE-PEG2000 liposome in vitro. 
A The physical strength was measured by the particle sizes of CPT-11-loaded DSPE-PEG2000 liposome at the 
1st day and 14th day after preparation; B the cumulative release profile of the prepared liposome
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consistent with that of the 14th day, indicating that EGFR-Lipo-CPT-11 was very sta-
ble. In addition, to explore the efficiency of the EGFR-Lipo-CPT-11 drug delivery sys-
tem, we prepared three groups, including the free irinotecan as control, irinotecan 
in standard liposomes, and irinotecan in PEG-coated liposomes. In comparison with 
the control (passive diffusion of free CPT-11), the in vitro release of CPT-11-loaded 
DSPE-PEG2000 targeting EGFR liposome evaluated in PBS (pH 7.4) solution at 37 °C 
exhibited a sustained drug release, with only about 35% of the irinotecan released at 
the first 12th h. The free CPT-11 was released at the fastest rate, while PEG liposomes 
released the CPT-11 at a slower rate than standard liposomes (Fig. 2B). The concen-
tration of irinotecan in the liposomal nanoparticles was 0.4213  mg/mL. The drug 
loading rate was (0.4213 * 2.62/2) * 100 = 55.19% and the release rate of the liposomal 
nanoparticles was detected at 6  h and 12  h after dialysis. The concentration of iri-
notecan was detected at 24 h, 36 h, 48 h, 72 h, and the release rate gradually reached 
more than 95% after 72 h. Our results suggested that using the PEG-loaded liposomes 
might reduce the release rate of CPT-11 and improve the drug stability.

In vitro anticancer effects of EGFR‑Lipo‑CPT‑11

To demonstrate that the CPT11-loaded liposome targets EGFR overexpressed tumor 
cells, we performed western blotting analysis on four different CRC cell lines, includ-
ing CW-2, LoVo, SW620 and CT116 cells. SW620 and CW-2 cells, which expressed 
EGFR at the highest and lowest levels, respectively, were used to test the targeting 
potential of EGFR-Lipo-CPT-11 in EGFR-expressing cancer cells (Fig.  3A and B). 
When EGFR-Lipo-CPT-11 was used instead of Lipo-CPT-11, the viability of SW620 
cell lines displayed the lowest rate; thus, the cytotoxicity of EGFR-Lipo-CPT-11 
against SW620 cells was significantly more significant than Lipo-CPT-11 at 10 g/mL. 

Fig. 3  In vitro anticancer effects. SW620 and CW-2 cell lines expressed the highest and lowest levels of EGFR 
(A and B). Under treatments with free CPT-11, liposomal CPT-11 (Lipo-CPT-11) or EGFR-Lipo-CPT-11 for 24 h, 
SW620 cells [highest EGFR-expressing cell lines] showed a significant reduction of cell viability while the 
CW-2 cell lines (lowest EGFR-expressing cell lines) were less affected (C and D)



Page 5 of 16Liu et al. BioMedical Engineering OnLine           (2022) 21:53 	

At the same time, the vitality of CW-2 cells that barely expressed EGFR was unaf-
fected by the EGFR-Lipo-CPT-11 and Lipo-CPT-11 treatments (Fig. 3C and D). These 
findings suggested that EGFR-Lipo-CPT-11 can specifically target EGFR-expressing 
cancer cells and strongly affect the drug cytotoxicity.

In vitro cytotoxicity of free irinotecan and the antitumor effects of CPT‑11‑loaded 

DSPE‑PEG2000 targeting EGFR liposome

By constructing the CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome formu-
lation, we hoped to improve the therapeutic relevance and effectiveness of CPT-11. 
We created a CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome using a DSPE-
PEG2000 conjugate with CPT-11 loaded into its hydrophilic core and anti-EGFR, and 
its targeting capability is depicted in Additional file 1: Fig. S1.

HCT116, SW620, CW-2 and LoVo colon cancer cells were cultured in 96-well plates 
at a density of 1 × 105 cells/well for 24  h using the normal primary CCD-18Co cell 
lines as normal control. After adding 10 μM of CPT-11 to the medium and incuba-
tion for 72 h, we found that cytotoxic effects in CRC were significantly higher than in 
CCD-18Co cells normal control. At the same time, there were no significant differ-
ences among all CRC cells (Fig. 4A). The above data suggested that CPT-11 induced 
specific cytotoxicity CRC. SW620 cell lines were then selected to measure the cyto-
toxicity of CPT-11. At first, different concentrations of CPT-11, including 1, 5, 10, 
50 and 100  μg/mL were used to treat SW620 cells and measure cell viability. The 
free CPT-11 induced dose-dependent toxicity on SW620 cells, and the IC50 of CPT-
11 was 55.45 g/mL (Fig. 4B and C). Then, we evaluated the induced cell viability of 
SW620 high EGFR-expressing cancer cell lines under three treatments, including 
free CPT-11, CPT-11-loaded liposome, and CPT-11-loaded DSPE-PEG2000 target-
ing EGFR liposome using PBS treatment cells as a control. Compared with the con-
trol, cells treated with EGFR-Lipo-CPT-11 exhibited the lowest survival rate than the 
Lipo-CPT-11 and free CPT-11, respectively (Fig.  4D). These results suggested that 
the in vitro antitumor effects of the prepared EGFR-Lipo-CPT-11 were significantly 
enhanced compared with both free CPT-11 and Lipo-CPT-1.

CPT‑11‑loaded DSPE‑PEG 2000 targeting EGFR liposome enhanced the intracellular ROS 

formation

High ROS levels can inhibit the drug resistance of cancer cells and promote cancer 
cell proliferation and metastasis in response to various chemotherapy. Here, intra-
cellular ROS was measured in human colon cancer cells SW620 treated with CPT-
11-loaded-liposome or free CPT-11 or CPT-11-loaded EGFR-targeted DSPE-PEG2000 
liposome (EGFR-Lipo-CPT-11). The immunofluorescence assay used to visualize 
the intracellular ROS accumulation revealed that the intracellular ROS level gener-
ated in cells under EGFR-Lipo-CPT-11 treatment was about 1.5-fold higher than that 
of the free CPT-11, Lipo-CPT-11, when compared with the control (Fig. 5A and B). 
The highest mean fluorescence intensity (MFI) displayed by the EGFR-Lipo-CPT-11 
group precisely confirmed that EGFR-Lipo-CPT-11 treatment strongly enhanced the 
ROS production SW620 colon cancer cell lines, besides similar results with the cell 
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viability test (Fig. 5C). Besides, the release profile of CPT-11 from Lipo-CPT-11 and 
EGFR-Lipo-CPT-11 was evaluated in PBS containing 1% Triton X-100, and the OD 
results were similar with immunofluorescence data (Fig. 5D). These results confirmed 
that the CPT-11-loaded EGFR-targeted DSPE-PEG2000 liposome improved the pro-
duction and accumulation of ROS in SW620 colon cancer cell lines.

EGFR‑Lipo‑IRI treatment stimulated the caspase‑3‑induced apoptosis in SW620 cells 

in vitro

Chemotherapeutic drug CPT-11 is reputed as a pro-apoptotic agent; it was found 
to eliminate macrophage in CPT-11-treated mice by provoking apoptosis [19]. Flow 
cytometry through Annexin V/PI staining was applied to evaluate the apoptosis rate 
of SW620 cells treated with CPT-11-Lipo or EGFR-Lipo-CPT-11. After 24  h, and we 
noted 20.05%, 34.64%, and 42.45% of apoptosis rates in SW620 cells treated with free 
CPT-11, CPT-11-Lipo, EGFR-Lipo-CPT-11, respectively. These results confirmed 
that EGFR-Lipo-CPT-11 induced the strongest apoptosis rate than the CPT-11-Lipo 

Fig. 4  In vitro cytotoxicity of free irinotecan and the antitumor activity of CPT-11-loaded DSPE-PEG2000 targeting 
EGFR liposome. A Cell viability of HCT116, SW620, CW-2 and LoVo colon cancer cells using CCD18Co normal primary 
cells to control CRC toxicity. B In vitro cytotoxicity of free CPT-11 at the concentration of 1, 5, 10, 50 and 100 μg/mL; 
C the antitumor activity of CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome in vitro; D survival rate of cancer 
cells treated with free CPT-11, CPT-11-Lipo and EGFR-Lipo-CPT-11, compared with the normal primary cells (control), 
generated the lowest (**p < 0.01, ***p < 0.001)



Page 7 of 16Liu et al. BioMedical Engineering OnLine           (2022) 21:53 	

group (Fig.  6A). Moreover, previous studies have reported the activation of caspase-3 
or its related enzymes cleaved the EGFR during apoptosis [20]. Thus, the protein levels 
of both cleaved-caspase-3 and cleaved-caspase-9 were investigated for different treat-
ment groups through western blot analysis. The results indicated that the protein lev-
els of cleaved-caspase-3 and cleaved-caspase-9 were considerably upregulated in cells 

Fig. 5  ROS formation induced by CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome. A Fluorescent 
intensity of CPT-11, CPT-11-Lipo, EGFR-Lipo-CPT-11 and control cells. Original magnification 100×. scale 
bar: 100 µm. B The scale bar representation of the fluorescent intensity. C Mean fluorescent intensity (MFI) 
of CPT-11, CPT-11-Lipo, EGFR-Lipo-CPT-11 and control cells; D intracellular ROS level of CPT-11, CPT-11-Lipo, 
EGFR-Lipo-CPT-11 and control cells (**p < 0.01, ***p < 0.001)

Fig. 6  The apoptosis effect of CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome in vitro. A Flow 
cytometry was performed to assess the apoptosis effects of CPT-11, CPT-11-Lipo, EGFR-Lipo-CPT-11, and 
control; B–D Western blot results showing the protein levels of cleaved-caspase-3 and cleaved-caspase-9 
from four different groups mentioned above and their gray value (**p < 0.01, ***p < 0.001)
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treated with EGFR-Lipo-CPT-11 compared with that of CPT-11-Lipo. The above results 
suggested that both Lipo-CPT-11 and EGFR-Lipo-CPT-11 induced massive apoptosis 
activity by enhancing cleavage of the critical caspase-3 protein in SW620 cells, although 
targeting EGFR generated a most pronounced effect (Fig. 6B).

EGFR‑Lipo‑CPT‑11 inhibited tumor growth in the SW620 xenograft model in vivo

CPT-11 has been approved as first-line therapy for various advanced stages (metastatic 
phase) of cancers like colon and gastric cancers. Previous studies have demonstrated that 
administration of CPT-11 strongly reduced the growth of glioma tumors by blocking 
angiogenesis, reducing the number of tumor vessels and the surface of hypoxic lesions, 
and significantly decreased expression of VEGF [21]. To further investigate the effect of 
combining EGFR-Lipo-CPT-11 treatment in colon cancer cells, mice were intravenously 
injected with PBS (Control), free CPT-11, or Lipo-CPT-11 or EGFR-Lipo-CPT-11. Then, 
the tumor growth inhibition was assessed in SW620 cells xenografts, tumor model. 
From the tumor growth curve, the free CPT-11 treatment induced little inhibitory effect 
on the tumor growth. On the other hand, after loading, the antitumor effects of CPT-
11-loaded DSPE-PEG2000 targeting EGFR liposome became significantly higher than 
that of CPT-11-loaded liposome (Fig. 7A and B). These results indicate that the CPT-
11-loaded DSPE-PEG2000 targeting EGFR liposome enhanced the antitumor effects of 
CPT-11 through the direct target of EGFR on the cell surface membrane.

Discussion
Nowadays, irinotecan (CPT-11) is widely used as the main chemotherapeutic agent for 
gastrointestinal cancers like pancreatic ductal adenocarcinoma and colon cancer [22]. 
Also, metastatic colorectal cancer patients are generally treated by a combination of 
CPT-11 and fluorouracil or leucovorin [23] or administering a higher dose of CPT-11 

Fig. 7  In vivo tumor inhibition effects of CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome in the 
SW620 xenograft model. A The tumor volume of nudes treated with CPT-11, CPT-11-Lipo, EGFR-Lipo-CPT-11 
and control every 3 days for 24 days; B the tumor mass of nudes treated with four different treatment 
groups mentioned above (*p < 0.05, **p < 0.01). CPT-11, irinotecan; Lipo-CPT-11, CPT-11 loaded liposome; 
EGFR-Lipo-CPT-11; CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome
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to patients who developed an intolerance to fluorouracil [24]. However, the clinical use 
of CPT-11 is majorly limited by their severe side effects like neutropenia and diarrhea. 
Many researchers are motivated to find a better drug delivery system to reduce impor-
tant chemotherapies’ side effects. In this regard, nanocarriers like liposomes and poly-
meric nano-conjugates are the most recommended [25]. The liposome represents a 
natural lipid-based nanoparticle that is used to enhance the antitumor activity of low 
molecular weight drugs by extending its biological half-life and relieving its systemic 
toxicity [26]. However, the prepared liposomes should have a controlled size and sur-
face decorated with target-specific antibodies [27]. For example, the tyrosine-modified 
irinotecan-loaded liposomes targeting LAT1 and ATB0,+ showed good prospects for 
tumor therapy and industrial production [28]. Liposomes have been widely described 
as efficient drug delivery systems in many studies. The range of 40 to 100 nm of lipo-
some diameters was defined as suitable for the maximum drug infusion in both rodent 
and primate brains by convection-enhanced delivery CED [29]. The first combined agent 
nano-liposomal CPT-11, showed that stable encapsulation of CPT-11 in lipidic nano-
particles improved the CPT-11 diffusion and its anticancer activities in brain cancers. In 
this study, we used the self-assembly method to investigate the effect of CPT-11-loaded 
DSPE-PEG2000 targeting EGFR liposome on the SW620 colon cancer cells. This method 
offers simple and large-scale production, safe and stable prepared drug-loaded liposome 
DSPE-PEG2000, for drug safety by the use of lipid-based nanocarriers [30–32]. The trans-
mission electron microscopy (TEM) results showed that before and after loading, the 
average sizes of liposomal nanoparticles increased from 84.6 ± 1.2 nm to 150.4 nm ± 0.8, 
indicating that liposomal nanocarriers successfully loaded the irinotecan and EGFR 
(Fig.  1). This justified the stability and the successful assembly of the novel CPT-11 
delivery system, since phagocytosis can involve molecules larger 150  nm of diameter 
liposomes. Moreover, the average size of EGFR-Lipo-CPT-11 was unchanged during 
the whole observation period, demonstrating good physical stability of the EGFR-Lipo-
CPT-11. Interestingly, the in  vitro release rate of irinotecan from EGFR-Lipo-CPT-11 
displayed a rapid and sustained elimination of CPT-11, suggesting that the CPT-11-re-
lease in the cytoplasm could be strongly enhanced by liposome encapsulation method 
(Fig. 2). In addition, the cytotoxicity of EGFR-Lipo-CPT-11 and Lipo-CPT-11 were asso-
ciated with the expression levels of EGFR in CRC cells. EGFR-Lipo-CPT-11 induced 
weaker cell viability than the free CPT-11, suggesting that the PEG-loaded irinotecan are 
slowly absorbed by cells because of the undergoing drug-release process, while the free 
CPT-11 was rapidly transiting into the cells through passive diffusion. However, EGFR-
Lipo-CPT-11 exhibited the strongest effect in SW620 high EGFR-expressed cell lines, 
showing that the PEG-loaded CPT-11 specifically targets EGFR-expressing cancer cells 
(Fig. 3).

DSPE-PEG2000 curcumin-loaded liposome improves the antitumor activity of pan-
creatic adenocarcinoma cell lines AsPC-1 and BxPC-3. Mahmud et  al. suggested that 
DSPE-PEG2000 modified the surface of the liposome and prolonged circulation time 
and increased the accumulation of liposomes in tumor tissues [33]. As FDA approved 
the application of DSPE-PEG2000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
PEG2000) in the drug formulations [34] and knowing the importance of EGFR in the 
treatment of colorectal cancers (CRCs) [10, 11], we sought to evaluate the antitumor 
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effects of EGFR-Lipo-CPT-11 through cell proliferation, ROS formation, and cell apop-
tosis in vitro. As a result, the CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome 
greatly enhanced the antitumor effects of CPT-11-loaded liposome in CRC (Fig. 4). Also, 
the intracellular ROS induced by the prepared EGFR-Lipo-CPT-11 was significantly 
increased compared with that of free irinotecan (Fig. 5). Overall, these results showed 
that using EGFR-targeted DSPE-PEG2000 liposomes as CPT-11 delivery system con-
ferred lower cell viability rate and extended ROS production to CRCs. Therefore, the 
EGFR-target liposome delivery system could enhance the CPT-11 release in the cyto-
plasm and improve their antitumor activities [35, 36]. The flow cytometry assay, which 
detects early cell apoptosis, indicated the highest apoptotic effects in EGFR-Lipo-
CPT-11 groups. CPT-11 is known to function through caspase-3-mediated apoptosis 
[37, 38], and the protein expression of cleaved-caspase-3 and cleaved-caspase-9 were 
strongly elevated in cells treated with EGFR-Lipo-CPT-11 (Fig. 6). Thus, using EGFR-
targeted DSPE-PEG2000 liposomes as CPT-11 delivery system could improve the ther-
apeutic efficacy of CPT-11 by enhancing the caspase-mediated apoptosis pathway in 
tumor cells. Finally, the in vivo antitumor effect of EGFR-Lipo-CPT-11 was confirmed 
through the xenograft model. The inhibition tumor growth of the prepared CPT-11-
loaded liposome was better than that of free CPT-11 by the related tumor volume and 
weight (Fig. 7). The inhibition of the tumor growth and the reduction of its related vol-
ume highlighted the fact that the EGFR-target liposome delivery system optimized the 
pharmacodynamics and pharmacokinetics of the CPT-11 drugs in CRCs.

Conclusion
Overall, CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome prepared in this study 
represents an accurate carrier for irinotecan delivery and exhibits great clinical appli-
cation potential. The functional characterization of the CPT-11-loaded DSPE-PEG2000 
targeting EGFR liposome was successfully carried out. The typical spherical or irregu-
lar shape of prepared liposomes with good physical stability and enough drug loading 
ensured the therapy efficacy. Our results from both in  vitro and in  vivo experiments 
demonstrated that the prepared liposome produced better antitumor activity compared 
to free CPT-11, an extended period outflow of irinotecan took time from PEGylated 
liposomes and proposed encouraging expectations on the use of EGFR-targeted DSPE-
PEG2000 liposomes as CPT-11 delivery system for CRC targeting therapy.

Materials and methods
Materials

Human colon cancer cell line: SW620, CW-2, LoVo and HCT116 purchased from 
ATCC (90% DMEM + 10% FBS) 0.1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[methoxy(polyethyleneglycol)-2000(ammonium salt) (DSPE-PEG2000-NH2) were 
purchased from Ananti Polar Lipids, Inc. (Beijing, China). Cetuximab, a monoclo-
nal antibody anti-EGFR, was purchased from Shanghai TheraMabsBiotech (product 
number TM-Beva-00002). DMSO (D8371, Solarbio), dialysis bag (3.5KD, F132590, 
BBI), DMEM medium (Cat. No. 11965-126), fetal bovine serum (FBS) (product num-
ber 16000-044), trypsin and double antibodies were purchased from Gibco company. 
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MTT powder was purchased from Azerbaijan Latin (Cat. No. T100896-1g), irinotecan 
(Irinotecan, CPT-11), purchased from Solarbio (SI8480-20  mg), EDC purchased from 
Sigma (D8740-500 mg), NHS purchased from Sigma (D8740-500 mg) Balb/c nude mice 
were purchased from Weitong Lihua.

Main instruments: ordinary microscope (OLYMPUS company in Japan), small desk-
top refrigerated centrifuge (Technology University Zhongjia), cell incubator (American 
Thermoelectric), heating magnetic stirrer (C-MAG HS 10, IKA) CM-H2DCFDA were 
obtained from ThermoFisher.

Cell and cell culture

CCD-18Co primary colon cell lines and HCT116, SW620, CW-2 and LoVo colon cancer 
cells and were all purchased from American Type Culture Collection (ATCC, Rockville, 
MD, USA) and cultured in DMEM supplemented with 10% FBS (No-16000-044/Gibco, 
USA) in the humid chamber, maintaining 37 °C and 5% CO2. The concentrations of 1, 
5, 10, 50, and 100 of μg/mL CPT-11 (SI8480-20 mg; Solarbio) were, respectively, added 
into the cell’s medium for 48 h.

Animal experiments

In vivo experiments were performed using female BALB/c nude mice (4–6 weeks old) 
obtained from Shanghai SLAC laboratory animal Co., Ltd (Shanghai, China). The whole 
animal experiment was conducted following the Animal Care Guidelines of Rongchang 
District People’s Hospital of Chongqing. All the nudes were housed, fed with a regular 
diet, given acidified water without antibiotics. We injected subcutaneously with 100 μL 
SW620 cell suspensions (1 × 106 cells/mL) into the right flank after 1 week. SW620 were 
cultured, digested, centrifuged, collected, and diluted to 5 * 107/mL; then, the suspen-
sion was subcutaneously injected on the right limbs of 6-week-old mice morphologically 
similar (1 week in advance). When the tumor formation was observed in all mice after 
2  weeks of inoculation, the mice were randomly divided into four groups, with three 
mice in each group, including controlling groups treated with PBS (C), groups treated 
with CPT-11-loaded liposome (Lipo-CPT-11), free CPT-11 (CPT-11), and CPT-11-
loaded EGFR-targeted DSPE-PEG2000 liposome (EGFR-Lipo-CPT-11). When the tumor 
volume increased to about 100 mm3, the mice were injected intravenously once a week 
for 3 weeks. The tumor volumes were measured every 3–4 days; then, after 4 weeks of 
treatment, the mice were quickly dislocated and killed to collect and weigh the tumor. 
The tumor volume (V) was calculated as follows: V = (L × W2)/2, where L and W were 
the longest and the shortest diameter of the tumor.

Preparation of CPT‑11‑loaded DSPE‑PEG2000 targeting EGFR liposome

2  mg of the DSPE-PEG2000-NH2 purchased from Ananti Polar Lipids, Inc. (Bei-
jing, China) was dissolved into 1 mL of DMSO (D8371, Solarbio), to obtain 2 mg/mL 
solution A, and 2  mg of irinotecan (SI8480-20  mg, Solarbio) was dissolved into 1  mL 
of DMSO to form 2 mg/mL solution B. solutions A and B were well mixed according 
to the 1:1 mass ratio and slowly stirred at room temperature for 2 h in the dark. Then, 
2 mL of the mixed solution was transferred to a dialysis bag (3.5KD, F132590, BBI) to 
perform overnight dialysis in 18.2 MΩ deionized water and 2.62 mL of CPT-11-loaded 
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DSPE-PEG2000 liposome (Lipo-CPT-11). After the characterization of particle size 
and the stability of the loaded liposome nanoparticles, the coupling of EGFRs to CPT-
11-loaded DSPE-PEG2000 liposomes were prepared using EDC and NHS as coupling 
reagents. Briefly, 200  μL of CPT-11-loaded DSPE-PEG2000 liposome suspension in 
PBS buffer were added to a prepared solution of 100 μL of 0.25 M EDC and 100 μL of 
0.25 M NHS, and the mixture was incubated for 10 min at room temperature with a pH 
adjusted to 7.5 using 1 M NaOH. Then, 20 μL of antibody anti-EGFR (product number 
TM-Beva-00002) (100 mg/mL) was added to the mixture, and the solution was gently 
stirred for 8 h at 4 °C. Finally, EGFR-coated CPT-11-loaded DSPE-PEG2000 liposomes 
(EGFR-Lipo-CPT-11) were separated from unbound antibody anti-EGFR using a saline 
pre-equilibrated Sepharose CL-4B column, and the upper solution containing EGFR-
coated CPT-11-loaded DSPE-PEG2000 liposomes was collected, pooled, sterilized and 
stored under nitrogen at 4 °C.

The morphology and particle size of CPT‑11‑loaded DSPE‑PEG2000 liposome

The shapes and surface morphologies of CPT-11-loaded EGFR-targeted DSPE-PEG2000 
liposomes were observed via a transmission electron microscope (H-6009IV, Hitachi, 
Japan). The particle sizes of these liposomes were also determined by dynamic light 
scattering (Malvern Nano-ZS 90) at room temperature, and all measurements were 
repeated three times. To quantify the EGFR overexpressed tumor, western blot analy-
sis was applied on four different CRC cell lines, including CW-2, LoVo, SW620 and 
HCT116 cells. Briefly, All the specimens were heated in sample buffer and sorted using 
SDS-PAGE with 10% gradient. The recovered proteins were then moved to a PVDF 
membrane (Millipore, Bedford, MA, USA) blocked in a 5% skim milk solution (Becton–
Dickinson & Co., Sparks, MD, USA). After 2 h in blocking buffer (TBS containing 5% 
skim milk and 0.1% Tween20), the PVDF membrane was incubated with the primary 
antibody. Then, anti-IgG at 1:1500 was used to detect the specific secondary antibody, 
and the chemiluminescence system (ECL, Pierce) was used to identify relative proteins.

The physical stability, drug loading, and cumulative release profile in vitro 

of CPT‑11‑loaded DSPE‑PEG2000 targeting EGFR liposome

The physical stability of liposomes was primarily determined by the critical micelle con-
centration in an aqueous solution at 25 °C. Micellar diameter changes as a function of 
time and scattering intensities were evaluated by DLS as mentioned above. 10  mg of 
CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome was dissolved into 0.1  mL 
acetonitrile, and the amount of irinotecan was measured by HPLC. The drug loading was 
calculated as follows: drug/(polymer + drug) × 100%. The lyophilized powder of CPT-
11-loaded DSPE-PEG2000 targeting EGFR liposome was dissolved into the deionized 
water, and 5 mL of them were put into a dialysis bag (molecular weight cut-off 3500 g/
mol). Then, the bag was immersed in 30 mL of phosphate-buffered saline (PBS, pH 7.4) 
containing Tween-80 (0.5% w/w), and the medium was stirred at 70 rpm at 37 °C. Sam-
ples were collected at 6th, 12th, 24th, 36th h, 48th h, and 72nd h, and the same volume 
of fresh PBS was added to maintain the buffer volume unchanged. The concentration 
of the released irinotecan in the dialysis media was determined by HPLC (LC-10ATvp, 
Shimadzu) with a C18 column (Symmetry shield TM RP18, 3.9  mm × 150  mm, from 
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Waters) at 25 °C. The standard curve was evaluated at 10, 25, 50, 100, 150, and 200 ug/
mL, while the drug concentrations were calculated at each time point. Next, the accu-
mulative release amount of irinotecan was calculated using a calibration curve and 
expressed as the Percentage of released concentration through the following formula-
tion: Cumulative percentage release (%) = Volume of sample withdrawn (mL)/bath 
volume (v) × P (t − 1) + Pt. Where Pt = Percentage released at time t and P (t − 1) = Per-
centage release before ‘t’.

In vitro cytotoxicity of free CPT‑11 and the antitumor activity of CPT‑11‑loaded 

DSPE‑PEG2000 targeting EGFR liposome

SW620 cells were exposed to the different concentrations of irinotecan (1, 5, 10, 50, and 
100 μg/mL), and cell viability was measured to explore the IC50 of irinotecan through 
MTT assay. Then, cells were separated into four groups, including the control group (C), 
cells treated with free CPT-11 (CPT-11), CPT-11 loaded liposome (Lipo-CPT-11), and 
CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome (EGFR-Lipo-CPT-11), respec-
tively. Then, MTT assays were performed to evaluate the antitumor activities produced 
by the four groups.

MTT assay

According to the grouping, control, EGFR liposome, CPT-11-loaded DSPE-PEG2000 
particles and CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome groups were cul-
tured in a 37 °C, 5% CO2 saturated humidity incubator for 48 h. Add 20 µL MTT solu-
tion (Sigma-Aldrich, MO, USA) to each well and continue to incubate for 4 h, discard 
the supernatant, add 150 µL DMSO to each well and shake for 15 min to dissolve the 
whole crystals. An enzyme-linked immunoassay detected the absorbance value (A570) 
of each well at 570 nm, and the growth inhibition rate of each group of cells was calcu-
lated. The calculation formula was applied as follows: Cell viability (%) = (experimental 
group absorbance value/control group absorbance value) × 100%.

Reactive oxygen species (ROS) analysis in vitro

Reactive oxygen species from cellular was determined using the conversion of non-
fluorescent 5, 6-Chloromethyl-2V, 7V dichloro dihydro fluorescein diacetate (CM-
H2DCFDA) to its fluorescent derivative (DCF) by Reactive Oxygen Species Assay Kit 
(Abcam, USA) according to the manufacturer’s recommendation. Four groups of SW620 
cells, respectively, treated with free CPT-11, CPT-11-loaded DSPE-PEG2000 particles, 
CPT-11-loaded DSPE-PEG 2000 targeting EGFR liposome, and the control group. Then, 
50 μmol/L DCFH2-DA were added for 30 min, washed with PBS, and centrifuged. Fur-
thermore, PBS containing 1% Triton X-100 was added, and the intensity of DCF fluores-
cence (OD) was assessed via a microplate reader at 485 nm of excitation and 530 nm of 
emission.
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Cell apoptosis assay

The SW620 cells from different treatment groups were collected by centrifugation at 
1500 rpm and were stained with Annexin V-FITC for 30 min and propidium iodide (PI) 
for 5 min after being washed with pre-cooling PBS. Finally, the samples were subjected 
to a fluorescence-activated cell-sorting (FACS) flow cytometer (BD Biosciences, San 
Jose, CA, USA). Flow cytometry was performed to measure cell apoptosis.

Western blot analysis

Total protein was extracted from lysed cells, and the equivalent amount of protein was 
separated with 10% SDS-PAGE, then transfected to a PVDF membrane (Millipore). 
After being blocked with 5% nonfat milk (Cell Signaling Technology), the membranes 
were incubated with primary antibodies against cleaved-caspase-9 (Abcam, ab2324) 
and cleaved-caspase-3 (Abcam, ab208003) and GAPDH at 4  °C overnight followed 
by secondary antibody incubation. The protein bands were visualized using CLARI-
TYTM Western ECL substrate (Bio-Rad), and the protein level was quantified and 
normalized with GAPDH.

Statistical analysis

SPSS version 18.0 was used for statistical analysis through the one-way ANOVA 
method. All values were presented as the mean ± SD differences with p < 0.05 were 
considered statistically significant.
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