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Abstract 

Background:  Mental workload is a critical consideration in complex man–machine 
systems design. Among various mental workload detection techniques, multimodal 
detection techniques integrating electroencephalogram (EEG) and functional near-
infrared spectroscopy (fNIRS) signals have attracted considerable attention. However, 
existing EEG–fNIRS-based mental workload detection methods have certain defects, 
such as complex signal acquisition channels and low detection accuracy, which restrict 
their practical application.

Methods:  The signal acquisition configuration was optimized by analyzing the feature 
importance in mental workload recognition model and a more accurate and conveni-
ent EEG–fNIRS-based mental workload detection method was constructed. A classical 
Multi-Task Attribute Battery (MATB) task was conducted with 20 participating volun-
teers. Subjective scale data, 64-channel EEG data, and two-channel fNIRS data were 
collected.

Results:  A higher number of EEG channels correspond to higher detection accuracy. 
However, there is no obvious improvement in accuracy once the number of EEG chan-
nels reaches 26, with a four-level mental workload detection accuracy of 76.25 ± 5.21%. 
Partial results of physiological analysis verify the results of previous studies, such as 
that the θ power of EEG and concentration of O2Hb in the prefrontal region increase 
while the concentration of HHb decreases with task difficulty. It was further observed, 
for the first time, that the energy of each band of EEG signals was significantly different 
in the occipital lobe region, and the power of β1 and β2 bands in the occipital region 
increased significantly with task difficulty. The changing range and the mean ampli-
tude of O2Hb in high-difficulty tasks were significantly higher compared with those in 
low-difficulty tasks.

Conclusions:  The channel configuration of EEG–fNIRS-based mental workload 
detection was optimized to 26 EEG channels and two frontal fNIRS channels. A four-
level mental workload detection accuracy of 76.25 ± 5.21% was obtained, which is 
higher than previously reported results. The proposed configuration can promote the 

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Chu et al. BioMedical Engineering OnLine            (2022) 21:9  
https://doi.org/10.1186/s12938-022-00980-1 BioMedical Engineering

OnLine

*Correspondence:   
13488680126@163.com; 
jxjisme@sina.com 
†Hongzuo Chu and Yong 
Cao contributed equally to 
this work
1 National Key Laboratory 
of Human Factors 
Engineering, China Astronaut 
Research and Training Center, 
Beijing, China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-8320-0769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-022-00980-1&domain=pdf


Page 2 of 17Chu et al. BioMedical Engineering OnLine            (2022) 21:9 

application of mental workload detection technology in military, driving, and other 
complex human–computer interaction systems.

Keywords:  EEG, fNIRS, Mental workload, Man–machine systems

Introduction
Mental workload has long been a factor of immense interest in designing and apply-
ing complex human–machine systems [1], and is increasingly recognized as a serious, 
worldwide public health concern. Only when the mental workload is in the appropri-
ate range can high performance and operational reliability be maintained. An irregular 
mental workload state will impair a person’s work performance, leading to task failure [2, 
3], and might endanger people’s health or safety in severe cases. In human–machine sys-
tems with high safety requirements, such as in the military, aviation, aerospace, driving, 
and other domains, human errors such as information acquisition and judgment deci-
sion error caused by excessive mental workload are often responsible for accidents [4, 5]. 
For example, soldiers in a battlefield must participate in warfare for a long time without 
interruption and must stay alert to respond to various systems. The harsh environment 
poses extraordinary physical and psychological challenges to them [6, 7]. Goodman et al. 
[8] reported that of 1094 USAF Unmanned Aerial Vehicle (UAV) operators stationed in 
the US, approximately 20% reported high fatigue, 11% reported high cynicism, and 3% 
reported reduced performance. This is because the long-term unsuitable mental work-
load state seriously endangers the operator’s mental and physiological health. Therefore, 
it is crucial to measure the mental workload of the operator accurately.

In the past several decades, neurophysiological signal have played an important role 
in mental workload detection because of its objectivity and stability[9]. One of the 
major topics to be investigated in this field is electroencephalogram (EEG)-based men-
tal workload detection method. For instance, Georgios et  al. [10] carried out a study 
of EEG based mental workload detection, and the experiment was implemented with 
N-back and mental arithmetic (the most commonly used single cognitive resource tasks 
for studies of mental workload [11–13]). The binary classification accuracies of mental 
workload are 88% and 86% in the N-back task and mental arithmetic task, respectively. 
Besides, there are still some researches on EEG for mental workload detection in com-
plex tasks. Hongquan Qu et al. [14] carried out a three-level Multi-Task Attribute Bat-
tery (MATB)[15] task with 32-channel electroencephalogram (EEG) acquisition. Power 
spectrum density (PSD) was analyzed with independent components analysis (ICA) 
algorithm, and the average recognition accuracy reached 79.8%. 64-channel EEG data 
were recorded in a simulated flight experiment, and PSD, phase lag index (PLI) connec-
tion features were analyzed and extracted, giving a recognition accuracy 82% of three-
level mental workload [16]. For application of mental workload detection, the significant 
advantage of EEG is that it contains abundant information, but it also has the disadvan-
tages of low spatial resolution and complex operation.

As a new neurophysiological signal acquisition technology, recently, functional near-
infrared spectroscopy (fNIRS) has become a research hotspot in this field with the 
advantages of high spatial resolution and portability [17]. Reported studies proposed 
that fNIRS performs well in mental workload detection of both single task and com-
plex task. For example, Asgher et al. [18] observed the brain activities of the prefrontal 



Page 3 of 17Chu et al. BioMedical Engineering OnLine            (2022) 21:9 	

cortex (PFC) region with fNIRS technology in a four-level mental arithmetic task, and 
obtained a recognition accuracy 89.31% with classification algorithm of long short-term 
memory (LSTM). Siddiquee et al. [19] explored the response difference of brain activ-
ity measured by fNIRS in different areas of the PFC. N-back task was conducted in the 
experiment, and the results show that the blood oxygen of middle prefrontal position 
can significantly improve the recognition precision, with a highest binary classification 
accuracy 90%. In a study of actual driving environment [20], four-channel fNIRS sys-
tem was adopted to monitor the real-time change of blood oxygen in PFC region. The 
recognition accuracy of three-levels driving tasks reached 82.71%. Besides, in a study of 
air traffic control instructions tasks in flight simulators, Gateau et al. [21] collect fNIRS 
signals to detect the mental load state of pilots in two different group, and the accuracy 
reached 80% by SVM.

Aforementioned studies of mental workload detection are based on single physiologi-
cal signal (either EEG, or fNIRS). Either the number of grades or the recognition accu-
racy of mental workload detection was not ideal; i.e., in Ref. [10] the authors reached an 
high accuracy but over a low number of classes, while in Ref. [16] the authors reported 
a classification performance on a high number of classes but with a low discrimination 
accuracy. This limitation is probably due to the limited information of single physiologi-
cal signal. Therefore, researchers began to focus on multi-physiological signal fusion 
detection methods. Liu, Y. et al. [22] carried out a study on mental workload detection of 
simple cognitive resource tasks by fusing 28-channel EEG and 16-channel fNIRS. 3-level 
workload was induced by N-back task in the experiment, and the result indicates recog-
nition accuracy based on fusion of EEG and fNIRS was significantly greater compared 
with single signal of EEG or fNIRS. Similar result was also observed in mental work-
load detection of complex tasks, Sangtae et al. [23] proposed a multi-physiological sig-
nal based mental workload detection method, which collected 64-channel EEG signals, 
and eight-channel fNIRS signals of drivers simultaneously. The result indicates that the 
recognition accuracy based on multi-physiological signal was significantly greater than 
that of single physiological signal. What’s more, reported literatures [11, 24] support 
the above viewpoint as well. In conclusion, existing studies suggest that the combina-
tion of multiple physiological signals can obtain better performance in mental workload 
detection compared with signal physiological signal. Nevertheless, there are still some 
limitations of the reported studies in the following aspects: the multiple physiological 
signals acquisition configuration was based on an excessive number of channels (i.e., 64 
channels in the 10–20 system) [11, 23], only three or even less different levels of men-
tal workload were considered [25–27], and the recognition accuracy was not sufficiently 
high (i.e., accuracy value higher than 70%).

In a related study to practical applications, Chi et  al. [28] designed an experiment 
to collect task completion times and subjective mental load for five driving tasks. The 
results showed that task completion times for truck driving could be predicted using 
a learning curve. Practice significantly reduced mental workload ratings. Midha et  al. 
[29] used fNIRS in an office environment to measure changes in mental workload for 
daily reading and writing tasks. In actual flight scenarios, Hankins et al. [30] collected 
ECG, EEG, EEG and subjective data to assess the level of mental load in different driving 
states. From these studies related to practical applications it is clear that the following 
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issues must be paid attention to in real-time monitoring of mental workload in com-
plex man–machine system. First, monitoring equipment should be portable and easy to 
operate, with a simple channel configuration of signal acquisition as far as possible. In 
addition, the response speed of the monitoring model should be as high as possible; con-
sequently, algorithms with a large amount of computation are not suitable for this task. 
Finally, the gradation of the mental workload should be more detailed and the detec-
tion accuracy should be higher. This study focuses on these issues, and adopted complex 
simulation tasks to mimic the actual task scenarios. First, optimized data acquisition sys-
tem integrates a few channels of EEG acquisition devices and a portable near-infrared 
devices was adopted. In addition, this study considers the modeling performance based 
on three different feature sets: derived from EEG signal, derived from fNIRS signal, 
derived from both EEG and fNIRS signals. Various classifiers were used to obtain an 
optimization modeling method. Last but not least, the difficulty of experiment task was 
divided into four levels, both of EEG and fNIRS features were took into account in the 
detection model of mental workload for a better modeling performance. The results of 
this study can promote the application of mental workload detection technology in mili-
tary, driving, and other complex human–computer interaction systems.

Results
Behavioral data analysis results

Shown in Fig. 1, the influence of the task’s difficulty level on the comprehensive scale 
and comprehensive performance of 20 subjects was analyzed. Figure  1 indicates that 
subjective scale scores increase while the task performance decrease with the increase 
of task difficulty. After the outliers were removed, one-way ANOVA analysis showed 
that the overall score of the scale had a major effect on the mental workload level [F 
(3, 76) = 31.633, P < 0.001]. Post hoc analysis showed significant differences between 
load levels 1 and 5 (P_FDR < 0.01), 1 and 7 (P_FDR < 0.01), 3 and 5 (P_FDR < 0.05), and 3 
and 7 (P_FDR < 0.01) (P_FDR < 0.05). One-way ANOVA analysis of performance scores 
showed that the main effect of combined performance scores was also observed on the 
mental workload level, F (3, 76) = 17.16, P < 0.001. Post hoc analysis showed that there 
were significant differences in the overall performance between difficulty 1 and 5 (p_
FDR = 0.001), 1 and 7 (p_FDR < 0.001), and 3 and 7 (p_FDR = 0.001) (p_FDR < 0.05).

Fig. 1  Subjective scale result and performance score result. The normalized subjective scale scores for each 
task difficulty are shown on the left, and the normalized performance scores for each difficulty are shown on 
the right. Note that the * means p_FDR < 0.05, ** means p_FDR < 0.01
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Feature changes analysis results

EEG channels selection

In order to obtain the optimal EEG channel configuration for measuring mental work-
load, the importance of each channel was calculated by the algorithm mentioned in 5.5.2 
above, and the results were sorted from high to low, as shown in Fig. 2.

It can be seen in Fig. 3 that almost all channels have good performance in β1 and β2 , 
which indicates that power of β1 and β2 are sensitive physiological characteristics of 
mental workload. In top-ranked channels (P4, PO6, O1, P6, PO5, P8, PO8, P7, PO7, 
PO4), the power of θ and α has a greater influence on the model. In addition, Fig.  3 
reveals that the sensitive channels on mental workload of EEG mainly comprised occipi-
tal lobe (P4, PO6, O1, P6, PO5, P8, and OZ), the frontal (AF3) and sports area (C1, C2).

Furthermore, classification model based on SVM classifier was performed to explore 
the influence of channel number on classification accuracy. The channel was added 
to the model one by one based on the ranking order in Fig.  3, and the modeling per-
formance varying with the number of channels is shown in Fig. 3. It can be seen that 
the classification accuracy of the model increases with the increase of the number of 

Fig. 2  Channels importance ordering. The horizontal axis is channel, and the vertical axis is importance value 
of each channel, and the results were sorted from high to low. Different colors represent different frequency 
bands of EEG, and the height of the color block represents the features importance for a given channel

Fig. 3  The accuracy varies with the number of channels. The figure shows the change curve of accuracy 
based on SVM under different number of channels. The horizontal axis is the number of channels and the 
vertical axis is the accuracy. The colored area is the variance of accuracy for different subjects, and the blue 
line represents the mean of the accuracy. The selection of channels is based on the sorting shown in Fig. 2
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channels, but the rising trend slows down when the number of channels reaches 26. 
Therefore, we selected 26 channels (P4, PO6, O1, P6, PO5, P8, PO8, P7, PO7, PO4, P5, 
P1, O2, CP2, P2, AF3, C1, P3, Pz, C2, PO3, TP8, Oz, CP4, TP7, CP6) for subsequent 
research.

EEG feature changes analysis results

ANOVA was performed to analyze the difference of power response in θ, α, β1 and β2 
band under various mental workload levels. The statistical analysis results of 62 scalp 
electrodes was demonstrated as scalp maps in Fig.  4, and the result was corrected by 
FDR, since hundreds of comparisons were implemented simultaneously. After removing 
the outliers, ANOVA results showed differences in PSD that were mainly concentrated 
in all regions of θ band, prefrontal and occipital regions of α band, and occipital regions 
of β1 and β2 band.

Further, in order to find out the change trend of PSD with task difficulty, the difference 
of power in θ, α, β1 and β2 band between highest load (Level 7) and lowest load (Level 1) 
were calculated. The average results among 20 subjects of 62 scalp electrodes were dem-
onstrated as scalp maps are shown as Fig. 5 a. Figure 5b indicates that power of θ band 
in prefrontal increased with the increase of task load, while power of α band in the right 
hemisphere and occipital region decreased with the increase of task difficulty. In addi-
tion, the power of β1 and β2 bands in the occipital region increased with the increase of 
task difficulty.

Specifically, the change trend of PSD in θ, α, β1 and β2 band of three typical channels 
(O1, P4 and PO5) were analyzed, as shown in Fig. 5a. According to the data shown in 
Fig. 5b, three major conclusions can be obtained: power of θ band in O1, P4 and PO5, 
showed a good correlation with task difficulty and increased with the increase of load 
level, which was consistent with the previous research [34]; power of β-band in O1 and 
PO5 also increased with the increase of task load; the α-band energy of O1 channel is 
negatively correlated with the load, which is consistent with the study [12].

fNIRS feature changes analysis results

Next, the changes of O2Hb and HHb during the change of mental workload were ana-
lyzed. The average of 20 subjects under the same load level obtained the results as shown 
in Fig. 6, which shows the variation trend of O2Hb and HHb amplitude in the left and 
right prefrontal regions with a time window of 3 s. After the outliers were removed, one-
way ANOVA analysis showed that the main effect of O2Hb on the left and right side 

Fig. 4  ANOVA of each channel comparing four difficulty levels. The figure shows ANOVA results in four 
frequency bands. All data are processed by Z-score first and outliers are removed. The result was corrected by 
FDR. White represents P > 0.05, deep brown indicates P < 0.01, and light brown indicates 0.01 < P < 0.05
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was observed at the load level, F (3, 596) = 24,339.950, P < 0.001, F (3, 596) = 5499.275, 
P < 0.001. The main effect of HHb on the left and right side was also observed on the load 
level, F (3, 596) = 4455.428, P < 0.001, F (3, 596) = 2370.904, P < 0.001. Post hoc results 
showed significant differences among all grades (P < 0.01).

After the brain enters the working state, local neuronal activations increase metabolic 
rate, leading to increased blood flow and volume [36]. At the beginning of the task, PFC 
oxygenation locally increases, and the higher the load of the task, the more active the 
brain becomes, which also leads to the increase of O2Hb in the PFC region [37]. As can 
be seen from the pattern shown in the figure, during the period of Level 1 to Level 7 
tasks, the concentration of O2Hb increases with the difficulty of tasks, and the content of 
O2Hb at Level 7 is significantly higher than that of other tasks with load levels. We also 
note that the change of O2Hb is more dramatic under high workload levels. Especially 
during a Level 7 task, the variation range and average amplitude of O2Hb are signifi-
cantly improved compared with Level 1. The change of HHb and O2Hb showed an oppo-
site trend. The content of HHb decreased with the difficulty of the task, and the change 
range of HHb was significantly lower than that of O2Hb.

Classification results

In order to study the classification effect of EEG, fNIRS, and EEG–fNIRS feature 
sets, three classifiers, namely, SVM, RF, and DT, were performed to establish the rec-
ognition model. After processing, 960 samples per subject were obtained for each 

Fig. 5  Power of different EEG band. a Shows the difference of power in θ, α, β1 and β2 band between highest 
load (Level 7) and lowest load (Level 1), and the result of 62 electrodes was averaged among 20 subjects 
in the scale map. b Shows the change trend of PSD in θ, α, β_1 and β_2 band of specific channel (O1, P4 
and PO5) with task difficulty. The x-axis represents task difficulty level and the y-axis represents the power 
amplitude
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difficulty level, on a total of 3840 samples for the four difficulty levels. Only-EEG fea-
ture set is the dataset using only EEG features, and the dimensionality of the dataset 
is 3840 samples × 132 features. only-fNIRS feature set is the dataset using only fNIRS 
signal extraction features, and the dimensionality of the dataset is 3840 samples × 44 
features. The EEG–fNIRS feature set uses both fNIRS features and EEG features, and 
the dimension of the dataset is 3840 samples × 180 features. All classification results 
were obtained using the 20% number of retained feature sets tested.

Table 1 presents the minimum, maximum, average and standard deviation value of 
classification accuracies of different feature sets among 20 subjects. For only-EEG fea-
ture set, the mean of classification accuracies of SVM, RF and DT are 52.29%, 54.24% 
and 45.89%, respectively, with a highest recognition accuracy 54.24% in RF classifi-
ers. For only-fNIRS feature set, the mean of classification accuracies of SVM, RF, and 
DT are 67.13%, 70.30% and 62.163%, respectively, with a highest recognition accuracy 
70.30% in RF classifiers. For EEG–fNIRS feature set, the mean of classification accu-
racies of SVM, RF, and DT are 70.23%, 76.25% and 64.46%, respectively, with a highest 
recognition accuracy 76.25% in RF classifiers.

To verify that our classifier is not overfitting, in Table 2, we give the results of the 
corresponding training set, and we can see that the test set results are very close to 
the training set results, and we can assume that our model is adequately fitted.

Fig. 6  Changes of blood oxygen under different load levels. The left and right images represent the left and 
right sides of the forehead, with O2HB changes on the upper side and HHB changes on the lower side. Note 
that the * means p_FDR < 0.05, ** means p_FDR < 0.01
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After removing outliers, a two-factor method was used to analyze the effects of vari-
ous classifiers and datasets on the accuracy. The results showed that the main effect of 
accuracy was observed on the feature set and the classifier, F (2, 171) = 92.539, P < 0.01, F 
(2,171) = 15.253, P < 0.001. No interaction effect F (4, 171) = 0.317, P > 0.05 was observed. To 
sum up, RF classifier performed better in three feature sets compared with SVM and DT, 
and EEG–fNIRS feature set provided better performance than both only-EEG feature set 
and only-fNIRS feature set, with a highest four-level recognition accuracy 76.25 ± 5.21%.

What’s more, according to Table 1, we also observed that the standard deviations of 
recognition accuracy in EEG–fNIRS feature set was smaller than that of both only-EEG 
feature set and only-fNIRS feature set. In conclusion, EEG–fNIRS feature sets not only 
significantly improve the classification accuracy, but also make the model more stable 
and more robust, which is particularly important in practical applications.

Table 1  Test classification results on three feature sets

Note that “Min” represents the minimum value of classification accuracy for all subjects, “Max” represents the Maximum 
value of classification accuracy for all subjects, “Mean” represents the average of the classification accuracy of all subjects, 
“Std” represents the standard deviation value in classification accuracy for all subjects

Bold represents the best results

Feature set Classifier Results

Min. Mean Max. Std.

Only-EEG SVM 28.67 52.293 75.43 11.87

RF 32.33 54.245 79.32 12.23

DT 24.56 45.895 72.34 13.19

Only-fNIRS SVM 52.20 67.132 82.10 8.43

RF 51.92 70.302 81.23 8.27

DT 50.89 62.163 77.21 7.85

EEG–fNIRS SVM 63.39 70.233 83.71 6.34

RF 69.46 76.255 88.20 5.21

DT 53.35 64.464 80.38 7.33

Table 2  Training classification results for the three feature sets

Bold represents the best results

Feature set Classifier Results

Min. Mean Max. Std.

Only-EEG SVM 29.20 52.433 79.81 11.45

RF 32.44 55.473 77.44 11.47

DT 25.93 46.051 72.23 12.02

Only-fNIRS SVM 54.27 67.722 83.13 8.40

RF 52.98 69.340 80.88 7.48

DT 50.55 62.390 76.62 7.58

EEG–fNIRS SVM 62.00 73.853 85.08 6.29

RF 70.49 78.422 88.51 4.15

DT 54.90 67.473 81.00 7.79
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Discussion
In order to promote the practical application of the mental workload status detection 
technology, this study conducted MATB to simulate the cognitive needs of operators in 
their daily work and used portable EEG acquisition equipment and fNIRS acquisition 
equipment to collect the physiological signals of subjects during the task. In this study, 
first, EEG signals from 64 channels were simplified to 26 channels, which significantly 
improved the convenience of operating the equipment. Second, variation of both EEG 
and fNIRS features with the task difficulty were analyzed, in order to provide physiologi-
cal explanation for the variation of mental workload. Finally, the modeling performance 
of only-EEG feature sets, only-fNIRS feature sets, and EEG–fNIRS feature sets in four 
levels of mental workload monitoring was explored and compared.

In the analysis of operator behavioral data, we observed that job performance signifi-
cantly decreased and subjective scale score increase with the increase of mental work-
load. This indicates that excessive mental workload will lead to insufficient cognitive 
resources for operators to maintain good job performance. We selected 26 channels 
with the highest degree of correlation with load for analysis from the results of channel 
screening. It can be seen that these 26 channels are mainly concentrated in the occipi-
tal lobe and parietal lobe, while a few channels are located in the frontal region. The 
occipital lobe region is generally considered as a visual region [38], which is highly cor-
related with basic cognitive functions such as visual search and visual attention [39]. The 
performance of the operation is highly correlated with the parietal lobe [40]. The pre-
frontal region is involved in various higher cognitive abilities, such as executive function 
and memory [41]. This indicates that the mental workload of operators during the task 
is mainly caused by vision and operation, especially as the operator needs to take into 
account all subsystems, so it evokes a significant response in the visual region.

Further analysis of the changes in features found that the θ band power in the frontal 
region increased significantly with the increase of task load, and all brain regions showed 
significant differences. It can be considered that θ band power is a sensitive physiological 
index of mental load. When the mental load was increased, α band power in the occipital 
lobe and other hemispheric regions decreased, which was consistent with the results in 
reported studies [11, 42, 43]. In general, the power of β1 and β2 bands increased obvi-
ously with the increase of the load in the occipital region. However, by analyzing the 
power spectrum energy changes in specific channels, it was found that the power of β2 
band in O1 channel increased with the increase of task difficulty, while the power of β2 
band in P4 channel showed a downward trend. This shows that channel location has a 
substantial effect on features.

From the perspective of modeling performance, three different machine learning mod-
els were used to analyze the classification results under different feature sets. The results 
point out that the multimodal dataset is better than the unimodal dataset, which vali-
dates the results of [44–46]; moreover, the detection method established in this study is 
better in terms of classification accuracy than studies such as [11, 47] in the multimodal 
study. The comparison of the number of categories from load classification is higher than 
[18, 26, 48] and the robustness of the model is better. The reasons for the better results 
in this study are as follows: (1) the task selection, which is more relevant to the actual 
scenario, and the task difficulty setting is more reasonable, which effectively induces 
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different levels of brain load; and (2) the channel screening was conducted before mod-
eling, and some redundant EEG channels were eliminated before fusion with fNIRS fea-
tures. This feature combination overcomes the defects of low EEG spatial resolution and 
low fNIRS temporal resolution on the one hand, and may generate other key interaction 
information to help improve the accuracy of EEG load recognition on the other hand. 
The feature data can be further mined later and relevant experiments can be designed to 
verify the present conjecture.

Finally, it should be noted that there are still some limitations in our study. For one 
thing, data acquisition configuration of EEG contains 26 electrodes, which means there 
is still an optimized space. For another, only an offline experiment was implemented in 
this study, and the experimental task is not a real application task scenario. For further 
exploration, we hope to reduce the number of EEG channels further and improve our 
measurement method by monitoring the mental workload status of pilots in real-time 
during flight missions. Furthermore, the absence of female subjects is a limitation and 
we will include female subjects in subsequent studies.

Conclusions
In conclusion, this study was to construct a more accurate and convenient EEG–fNIRS-
based mental workload detection method by optimizing the signal acquisition configu-
ration. The result suggested 26 EEG channels and two frontal fNIRS channels is enough 
for a four-level mental workload detection accuracy of 76.25 ± 5.21%, which is higher 
than previously reported studies. The results of this study can promote the application of 
mental workload detection technology in military, driving, and other complex human–
computer interaction systems.

Method
Participants

Twenty volunteers participated in our experiment, all from China Astronaut Research 
and Training Center, with an average age of 25.6 ± 2.24, normal or corrected to normal 
vision, without any neurological disease or history of neurological disease, and in a sta-
ble mental state before the experiment. In order to avoid the influence of gender differ-
ences and hand dominance on the results, all the subjects were male and right-handed. 
After familiarizing themselves with all the experimental procedures and requirements, 
the subjects signed the informed consent form.

During the experiment, the subjects were asked to sit in front of a 23-in. LCD moni-
tor with their eyes about 70–90 cm away from the screen. The volunteers were asked to 
carefully read the instructions given on the screen before each sub-task and complete 
the experimental tasks as required. They were also asked to focus on the process of the 
experiment task execution as far as possible to get the best results, to ensure that the 
experimental data were real and effective, and to cooperate with data collection work.

Experimental design

This experiment uses the MATB task to trigger the mental workload of subjects. This 
task is composed of three sub-tasks, namely, system monitoring, tracking, and resource 
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management. It is a complex task involving three cognitive resources: attention, opera-
tion, and reasoning. The cognitive resources involved in the actual task are the same as 
those involved in the fundamental tasks performed by the operator, which can well sim-
ulate the real-world task environment of the subjects.

During the task, three sub-tasks appear on the screen simultaneously. As shown in 
Fig. 7a, the upper left is the system monitoring task. When an abnormal state occurs, the 
subject will press the “F1–F6” button to respond, and the subject is required to press the 
corresponding button in the shortest possible time. On the upper right is the tracking 
task, in which subjects track a circular target by controlling a joystick and are asked to 
aim the crosshairs at the target as accurately as possible. The lower part is the oil man-
agement task. The subjects control the opening and closing of the oil circuit by pressing 
“1–8”, and they are required to ensure the oil volume of tank A/B remains within a spe-
cific range.

Experimental procedure is shown in Fig.  7c. The subjects completed a total of four 
blocks, each of which was randomly assigned four difficulty levels. Each block takes 3 
min, and the four 3-min tasks are rated on a scale of difficulty from low to high: 1, 3, 5, 
and 7. There was a 1-min rest period between two tasks and a 3-min rest period before 
the task began. The actual experiment scene is shown in Fig. 7b. At the end of each task, 
the subjects were required to fill out the NASA-TLX scale. The four sequential tasks 
were performed in a random order among all subjects.

Fig. 7  Stimuli and experimental procedure. a Shows the stimuli of the experiment paradigms. b Shows a real 
scenario of the experiment. c Demonstrates the experimental procedure. Note that the four different random 
stimuli sequence consisted of blocks repeated four times
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Data acquisition

The EGGO device of Ant Neuro was used to record the EEG signals of the subjects at 64 
electrode positions as per international standards 10–20. The reference was set at CPZ 
and the eye movement signals were recorded from below the left eye. The impedance of 
all electrodes is kept below 5 KΩ and the sampling rate is 500 Hz.

The PORTALITE device of Artinis was used to record the changes in blood oxygen in 
the brain on both sides of the forehead. The sampling rate is set to 50 Hz.

Preprocessing and feature extraction

After the collected EEG data were obtained, the average values of the two mastoid chan-
nels (M1, M2) were used to re-reference the signals. Then, a 0.5–45-Hz Butterworth 
band-pass filter and a 50-Hz notch filter were conducted to remove the interference of 
the DC component, high-frequency component, and power frequency. The sampling 
rate was reduced to 200 Hz to reduce the data memory size. Independent component 
analysis (ICA) was adopted to remove eye movement, motion artifacts, channel noise, 
and other interference. Finally, the data were segmented every 3  s with the beginning 
of stimulus as the mark. The above processing uses the MATLAB open-source toolkit 
EEGLAB.

For each epoch, Welch’s method was used to extract the power spectral density (PSD), 
and the power of θ (3–8  Hz), α (8–13  Hz), β1 (13–20  Hz), and β2 (20–30  Hz) were 
obtained. Then, seven-channel pairs (P8–P7, O2–O1, C2–C1, P4–P3, PZ–O1, PZ–O2, 
and O1–AF3) were selected from the left and right brain as well as the front and rear 
brain, and the energy difference of each channel pair in the θ, α, β1, and β2 bands was cal-
culated as the new feature. A total of 276 (62 channels × 4 bands + 7 channels × 4 bands) 
EEG features were extracted.

The collected fNIRS signal contains considerable noise, including motion artifacts, 
physiological interference, and instrument noise. Preprocessing was performed using 
the Homer2 open-source toolkit to remove the motion artifacts. A 0.5-Hz low-pass filter 
was also applied to reduce instrumental and physiological noise. The processing steps 
are consistent with Foy et al. [31, 32]. Finally, the data were segmented every 3 s, also 
marked by the time the stimulus started.

For each epoch, 11 statistical features were extracted, i.e., mean value, standard devia-
tion, mean square error, skewness, root mean square, peak value, peak factor, kurtosis, 
waveform factor, pulse factor, and margin factor. A neurovascular coupling feature of the 
frontal EEG and frontal oxygen signals was added to calculate the zero-lagged correla-
tion between the amplitude of HHb or O2Hb and the EEG frequency band power (in the 
four independent bands above). These HHb- or O2Hb-based NVO features are repre-
sented as oxidative neurovascular coupling and deoxy-neurovascular coupling, respec-
tively. A total of 48 (2 channels × 2 × 11 + 2 channels × 2) fNIRS features were extracted.

To avoid disturbances from outliers, for EEG and fNIRS samples, we calculated the 
z-score of each subject’s samples to remove samples with greater than three times the 
standard deviation.
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Data analysis

Behavioral data analysis methods

Behavioral data collected in the course of this experiment mainly include the subjec-
tive scale score data filled out by the subjects and the task performance data generated 
during the task execution of the experimental platform. The subjects were asked to use 
the NASA-TLX scale to describe their subjective feelings of task load from six aspects: 
mental demand, physical demand, time demand, subjective evaluation of mission per-
formance, effort, and frustration. To facilitate the analysis, the six dimensions of the sub-
jective scale were normalized based on the maximum and minimum values and then 
averaged to obtain a comprehensive scale score. The MATB task used in this experi-
ment consists of three sub-tasks: monitoring task, tracking task, and oil management 
task. Therefore, there are six performance indicators: the response time and response 
accuracy of the monitoring task; X- and Y-axis deviation of the tracking task; and fuel 
deviations of tank A and tank B for the oil management task. The performance data are 
normalized based on the maximum and minimum values and then averaged to obtain 
the comprehensive performance.

In order to analyze the influence of load level on tasks, we calculated Bonferroni-cor-
rected ANOVA for overall performance as well as for comprehensive scale scoring, tak-
ing mental load level as a factor, and conducted post hoc comparison among various 
load levels. False discovery rate (FDR) correction was performed for multiple compari-
sons. The significance value was set at P < 0.05. By analyzing task behavior data, we can 
preliminarily summarize the law of the influence of task difficulty on mental load.

EEG channels selection methods

Given that not all areas of the human brain are directly related to mental workload, the 
64-channel whole-brain EEG is unnecessary, and the fewer the channels, the easier it 
is to use in practice. The goal of this study was to use as few EEG channels as possi-
ble without losing accuracy. In order to find the brain regions that have high correla-
tion with mental workload, the recursive feature elimination (RFE) algorithm based on 
SVM was used to filter the channels. RFE is a feature selection method with good perfor-
mance and strong generalization ability [33]. The main idea is to select the best features 
by repeatedly building models (such as SVM), eliminating the selected features, and then 
repeating the above process on the remaining features until all the features are trawled. 
Considered to be physiological features closely related to mental load in reported stud-
ies [12, 34], PSD features of four frequency bands including θ (3–8 Hz), α (8–13 Hz), β1 
(13–20 Hz), and β2 (20–30 Hz) of 64-channel EEG signals were calculated for screen-
ing. The top 100 features with the largest RFE results were selected of each subject for 
further analysis. Feature importance weight was defined as the number of people with 
this feature in the above-mentioned top 100 feature sets among 20 volunteers. Channel 
importance weight was defined as the sum of feature weights of four frequency bands of 
the channel.

Classification methods

In this study, three classification models, namely, Support Vector Machine (SVM), Deci-
sion Tree (DT), and Random Forest (RF), were adopted to model the extracted features. 
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The grid search method was selected for different classifiers to obtain the optimal model 
parameters. Radial basis function (RBF) was applied as the kernel function in SVM, 
with two important parameters of C (punish coefficient) and error tolerance, with the 
search space as [0.0001, 0.001, 0.01, 0.1, 1, 10, 20, 30]. Parameter Gamma represents the 
number of support vector, with a search space of [0.1, 0.2, 0.25, 0.4, 0.8, 1.6, 3.2, 6.4]. 
The DT algorithm has three parameters that need to be adjusted: the partition stand-
ard, the maximum depth, and the minimum sample number required to segment the 
internal nodes. ‘Entropy’ and ‘Gini’, are tried as the search space of the parameter ‘parti-
tion standard’. The search space of parameter ‘maximum depth’ and parameter ‘Mini-
mum sample number’ required to segment internal nodes is [10, 30, 60, 100] and [2, 5, 
10, 15], respectively. RF is an ensemble classification model with good generalization. 
Reported studies [27, 35] have shown that Random Forest performs well in mental work-
load classification. The classifier mainly searches for the parameter “the number of Ran-
dom Forest spanning trees”, with a adjusting space [100, 200, 500]. In addition, in order 
to ensure the reliability of the classification results, all classification algorithms are tested 
for final model performance by using 80% of datasets for a fivefold cross-validation and 
20% number of datasets as a test set. The results section reports on the minimum, max-
imum, mean and variance of the classification results for all subjects. This will give a 
visual sense of the performance of the model.
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