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Abstract 

Background:  Heart rate (HR) is an important vital sign for evaluating the physiological 
condition of a newborn infant. Recently, for measuring HR, novel RGB camera-based 
non-contact techniques have demonstrated their specific superiority compared with 
other techniques, such as dopplers and thermal cameras. However, they still suffered 
poor robustness in infants’ HR measurements due to frequent body movement.

Methods:  This paper introduces a framework to improve the robustness of infants’ 
HR measurements by solving motion artifact problems. Our solution is based on the 
following steps: morphology-based filtering, region-of-interest (ROI) dividing, Eulerian 
video magnification and majority voting. In particular, ROI dividing improves ROI infor-
mation utilization. The majority voting scheme improves the statistical robustness by 
choosing the HR with the highest probability. Additionally, we determined the dividing 
parameter that leads to the most accurate HR measurements. In order to examine the 
performance of the proposed method, we collected 4 hours of videos and recorded 
the corresponding electrocardiogram (ECG) of 9 hospitalized neonates under two dif-
ferent conditions—rest still and visible movements.

Results:  Experimental results indicate a promising performance: the mean absolute 
error during rest still and visible movements are 3.39 beats per minute (BPM) and 4.34 
BPM, respectively, which improves at least 2.00 and 1.88 BPM compared with previous 
works. The Bland-Altman plots also show the remarkable consistency of our results and 
the HR derived from the ground-truth ECG.

Conclusions:  To the best of our knowledge, this is the first study aimed at improv-
ing the robustness of neonatal HR measurement under motion artifacts using an RGB 
camera. The preliminary results have shown the promising prospects of the proposed 
method, which hopefully reduce neonatal mortality in hospitals.

Keywords:  Biomedical signal processing, Heart rate, Motion artifacts, Eulerian video 
magnification, Remote photoplethysmography (rPPG)
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Background
Newborn infants are prone to bradycardia [1], which induced by a variety of reasons, 
such as congenital heart disease [2] and electrolyte disorders [3]. The uncommon disor-
ders may cause life-threatening problems that are difficult to diagnose early due to the 
different characteristics and clinical manifestations between neonates and older chil-
dren. Therefore, as an essential physiological indicator, heart rate (HR) is vital for moni-
toring the health of newborns.

Contact HR measurement methods, such as electrocardiography measured by electro-
cardiogram (ECG) electrodes [4] and photoplethysmography (PPG) measured by pulse 
oximeters [5], have inherent limitations. First, repetitive removal and attachment of the 
electrodes make HR measurements cumbersome and inconvenient when clinical activi-
ties, such as physical examinations, are being performed [6]. Second, the skin of new-
born babies are fragile and sensitive. Adhesive electrodes or gel may cause skin irritation 
and damage, which is adverse to the health and development of babies [7]. Third, the 
conductive gel has the possibility to solidify, which may affect the signal quality. In recent 
years, non-contact HR measurement techniques (including dopplers [8, 9], white noise 
[10], thermal/infrared cameras [11, 12] and RGB cameras [13, 14]) have proven effective 
in solving the problem of contact HR monitoring methods because of their unobtru-
siveness and lack of skin contact. Among non-contact equipment, RGB cameras are the 
most popular due to their low-cost and high resolution. Dopplers and infrared cameras 
are more expensive compared with commercial RGB cameras, whereas the white noise 
solution is unsuitable for long-term (e.g., 24 h) monitoring due to the annoying sounds 
it produces.

The principle of RGB camera-based HR measurements [15] (which is also known as 
remote PPG) is based on the absorption of specific wavelengths of light by oxyhemo-
globin and hemoglobin in blood vessels, while the surrounding tissues cannot do. Dur-
ing each heartbeat, changes in blood volume cause regulated light transmission and 
reflection, contributing to subtle skin color changes that are invisible to the naked eye 
but can be captured by an RGB camera. In practical scenarios, the face [16, 17] is usually 
spotted by the RGB camera as the region-of-interest (ROI). One reason for this is that 
the face skin is relatively thin and close to blood vessels, thus possessing positive meas-
uring performance. The other reason is that the face is most visible compared with other 
parts of the body (e.g., arms or legs, which are often covered by a blanket). However, 
motion artifacts [11, 18, 19] are one of the main challenges influencing the robustness of 
HR estimation. For neonates, this is even more challenging as they move frequently and 
their movements are difficult to predict and control. In this work, limited motion types, 
that is, head rotation and non-rigid motions (e.g., eye blinking and emotion expressing) 
are considered due to babies’ lack of mobility. Recently, some proposed techniques have 
attempted to overcome the problem of motion artifacts on adults using RGB camera 
[18, 20, 21]. For example, Yu et al. [18] tackled the motion artifact problem during exer-
cise by presenting a new artifact-reduction method consisting of planar motion com-
pensation and blind source separation. Li et al. [20] introduced a framework that uses 
face tracking and normalized least mean square (NLMS) adaptive filtering methods to 
reduce motion artifacts. Lam et  al. [21] estimated HR by randomly selecting pairs of 
traces and performing a majority voting scheme assisted by the skin appearance model, 



Page 3 of 16Chen et al. BioMedical Engineering OnLine          (2021) 20:122 	

which describes how illuminations and motion artifacts affect the skin’s appearance over 
time. Although those methods make progress for RGB camera-based HR measurement, 
the main drawbacks are still yet to be resolved. For example, Li et al. [20] removed the 
video segments using non-rigid motions, which can lead to inaccurate measurements 
during HR monitoring due to the absence of partial heartbeat information. Lam et al. 
[21] repeatedly selected and computed point trace pairs, leading to high algorithm com-
plexity. Besides, we notice that most works focus on adults while infants are much less 
studied. Moreover, obvious differences exist between the facial features of babies versus 
those of adults (e.g., babies have much smaller, rounder faces than adults), making it dif-
ficult to adapt the existing adult-suitable methods to the infant.

This study proposes a fast HR measurements method focusing on neonates with 
improved robustness in the presence of motion artifacts. We achieve real-time meas-
urements using an efficient algorithm. To track the neonatal face as the ROI, we focus 
on the color and the elliptical feature of baby skin. Subsequently, to improve the robust-
ness of HR measurements, we divide the ROI into patches and magnify the subtle color 
variations for each patch video. Peak detection is then employed for each patch video 
to obtain candidate HR values. Finally, we apply majority voting to obtain the final HR 
with the highest probability value. The proposed method improves the ROI information 
utilization compared with traditional procession (which spatially average whole ROI 
pixels into one value). Moreover, the majority voting scheme guarantees that patches 
with weak heartbeat estimations are statistically unlikely to win based on the intuitive 
assumption that patches with motion artifacts account for a small part of the baby’s face.

The main contributions of this work can be summarized as follows: 

1	 A novel, fast and robust HR measurement method is proposed for hospitalized new-
born infants.

2	 The impact of the different ROI patch sizes on the performance is explored, and the 
optimal ROI patch size that offers satisfactory performance is provided.

3	 The performance of the proposed method is validated in comparison with different 
methods from the same neonatal database.

4	 To the best of our knowledge, this is the first work to reduce motion artifact prob-
lems for neonatal HR estimation.

Results
We chose two conditions from the continuous video recordings of nine subjects. One is 
rest still without any kind of motion artifacts, the other is visible movements from a cam-
era including head rotation and non-rigid movements. Each state contains 4–6 video 
segments spanning 1.13–6.56 min. The total duration is 4.21 h, with 2.15 h during rest 
still and 2.06 h during visible movements. The detailed information is shown in Table 1.

Optimal patch size evaluation

To evaluate the performances of different patch sizes during ROI dividing step and 
choose the optimal patch size that leads to the most accurate measurements, we 
selected the patch size from 1 to 1/100 of the entire picture and investigated the 
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HR estimation performances of four metrics—mean absolute error (MAE), mean 
relative error (MRE), root mean squared error (RMSE) and standard deviation (SD) 
of error. The tendencies are shown in Fig.  1a–d. Overall, we can find that (1) the 
performance during rest still is better than that during visible movements; (2) the 

Table 1  Subject information and experimental parameters

Subject 
Number

Gender Gestational 
age (Week 
+ Day)

Age (Day) Weight (Kg) Reason for 
admission

Duration 
of rest still 
(hour)

Duration 
of visible 
movements 
(hour)

Sub1 F 35 + 3 0 2.27 Preterm 0.35 0.45

Sub2 F 40 + 4 5 2.72 Jaundice 0.22 0.23

Sub3 M 38 + 6 16 3.01 Fever 0.20 0.19

Sub4 M 31 + 3 0 1.62 Anhelation 0.22 0.25

Sub5 M 37 + 1 6 2.91 Jaundice 0.26 0.20

Sub6 M 35 + 3 0 2.26 Preterm 0.31 0.25

Sub7 F 36 + 4 1 2.60 Anhelation 0.18 0.17

Sub8 F 39 + 2 13 3.36 Cyanosis 0.16 0.16

Sub9 M 34 + 6 4 2.35 Jaundice 0.23 0.14

(a) MAE ± SD plot for rest still and
visible movements.

(b) MRE± SD plot for rest still and
visible movements.

(c) RMSE ± SD (%) plot for rest still
and visible movements.

(d) SD of error ± SD plot for rest still
and visible movements.

Fig. 1  Performances of four metrics—MAE (mean absolute error), MRE (mean relative error), RMSE (root 
mean squared error) and SD (standard deviation) of error for the proposed method under two different 
conditions. R represents rest still. M represents visible movements 
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performances of different patch sizes under different conditions show great similar-
ity. Figure 1a–c present the performances of MAE, MRE, RMSE, respectively, versus 
patch size under two different conditions. The performance tendencies are relatively 
similar for different conditions. The three metrics tend to decrease from the patch 
size = 1 to 1/64, indicating the best performance at the patch size of 1/64. When 
the patch size decreases from 1/64 to 1/100, the three metrics substantially increase. 
Figure 1d presents the performance of SD (of error) versus patch size under two dif-
ferent conditions. The SD of error tends to increase from a patch size = 1 to 1/16, 
then drops linearly from a patch size = 1/16 to 1/100.

Based on the above results, 1/64 (or 3.84% of the entire ROI) is considered as the 
optimal patch size leading to the most accurate measurements for the remainder of 
analysis.

Individual HR measurements at the optimal patch size

The performances of individual subjects at the optimal patch size (1/64) (leading 
to the most accurate measurements) during rest still (represented as R) and visible 
movements (represented as M) are shown in Table 2. In Table 2, MAE, MRE, RMSE 
and SD represent mean absolute error, mean relative error, root mean squared 
error and standard deviation of error, respectively. Our method achieves an aver-
age MAE of 3.39 beats per minute (BPM) and MRE of 2.45% during rest still. The 
standard deviation of MAE and MRE during rest still are separately 1.14 BPM and 
0.73%. Besides, an average MAE of 4.34 BPM and MRE of 3.16% during visible 
movements can be found in the same table, which is slightly higher than that dur-
ing rest still. The standard deviation of MAE and MRE during visible movements 
are 1.37 BPM and 0.93%, respectively. Table 2 displays that our method has a prom-
ising performance for most subjects, which verifies the feasibility of the proposed 
work. However, the performances of subject 2 and 9 are relatively unsatisfying. The 

Table 2  Metrics performances for individual subjects under two different conditions

MAE MRE (%) RMSE SD

R M R M R M R M

Sub1 3.88 4.35 2.80 3.21 4.13 5.34 1.69 1.89

Sub2 5.47 7.45 3.82 5.19 5.83 7.76 1.93 2.19

Sub3 3.57 4.24 2.53 3.29 4.25 6.59 1.67 1.49

Sub4 3.04 4.03 2.61 2.75 4.15 3.95 1.57 0.71

Sub5 1.83 3.37 1.38 2.46 2.62 4.94 2.05 1.95

Sub6 2.59 4.35 1.97 3.36 4.04 5.52 1.53 1.89

Sub7 3.48 2.60 2.54 1.92 4.41 3.92 1.34 1.72

Sub8 1.91 3.07 1.39 2.29 2.12 3.69 1.30 1.58

Sub9 4.74 5.60 3.00 3.96 4.35 5.72 1.77 1.34

Average 3.39 4.34 2.45 3.16 3.99 5.27 1.65 1.64

Std. Dev. 1.14 1.37 0.73 0.93 1.01 1.26 0.23 0.41
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possible reason is that some unexpected head translation movements occur during 
the recording period.

The Bland-Altman analysis for the measurements of average HR using an RGB camera 
under two different conditions is shown in Fig. 2. Bland-Altman plots show that the HR 
measurements during rest still produces a bias of − 0.81 BPM and a standard devia-
tion of the difference that equals 2.41 BPM, indicating that HR is slightly underestimated 
using our proposed method. Accordingly, the 95% limits of agreements (LoAs) during 
rest still are − 5.53 and 3.91 BPM. For the HR measurements during visible movements, 
the bias is − 0.83 BPM. The standard deviation of the difference is found to be 2.46 BPM, 
and accordingly, the 95% limits of agreement (LoAs) are − 5.66 and 4.0 BPM. Figure 3 
shows examples of recovered blood volume pulse (BVP) signal using synchronized ECG 
under two different conditions. We can find that: (1) The heartbeat numbers recovered 
from the BVP and synchronized ECG signals are equal in Fig. 3a, b; (2) The performance 
during rest still is better than that during visible movements—the royal blue pulse is 

(a) Bland-Altman Plots between ECG and the proposed
method during rest still.

(b) Bland-Altman Plots between ECG and the proposed
method during visible movements.

Fig. 2  Bland-Altman Plots demonstrating the agreement between 10 s instantaneous HR measurements 
obtained from one subject under different conditions. The dashed gray line and green lines respectively 
represent the mean and the 95% limits of agreement. He(i) represents the estimated HR value for the ith s, 
Hr(i) represents the corresponding HR estimated from the ECG signal
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more synchronized with the green pulse than that of the darkorange pulse; (3) A clear 
time shift can be observed from Fig. 3 due to the traveling time of blood from heart to 
the facial vessels—the blue and darkorange pulses in Fig. 3 (representing the estimated 
BVP signal from facial vessels) are always later than the green pulses (representing the 
ECG signal during each heartbeat).

Discussion
Explanations of performance under different patch sizes

The HR estimation results in neonates reveal that, when the ROI patch size equals 1/64, 
the performance achieves the most accurate level under both conditions (rest still and 
visible movements).

(a) ECG signal (green line) and estimated BVP signal
(royal blue dash line) during rest still.

(b) ECG signal (green line) and estimated BVP signal
(darkorange dash line) during visible movements.

Fig. 3  An example of synchronized ECG and estimated BVP signal from 10 seconds of one particular subject 
under different conditions
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The possible reason for this is that: when patch size is greater than 1/64, the divided 
patch is relatively large, leading to a small group of histogram ranges. For example, when 
patch size equals 1/4, the whole facial ROI is divided into four patches. In other words, 
the final instantaneous HR is decided by the histogram containing only four ranges, 
which is inaccurate given such few ranges considering that the final HR is obtained by 
averaging the particular range with the highest probability. In contrast, when patch size 
is less than 1/64, the divided patch is relatively small, which leads to performance degra-
dation in the color magnification step and an unsatisfying HR estimation performance. 
Specifically, the Eulerian video magnification (EVM) method tracks the pixel variations 
of a entire picture using Eulerian perspective. When patch size decreases, the Eulerian 
perspective degenerates to the Lagrangian perspective, which yields the soar of signal 
noise (as shown in [22]). In particular, when the patch size is the size of one single pixel, 
the Eulerian perspective completely degenerates to the Lagrangian perspective, and the 
magnification noise would reach a maximum.

Therefore, patch size selection is crucial for estimating the most accurate HR value—
overly large patch sizes lead an increase in deviation during the majority voting step; 
contrastingly overly small patch size increases the inaccuracy during the color magni-
fication step. To obtain a satisfying performance, researchers should comprehensively 
consider the influences of video resolution and the ROI proportion of the entire frame. 
In our opinion, the best patch size is related to the hardware parameters of the RGB 
camera, such as sampling rate and resolution.

Comparison with previous methods

We re-implemented five previous methods and tested them on our database under the 
two different conditions. The performances of different methods (including our previ-
ous one) are shown in Table  3. As shown in Table  3, Poh et  al. [23] used color-based 
analysis for non-contact HR measurement. Specifically, they treated the HR signal esti-
mation from the RGB channels as the “cocktail problem” and used independent compo-
nent analysis (ICA) to separate the underlying HR component from the three obtained 
channels. Balakrishnan et al. [24] used motion-based analysis to extract HR from videos. 
They applied principal component analysis (PCA) to estimate the periodic pulse from 
the head motions of video recordings based on the principle of remote ballistocardio-
gram (rBCG). Poh et al. [23] and Balakrishnan et al. [24] both used standard face track-
ers from OpenCV to obtain the ROI, we did not replicate that process in our neonatal 
database because of the different facial features between adults and infants. Lam et al. 
[21] introduced the idea of majority voting from facial subregions. They repeatedly 
selected and computed point trace pairs from the ROI, leading to high algorithm com-
plexity. Chen et al. [13] (our previous work) is the first study to employ EVM in neonatal 
HR measurements. However, overcoming the neonatal motion artifact problems was not 
considered. Matthew et al. [25] manually tracked forehead subregion of infants as the 
ROI using video frames using publicly available software, then applied fast fourier trans-
form (FFT) to the ROI to find the highest power in the spectral domain as the HR.

Table  3 confirms that our method is more accurate—the MAE/MRE of the pro-
posed method during rest still is 3.39/2.45 BPM, which improves at least 2.00/1.33 
BPM compared with the state of the art methods. The MAE/MRE during visible 
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movements is 4.34/3.16 BPM, which improves at least 1.88/1.20 BPM compared with 
previous methods. Moreover, the proposed method is relatively less time-consuming 
(around 20 seconds to process one minute of video via Python 2019 on an Intel Core 
i5-9400F@2.90GHz with 16GB of memory), indicating that our method is effective and 
utilizes low algorithm complexity. Typically, Balakrishnan et al. [24] have the worst per-
formance as the cyclical movement of blood from the heart to head is greatly deterio-
rated when babies are lying down, which leads to an increase in estimation error.

Limitations and further improvements

As the first study of improving robustness for HR measurement in a hospital, it still has 
some perspectives that can be enhanced in the future. First, the proposed method only 
focuses on head rotation and non-rigid motion problems. When babies have unexpected 
head translation movements, the ROI dividing step introduces invalid background noise 
into the ROI, which leads to performance degradation during HR measurement. This 
issue can be improved in future studies by adaptively switching between multiple cam-
eras or calibrating facial orientations. Second, this paper is based on the assumption that 
no large objects (which are close to skin color) exist in the video recordings. If these 
kinds of objects exist in the video recordings, the morphology-based filtering cannot fil-
ter it out, which may bring background noise into pure HR signal and increase the HR 
measurement error. In the future, this issue can be improved by employing advanced 
techniques for distinguishing between elliptical faces and irregular shapes (such as nip-
ples). Third, this paper only focuses on motion artifact problems in neonatal practical 
scenarios, other challenges, such as illumination variations, are not considered. Further 
discussion on HR measurement under different light conditions and the solution of the 
illumination variation problems are promising subjects of future studies. Finally, this 
paper only detects HR using an RGB camera, other vital signals (e.g., respiratory rate, 
heart rate variability, blood pressure and blood oxygen saturation) and multi-modal data 
(such as video frames from both thermal and RGB cameras), which are also important 
for health care monitoring, are not considered. In the future, robustly estimating more 
parameters using different cameras in real-life situations will be taken into account.

Conclusion
In this work, we present a novel and fast method for neonatal non-contact HR meas-
urement in the presence of motion artifacts in hospitals. This method introduces ROI 
dividing to improve ROI information utilization and proposes a majority voting scheme 
to choose the most reliable HR statistically. Since the RGB camera is economical and 
convenient to operate, the proposed method can expectedly contribute to vital signs 
(including heart rate, breath rate and blood oxygen saturation) estimation and help 
reduce neonatal mortality in hospitals.

Methods
Subject information and experimental setup

Nine newborn Chinese babies without known cardiovascular disease or injuries were 
recruited at the Children’s Hospital of Fudan University. The experiment was approved 
by the ethics committee of the Children’s Hospital of Fudan University [approval No. 
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(2017) 89]. All subjects’ parents signed a written informed consent. The experimental 
setup is shown in Fig. 4. This experiment was held in a private room without the inter-
ruption of noisy hospital environment. The video recordings were acquired from 9:00 
a.m. to 11:30 a.m. for babies to generate a bright and unchanged illumination condition. 
The subjects were placed 0.25–0.36 m below the camera (TiX580, Fluke Corporation, 
Shanghai, China) on a comfortable, open bed. The camera recorded two types of color 
patterns—RGB and thermal. To build a low-cost neonatal HR monitoring system, we 
only employed an RGB video pattern. The view of RGB videos mainly contain the face 
of baby and some background surroundings around their face. The RGB videos were 
recorded at 30 frames per second (fps) with a 640 × 480 pixel resolution. During the 
video recordings, a commercially available FDA-approved Nicolet EEG cap with ECG 
electrode (Phecda, Guangzhou, China) was applied to detect the neonates’ ECG signals 
at a 500 Hz sampling rate. Before the electrode placement, the skin surface of each baby 
was softly cleaned with an alcohol pad to improve the signal quality. The video record-
ings were synchronized with the ECG signals as ground truth to evaluate the perfor-
mance of the proposed method. When neonates need caretaking activities (e.g., medical 

Fig. 4  Experimental setup of video recording and corresponding ECG signal acquisition

Fig. 5  Flowchart of HR measurements steps
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examination, cluster feeding, physical examination, etc.), the recorded videos and ECG 
were suspended simultaneously.

Figure 5 presents the main steps of the neonatal HR measurement method. First, the 
faces of the neonates is extracted as the ROI from video frames using morphology-based 
filtering. Second, the ROI is divided into non-overlapping patches with specific sizes. For 
every patch video, the EVM is used to magnify the subtle color changes as BVP signals. 
Third, the instantaneous HR value of every patch video is calculated via peak detection 
of the BVP signal and then transformed from peak numbers to BPM. Finally, majority 
voting is used on the candidate HR pool of all patches to obtain the final HR. The details 
of the method are explained in the following subsections.

ROI segmentation

Based on previous studies [26, 27], it is important to select reliable ROI from back-
ground noise. There are some classic ROI extraction methods. One is tracking the coor-
dinates of rectangular face locations using face trackers from the Open Computer Vision 
(OpenCV) library [28] based on Viola and Jones’ [29] algorithm, which is convenient 
for face detection. However, this off-the-shelf method is limited due to some inherent 
defects. First, the face tracker can not synchronously track the face when subjects move. 
Second, the face tracker only finds coarse rectangular facial locations and brings non-
face pixels into the ROI. The non-face pixels within rectangle corners inevitably bring 
background noise. Third, the face tracker, which is suitable for adults cannot fit neonates 
as the facial features of newborn babies are different from adults (babies’ faces are much 
smaller and rounder than adult faces. The eyes, nose and mouth between babies and 
adults are also clearly different).

Another advanced method is locating facial landmarks using the discriminative 
response map fitting (DRMF) method [30] and then applying kanade-lucas-tomasi 
(KLT) to track feature landmarks frame by frame. The alternative method solves coarse 
facial location and motion artifacts while still cannot resolve the neonatal face tracking 
problem. As such, we adopt a simple but practical method that utilizes the continuity of 
skin color values in the HSV (hue, saturation and value) color domain. First, we convert 
video recordings from the RGB color domain to the HSV color space since the skin color 
in the HSV domain normally ranges in a continuous interval (higher than [0, 10, 60] and 
lower than [20, 150, 255] in the H, S and V channels for Chinese infants [13, 31]). Then, 
pixels within that interval are retained, and pixels outside that interval are filtered out. 
Afterwards, the segmented ROI is transformed back from the HSV color domain to the 
RGB color domain. Finally, the edges of the ROI are smoothed using morphology-based 
filtering. Specifically, the open operation (the process of an erosion operation followed 
by a dilation operation) and close operation (the process of a dilation operation followed 
by an erosion operation) are utilized in succession to perfect the elliptical boundary of 
infants’ faces. The advantage of our skin segmenting method is that skin color instead 
of facial features is primarily considered. Therefore, it is robust no matter what move-
ment the babies make. Another advantage is that it is fast and convenient compared with 
training a neonatal face classifier [32, 33].
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ROI dividing

After ROI segmentation, the pixel values except for the ROI are set to 0, which 
means that the background of video recordings is black. The next step is to divide 
the facial ROI into particular patch sizes. Specifically, we cut the width and height 
of each frame into 2 (or 4, 6, 8, 10) equal pieces. The size of each single patch is 1/4 
(1/16, 1/36, 1/64, 1/100) of the intact frame, which is 25% (11%, 6.25%, 3.84%, 2.78%) 
of ROI area. We do not need the background patches due to the lack of HR informa-
tion. Therefore, for a single patch video, if the first frame is totally black (representing 
an invalid patch without any ROI information), the video will be deleted from the 
available patch pool. Otherwise, the patch video will be remained. After doing this, 
patch videos containing heartbeat information are saved for further analysis. Since 
the motion artifact types in newborns are mainly head rotation and local non-rigid 
motions (which have no relative head translation), even choosing an ROI area in the 
first frame retained valid HR information in the following frames.

Color magnification

To obtain the BVP signals from each patch video, we apply the color magnification 
method. The principle of color magnification can be explained as follows. We take 
a one dimension signal undergoing motion as an example, where I(x,  t) denotes the 
intensity of an image at position x and time t. Since the image undergoes motion, 
the observed intensities with respect to a displacement function δ(t) can be expressed 
as I(x, t) = f (x + δ(t)) , where I(x, 0) = f (x) . The objective of motion magnification 
is to find the synthesized signal Î(x, t) = f (x + (1+ α)δ(t)) for the amplification fac-
tor α . We apply EVM to amplify the subtle color variations yielded by heartbeat [22]. 
The EVM method was proposed by Wu et  al. in 2012 to reveal temporal variations 
in videos that is difficult to see with the naked eye, such as the guitar string and the 
shadow of sun. They propose the Eulerian perspective to track the variations of pixels 
at a fixed area instead of the traditional Lagrangian perspective which focuses on the 
movement of specific pixels at each instant. In particular, to intensify the change of 
signals in a particular space, the Eulerian perspective does not explicitly estimate the 
movement of individual pixels, but exaggerates the pixel value variation by amplifying 
temporal color changes at a fixed position. The main steps of the EVM method are 
described below. 

1	 Spatial filtering: The first step of the EVM method is decomposing the video frames 
into different spatial frequency bands and then increasing the temporal signal-to-
noise ratio by pooling multiple pixels. To do this, the patch video frames undergo 
spatial low-pass filtering and downsampling to improve the computational efficiency. 
The two steps are combined using the full Laplacian pyramid in the EVM method.

2	 Temporal filtering: For each spatial band, band pass filtering is performed to extract 
the variation part of interest. Since infant’s HR range is 110–160 BPM [34], we 
choose the ideal bandpass filter within 1.8333–2.6667 Hz to directly cut off the fre-
quency band of interest, and avoid amplifying other frequency bands.
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3	 Amplification: We then choose a magnification factor α of 150 (refer to [13]; the α is 
normally set at 100–200 for color-based magnification).

4	 Signal combination: The magnified signal is added to the original, and the spatial pyr-
amid is collapsed to obtain the final output.

Based on previous studies [16, 23], the green channel has the greatest signal-to-noise 
ratio and contains the strongest pulsatile signal. Therefore, we spatially average the patch 
video pixels in the green channel and apply the averaged result for further analysis.

Peak detection and HR majority voting

After the EVM magnification, the BVP signal is generated by spatially averaging each 
patch video pixels in the green channel (Fig. 3). To convert the BVP signal of a long 
period into real-time HR values, we apply peak detection and count the peaks of one 
minute window, with a sliding window of one second. Thus, the HR sequences of each 
patch video are obtained for each subject. To reduce the motion artifact problems, 
we perform a majority voting scheme to choose the final HR sequence from the face 
patches. In particular, for each specific moment, we choose the average of HR ranges 
with the highest probability as the final HR from the patch number of HR values. For 
instance, if one frame is divided into 64 patches, we draw a histogram with 64 HR 
values and choose the mean of HR ranges corresponding to the highest peak of the 
histogram. Since the motions only account for small parts of the baby’s face, (which is 
unlikely to win during majority voting), this scheme improves the robustness of neo-
natal HR measurements against motion artifacts.

Validation methodology

We estimate HR from video frames and calculate synchronized ECG during peak 
detection using a one minute window and a one second sliding window. The esti-
mated HR value for the ith second is denoted as He(i) . The corresponding HR esti-
mated from the ECG signal is denoted as Hr(i) . To conduct a fair comparison 
between our method for neonatal HR measurement and previous ones applied for 
adult HR measurement, the MAE, MRE, RMSE and SD of error are used to evaluate 

Table 4  Metrics for HR measurements

Metric Definition Detail description

MAE Mean bbsolute Error
1

N

N
∑

i=1

|He(i)− Hr(i)|

MRE Mean relative Error
1

N

N
∑

i=1

|
He(i)−Hr (i)

Hr (i)
| × 100%

RMSE Root mean squared error
√

N
∑

i=1

(He(i)−Hr (i))
2

N

SD Standard Deviation
√

1

N

N
∑

i=1

(He(i)− Hr(i)− µ)2

µ = 1

N

N
∑

i=1

(He(i)− Hr(i))
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the performance of non-contact HR measurements. Details on the four metrics defi-
nition are shown in Table 4.
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