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Abstract 

Background:  Schizophrenia is a chronic and severe mental disease, which largely 
influences the daily life and work of patients. Clinically, schizophrenia with negative 
symptoms is usually misdiagnosed. The diagnosis is also dependent on the experience 
of clinicians. It is urgent to develop an objective and effective method to diagnose 
schizophrenia with negative symptoms. Recent studies had shown that impaired 
speech could be considered as an indicator to diagnose schizophrenia. The literature 
about schizophrenic speech detection was mainly based on feature engineering, in 
which effective feature extraction is difficult because of the variability of speech signals.

Methods:  This work designs a novel Sch-net neural network based on a convolutional 
neural network, which is the first work for end-to-end schizophrenic speech detection 
using deep learning techniques. The Sch-net adds two components, skip connections 
and convolutional block attention module (CBAM), to the convolutional backbone 
architecture. The skip connections enrich the information used for the classification 
by emerging low- and high-level features. The CBAM highlights the effective features 
by giving learnable weights. The proposed Sch-net combines the advantages of the 
two components, which can avoid the procedure of manual feature extraction and 
selection.

Results:  We validate our Sch-net through ablation experiments on a schizophrenic 
speech data set that contains 28 patients with schizophrenia and 28 healthy controls. 
The comparisons with the models based on feature engineering and deep neural net-
works are also conducted. The experimental results show that the Sch-net has a great 
performance on the schizophrenic speech detection task, which can achieve 97.68% 
accuracy on the schizophrenic speech data set. To further verify the generalization of 
our model, the Sch-net is tested on open access LANNA children speech database for 
specific language impairment detection. The results show that our model achieves 
99.52% accuracy in classifying patients with SLI and healthy controls. Our code will be 
available at https://​github.​com/​Scu-​sen/​Sch-​net.

Conclusions:  Extensive experiments show that the proposed Sch-net can pro-
vide aided information for the diagnosis of schizophrenia and specific language 
impairment.

Keywords:  Schizophrenia, Deep learning, Skip connection, Attention mechanism, 
Pathological speech detection
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Background
Psychological and neurological disorders are two major categories of human disor-
ders, which affect the thinking, speaking, and behavior capacity of human beings [1, 2]. 
At present, the global prevalence of psychological and neurological disorders is more 
than 12% and 10%, respectively [1–4]. Schizophrenia is a chronic psychological disease 
that affects about 1% of the population worldwide [5, 6]. The disease often begins in 
late adolescence, and it has a large impact on patients’ social activity and brain devel-
opment. Schizophrenia is characterized by disordered thinking, impaired speech, and 
abnormal behaviors. Clinical diagnosis of schizophrenia is generally based on a full psy-
chiatric assessment and the speech/behaviors observed via clinical interviews. Symp-
toms of schizophrenia can be divided into two types, positive symptoms, and negative 
symptoms. Positive symptoms include delusions and hallucinations [6, 7], and negative 
symptoms include flat affect, alogia, loss of interest, and disability in activities [8]. Clini-
cal experience had shown that it is harder to diagnose and treat patients with negative 
symptoms than those with positive symptoms [9]. Positive symptoms are likely to be 
replaced by negative symptoms in the late episode of schizophrenia, and negative symp-
toms may persist even though after treatment [10]. Negative symptoms contribute more 
to the long-term morbidity, higher rates of disability, and poor quality of life in most 
schizophrenic patients than positive symptoms do [11–15]. In addition, the clinical diag-
nosis relies on the experience of clinicians and is affected by patients’ retrospective recall 
biases and cognitive limitations [16]. Hence, it is urgent to propose a method to diag-
nose schizophrenic patients with negative symptoms objectively and effectively.

Patients with schizophrenia exhibit brain structural abnormalities [17–19], which are 
accountable for speech disorders and cognitive impairments. Cohen [20] discovered that 
speech characteristics are significantly related to the negative symptoms of schizophre-
nia. Rosenstein [21] confirmed that adolescents with high-risk psychosis exhibit speech 
impairments for months/years before they are diagnosed. Flat affect and incoherent 
language expression are typical performances in schizophrenic patients with negative 
symptoms [22]. Schizophrenic groups exhibit reduced pitch variation [23], increased 
pauses [24], and poverty of content [25]. The number and duration of pauses are closely 
related to the evaluation of affective flattening [8, 26, 27].

In general, most existing methods [16, 28–38] analyzed schizophrenic speech using 
feature engineering techniques, which were achieved by extracting fluency features, 
intensity-related features, spectrum-related features, and so on. These studies had 
proved that speech can be viewed as an automated biomarker for the diagnosis of schiz-
ophrenia. However, owing to the limitation in the amount of data and the difficulties in 
effective feature extraction, it is still difficult to propose a robust model. In this work, 
the Schizophrenia network (Sch-net) based on a convolutional neural network (CNN) 
is proposed to achieve the end-to-end schizophrenia detection based on speech signals. 
The proposed Sch-net can avoid the problems of feature extraction. The contributions of 
our work can be summarized as follows: 

1)	 This work proposes the Sch-net to detect schizophrenia based on speech signals. To 
the best of our knowledge, this is the first work to detect schizophrenic speech using 
CNN-based architecture.
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2)	 The proposed model adds the skip connection to the backbone network. It enriches 
the information via merging low-level feature maps with high-level feature maps, 
which avoids the manual feature extraction procedure.

3)	 The proposed model utilizes the convolutional block attention module (CBAM). The 
CBAM performs the automatic feature selection function by giving learnable weights 
to the features in the feature maps.

4)	 The proposed Sch-net is validated on the schizophrenic speech data set and specific 
language impairment (SLI) speech database. Experimental results have demonstrated 
that our method can provide aids for the diagnosis of schizophrenia and SLI.

Related works
The detection of disordered speech in schizophrenia has been studied for the last few 
decades. Previous studies [16, 28–38] are mainly achieved based on feature engineering. 
In this section, we will review the related studies from the perspective of features. The 
features extracted can be roughly divided into two categories, time-domain features, and 
spectrum-related features.

Time-domain features: Schizophrenic patient with negative symptoms usually exhib-
its incoherent language that can be described by time-domain features, including 
pitch-related features, fluency features, and intensity-related features. (1) Pitch-related 
features: Pitch is the fundamental frequency of vocal cord vibration for voiced initial 
consonants and some unvoiced initial consonants [39]. Pitch-related features are com-
monly used in analyzing the flat affect in schizophrenia. [16, 28–34]. Studies [28, 30–32] 
demonstrate that schizophrenic speech is characterized by less variability in vocal pitch 
than normal speech. (2) Fluency features: The incoherent expression in schizophrenia 
usually manifests as more pauses and a longer duration of pauses. Fluency features are 
employed to distinguish schizophrenic groups and controls in recent studies [30, 35, 36], 
such as the number of pauses and natural turns, the duration of pauses, the proportion 
of silence and speaking, and speaking rate. (3) Intensity-related features: Voice intensity 
is an intuitive indicator for conveying emotional information in human communication 
[40]. Previous studies [28, 30, 32] calculate the intensity-related features based on the 
variability of energy per second/syllable, and the experimental results demonstrate that 
the voice intensity of patients with schizophrenia has less variation than that of controls.

Spectrum-related features: Spectrum-related features generally refer to the meas-
urements computed based on the spectrum that contains time- and frequency-
domain information. Spectrum-related features describe the energy distribution and 
the vocal tract characteristics during speech production. The typical spectrum-related 
features, such as formants, auditory-based spectral features, and spectral envelope 
features, have been proven to be effective for schizophrenia detection [32, 33, 37, 
38]. (1) Formants: Formant is the descriptor that reflects the resonance frequency 
of the vocal tract. Compton et.al [32] demonstrate that the range of the second for-
mant for schizophrenic speech is smaller than that for controls. Chhabra et.al [37] 
conclude that patient with schizophrenia reduces the use of formant dispersion in 
the similarity-dissimilarity ratings. (2) Auditory-based spectral features and spectral 
envelope features: Auditory-based spectral features refer to the spectral parameters 
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that are computed based on human auditory characteristics, and spectral envelope 
features refer to the envelope and its variants of the spectrum. Mel-frequency cepstral 
coefficient (MFCC) is one typical auditory-based spectral feature, and linear predic-
tion coefficient (LPC) is a commonly used spectral envelope feature. MFCC is gained 
using Mel-frequency filters, in which the center frequency is computed according to 
the human auditory characteristics. LPC is calculated to estimate the resonance char-
acteristics of the vocal tract during speech production. Studies [33, 38] use MFCCs 
and LPCs to analyze the characteristics of schizophrenic speech. Results in [38] show 
that the MFCC and LPC scores of schizophrenic speech are significantly lower and 
higher than those of controls, respectively.

Low-level acoustic features mentioned above [28–38] are generally extracted using 
OpenSMILE, pyAudioAnalysis, openEAR, and signal processing techniques. Classifica-
tion experiments are conducted using classifiers (such as k-Nearest Neighbors, Decision 
Trees, Naive Bayes), combined with cross-validation (such as k-fold cross-validation and 
leave-one-out cross-validation). Studies [30, 32–36] have achieved 64–93% accuracy on 
schizophrenia detection tasks using 8–98 schizophrenic patients and 7–102 controls.

Results
To demonstrate the effectiveness of the proposed model, comprehensive experiments 
are conducted. We first describe the schizophrenic speech data set and implementa-
tion details. Next, the ablation studies are presented to demonstrate the advantages 
of each component in the proposed Sch-net. Then comparisons with state-of-the-art 
methods based on feature engineering and deep learning techniques are conducted 
and analyzed. The network visualization is also presented using Grad-CAM. Finally, 
to further validate the generalization of proposed method, the classification experi-
ments on the LANNA children speech database are conducted.

Schizophrenic data set

Our study has 28 schizophrenic patients (18 females and 10 males) and 28 matched 
healthy controls (18 females and 10 males). The schizophrenic group is with a mean 
age of 40.6 years (SD 9.4 years), and the control group is with a mean age of 36.5 years 
(SD 9.1 years). All subjects are native Mandarin speakers, and they have no past or cur-
rent disease affecting the speaking process. Patients were recruited from the Psychiatry 
Department of the Mental Health Center, Sichuan University. This department is one of 
the four major mental health centers in China. The schizophrenic group was diagnosed 
by clinicians based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5) that outlines the concise and explicit criteria for the diagnosis of schiz-
ophrenia [41]. All subjects provided the written informed consent.

The data set is composed of audio signals that are recorded in a 16-bit mono/dual-
format at a sampling rate of 44.1kHz. Participants are asked to achieve the reading 
task. There are four texts with calm, happiness, anger, and fear sentiments, and each 
text comprises 8–10 sentences. We select a fixed sentence for each emotional record-
ing, and the transcriptions of speech signals are listed in Table 1.
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Implementation details

In this study, all audios are converted to spectrograms using the Short-time Fourier 
Transform (STFT) method. To improve the invariance properties to geometric per-
turbations and noise, data augmentation methods are utilized, including random 
crop, random rotation, random rescaling, random Gaussian noise, masking blocks of 
frequency channels [42], and masking blocks of time steps [42].

The input image of the Sch-net is with the size of 128×256 pixels. Table 2 shows the 
Sch-net architecture details. In this architecture, the size of each filter in Conv layers 
is set as 3 × 3. There are 64, 128, 256, 512 filters in the first to the fourth Conv lay-
ers, respectively. In addition, there are 512 filters in the three skip connections. The 
convolved images are normalized using a ReLU activation in Conv blocks. The max 
pooling and average pooling in pooling layers are obtained every 2 × 2, with a stride 
of 2. In the CBAM, 2048 filters of size 7 × 7 are used to highlight effective features. 
The highlighted features are convolved with 512 filters of size 3 × 3. In the FC neural 
network, there are 512 neurons in the first hidden layer and 2 neurons in the second 
layer. The final output is a vector of probabilities that the input sample will belong to 
each class.

In all experiments, the binary cross-entropy is adopted as the loss function, and 
Adam [43] is used as the optimization algorithm. All experiments are implemented 
based on the PyTorch framework [44] and trained on a workstation with Intel(R) 
Xeon(R) CPU E5-2680 v4 2.40 GHz processors and an NVIDIA Tesla P40 (24 GB) 
installed. The network is trained using batch size 16 for 50 epochs. The initial learning 
rate is set to 0.0003 and decreases by 10 times after 25 epochs. ·

Table 1  Text for speech recording in Mandarin and its corresponded English translation

Emotion Text (Mandarin) Text (English)

Calm Ta yi nian si ji dou ke yi kai hua, hua duo yi ban 
shi hong se huo fen se de.

It can bloom all year round, and the flowers are 
generally red or pink.

Anger Gen ni shuo le duo shao ci le, bu xu wan wo de 
wan! Kan ba, wan bei da sui le! Ni zhen de shi 
yao qi si wo!

I told you so many times that you are not allowed 
to play with my bowls! Look, the bowl is shat-
tered! You are really mad at me!

Fear Ma ma, dui bu qi, wo...wo...wo bu shi gu yi de. Mom, I’m sorry, I...I...I didn’t mean it!

Happiness Ha ha, tai hao la! Tai hao la! Ma ma, ma ma, wo 
kao le 98 fen!

Awesome, it’s awesome! Mom, Mom, I got 98 
points!

Table 2  Sch-net architecture details

Layer Dimension

Conv1 2×[3×3(64 filters)]

Conv2 2×[3×3(128 filters)]

Conv3 2×[3×3(256 filters)]

Conv4 2×[3×3(512 filters)]

Conv5-8 3×3(512 filters)

Max-pooling 2×2

Average-pooling 2×2

CBAM 7×7 (2048 filters)

FC 1×1×512, 1×1×2 
(two hidden layers)
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Ablation studies

In this subsection, the effectiveness of our network is verified. The Sch-net’s back-
bone network is based on CNN, with adding skip connections to enrich the feature 
information. In addition, the CBAM is applied to emphasize the more effective fea-
tures with bigger weights. For this ablation study, we evaluate the contributions of the 
two key components to discriminate schizophrenic patients from healthy controls. To 
evaluate the performance of Sch-net and its components (backbone, skip connection, 
and CBAM), we run 30 iterations of tenfold cross-validation and compute seven met-
rics (accuracy, precision, recall, f1-score, sensitivity, specificity, and Area Under ROC 
Curve (AUC)) for each model. The 95% Confidence Intervals (CIs) for the metrics are 
listed in Table 3, and the box plots of classification accuracies are shown in Fig. 1.

Table 3  Overall performance of schizophrenic speech detection using Sch-net and its components 
(backbone, skip connection (SC), and CBAM)

Evaluated indicators 95% CI

Backbone Backbone + SC Backbone + CBAM Sch-net (ours)

Accuracy 0.9323 0.9494 0.9563 0.9768

(0.9295,0.9351) (0.9460,0.9528) (0.9534,0.9591) (0.9739,0.9797)

Precision 0.9480 0.9634 0.9513 0.9639

(0.9445,0.9515) (0.9564,0.9704) (0.9458,0.9568) (0.9585,0.9693)

Recall 0.9149 0.9348 0.9622 0.9908

(0.9100,0.9197) (0.9326,0.9370) (0.9556,0.9688) (0.9898,0.9918)

F1-score 0.9311 0.9487 0.9565 0.9771

(0.9280,0.9341) (0.9456,0.9519) (0.9536,0.9594) (0.9743,0.9799)

Sensitivity 0.9176 0.9619 0.9902 0.9914

(0.9131,0.9221) (0.9581,0.9657) (0.9847,0.9956) (0.9863,0.9964)

Specificity 0.9488 0.9601 0.9494 0.9738

(0.9415,0.9561) (0.9513,0.9689) (0.9437,0.9551) (0.9656,0.9820)

AUC​ 0.9593 0.9892 0.9902 0.9978

(0.9577,0.9609) (0.9859,0.9924) (0.9880,0.9924) (0.9965,0.9990)
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0.94
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0.97
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Backbone Backbone + SC Backbone + CBAM Sch-net (ours)

Fig. 1  Box plots of accuracy for classifying schizophrenic speech and controls using Sch-net and its 
components (backbone, skip connection (SC), and CBAM)
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In each box plot in Fig.  1, there are five points (the median, the upper and lower 
quartiles, and the minimum and maximum values) to display the distribution of clas-
sification accuracies for each model. As can be seen in Table  3 and Fig.  1, the skip 
connection enriches the information of feature maps and improves the classification 
accuracy by 1.71% on the schizophrenic speech data set. The CBAM selects the mean-
ingful features for classification and improves accuracy by 2.40%. Significant improve-
ment of 4.45% for classifying schizophrenic speech and normal speech is achieved 
when adding skip connections and CBAM to the backbone network. The proposed 
Sch-net combines the advantages of skip connection and CBAM, achieving better 
performance on the classification task.

Comparison with the models based on feature engineering and classifiers

Previous studies about automatic schizophrenic speech detection [28–38] are almost 
based on feature engineering and pattern recognition technology. In this subsection, 
the performances of the combination of feature engineering and classifiers are dis-
played and analyzed. Four types of acoustic features are extracted, which are time-
domain features, FFT-based spectral features, auditory-based spectral features, and 
spectral envelope features. Four classifiers are adopted, including random forest (RF), 
k-nearest neighbor (KNN), support vector machine (SVM), and linear discriminant 
analysis (LDA).

Time-domain features used in this work contain short-term energy (STE), pitch, 
and fluency features. The STE feature of speech signals reflects the amplitude vari-
ation, and the pitch indicates the vocal cords vibration in the pronunciation process. 
The fluency feature can reflect the degree of coherence in expression. Considering 
the reduced syntactic complexity and abnormal pauses in schizophrenic speech, five 
fluency features (total recording time, the total length of voice segments, the ratio of 
voice segments, max duration of pauses, mean length of syllables) are employed to 
construct a feature set.

FFT-based features refer to the features computed by the STFT. In this work, 
two FFT-based features (spectrogram and long-term average spectrum (LTAS)) are 
adopted in this work. The LTAS describes the resonance characteristics by computing 
the short-term Fourier magnitude spectra [45], which have shown promising perfor-
mance in speech sentiment analysis and pathological speech analysis [46–48].

Auditory-based features are proposed to simulate the clinical diagnosis. Schizo-
phrenia is diagnosed by clinicians through a comprehensive evaluation of speech 
and behaviors. Therefore, speech signals are necessary to be analyzed by combining 
with human auditory characteristics. In this study, MFCC and its modification, Gam-
matone cepstral coefficient (GTCC) [49], are extracted to detect schizophrenia. The 
MFCCs and GTCCs are computed using a series of filters that are designed according 
to the frequency response characteristics of the human auditory system.

The spectral envelope feature is also commonly used to describe the vocal tract charac-
teristics in speech production. In this work, LP and its deformations, stabilized weighted 
linear prediction (SWLP) [50] and extended weighted linear prediction (XLP) [51], are 
tested on the schizophrenic speech data set. The SWLP is an improved WLP that is pro-
posed to model speech by applying the temporal weighting of the square of the residual 
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signal [50]. The XLP is a further generation of WLP and SWLP methods, which allows 
temporal weighting on a finer time scale [51]. The SWLP and XLP have performed well 
on the speech recognition tasks and pathological speech detection [52, 53].

The features mentioned above combined with four classifiers are tested on schizo-
phrenic speech data set. The overall performances are listed in Table 4 using accuracy, 
precision, recall, and F1-score. The bold font in Table  4 represents the highest value 
in each type of features using different classifiers. It can be seen that fluency feature, 
spectrogram, GTCC, and XLP achieve the highest F1-score in its corresponding feature 
group. When compared the results in Tables 3 and 4, it can be seen that the proposed 
Sch-net has a better performance than the models based on feature engineering and 
classifiers.

Time‑domain feature

As shown in Table  4, the F1-score of schizophrenic speech detection using the STE 
reaches 0.6306. Owing to the difficulty in expression for schizophrenic patients, the 
intensity of schizophrenic speech tends to be lower than that of controls. The STE fea-
ture can describe the intensity of speech, but it may be influenced by the different dis-
tances between the recording equipment and speakers. Thus, the performance of the 
STE feature is not as good as the fluency feature.

Though studies [28, 30–32] have proved that there are significant differences in pitch 
between schizophrenic speech and normal speech, the pitch gains the worst perfor-
mance among time-domain features. The results are consistent with the results in [30, 
37], in which the distribution of pitch shows no significant differences between the two 
groups.

Fluency feature performs well on the schizophrenic speech detection, owing to the 
disordered thought and language impairments of patients [54]. The cognitive impair-
ment also contributes to the incoherence of speech.

FFT‑based spectral feature

The LTAS achieves 62.11% accuracy on the schizophrenic speech data set. The LTAS 
is calculated as the average of a spectrogram, reflecting the spectrum of glottal source 
and vocal tract [55]. Results in [30] have shown that schizophrenic speech has lower 
variations in energy than normal speech. The unexpected accuracy using LTAS may be 
caused by the average operation that eliminates the differences in variations between 
two groups.

The spectrogram achieves better performance than the LTAS, which is the time-fre-
quency  representation of speech. It not only contains the energy distribution in fre-
quency bands but also reflects the pitch and formant information. It has been proven 
that schizophrenic speech have less variability in pitch and voice intensity, smaller range 
of second formant than normal speech [28, 30–32]. Thus, the spectrogram covers more 
effective features for discriminating patients from controls than the LTAS does.
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Auditory‑based spectral feature

The GTCC achieves a better performance than the MFCC on the schizophrenic speech 
detection task, which is caused using different auditory filters. The MFCC is com-
puted based on a series of triangular bandpass filters with equal bandwidth. The GTCC 
employs the Gammatone filters to model the human auditory response, which are with 
equivalent rectangular bandwidth [56]. The use of Gammatone filters minimizes the loss 
of spectrum information and increases the correlation among the outputs of the filters 
[56]. Therefore, the GTCC contains more effective information to detect schizophrenia 
than the MFCC.

Spectral envelope feature

The F1-scores of schizophrenic speech detection using LP, SWLP and XLP are above 0.9. 
The SWLP and XLP have slightly better results than LP. The results of spectral envelop 
features are gained when the order of LP is set as 38 [57, 58]. Results in [32, 37] have 
shown that formant is an indicator to distinguish schizophrenic speech from controls. 
The LP reflects the characteristics of the vocal tract, such as the frequency of formants. 
However, the LP analysis relies on the excitation signal, which is usually affected by the 
harmonics. The SWLP reduces the effect by composing the temporal weights on the 
closed-phase interval of the glottal cycle [53]. In addition, the XLP improves the time 
scale on the spectral envelop by weighting each lagged speech signal separately [53]. 
The SWLP and XLP highlight the formant information that can be used to distinguish 
patients from controls. Thus, the SWLP and XLP achieve better performance on clas-
sifying schizophrenia and controls than the LP.

Comparison with classic deep neural networks

In this subsection, comparisons between five neural networks and our model are con-
ducted. The five networks are AlexNet [59], VGG16 [60], ResNet34 [61], DenseNet121 
[62], and Xception [63], which are commonly used for speech recognition and classi-
fication tasks [64–68]. AlexNet [59] is the winner of the ImageNet Large Scale Visual 
Recognition Challenge in 2012, which reduces overfitting and controls the model com-
plexity of the FC layers using dropout. VGG16 [60] is a good benchmark architecture for 
classification tasks, which is consisted of 13 Conv layers, 3 FC layers, and 5 pooling lay-
ers. ResNet34 [61] is introduced to alleviate the degradation problem caused by increas-
ing stacked layers via adding shortcut connections. To reduce the impact on vanishing 
gradient, the feed-forward fashion in the connection between each layer to every other 
layer is used in DenseNet121 [62]. DenseNet121 also can strengthen the propagation 
of features and reduce the number of parameters [62]. To obtain fast convergence and 
good performance on the model’s expressive ability, Xception [63] replaces the inception 
modules with depthwise separable convolutions in deep CNN. Table 5 lists the 95% CIs 
for seven metrics of classifying schizophrenic speech and normal speech using the five 
deep neural networks and our method. Fig. 2 presents the box plots of the classification 
accuracies for the models.

As shown in Table  5 and Fig.  2, the accuracies of schizophrenic speech detec-
tion using AlexNet and VGG16 are 92.72% (95% CI: 92.49–92.95%) and 92.47% 
(95% CI: 92.25–92.69%), respectively. The depth of AlexNet and VGG16 is shallow, 
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contributing to the insufficient information in feature maps. ResNet34 achieves 
94.39% (95% CI: 93.98–94.80%) accuracy on the schizophrenic speech data set, owing 
to the introduction of the residual module. DenseNet121 and Xception gain slightly 
better results than ResNet34, owing to the networks not only adopt the shortcut con-
nections but also utilize dense connection/depthwise separable convolutions to make 
more efficient use of model parameters. The proposed Sch-net in this work achieves 
a better performance than the five networks, because it can gain the local and global 
features simultaneously via CBAM and skip connections. The feature map contains 
more abundant information to better distinguish schizophrenia from controls.

Table 5  Performance of schizophrenic speech detection using classic deep neural networks and 
the proposed Sch-net

Evaluated 
indicators

95% CI

AlexNet VGG16 ResNet34 DenseNet121 Xception Sch-net (ours)

Accuracy 0.9272 0.9247 0.9439 0.9469 0.9503 0.9768

(0.9249,0.9295) (0.9225,0.9269) (0.9398,0.9480) (0.9449,0.9489) (0.9482,0.9524) (0.9739,0.9797)

Precision 0.9279 0.8937 0.9074 0.9555 0.9462 0.9639

(0.9226,0.9333) (0.8900,0.8973) (0.9024,0.9124) (0.9516,0.9594) (0.9421,0.9503) (0.9585,0.9693)

Recall 0.9268 0.9643 0.9890 0.9375 0.9551 0.9908

(0.9251,0.9285) (0.9643,0.9643) (0.9822,0.9958) (0.9375,0.9375) (0.9545,0.9556) (0.9898,0.9918)

F1-score 0.9273 0.9276 0.9463 0.9464 0.9506 0.9771

(0.9252,0.9293) (0.9257,0.9295) (0.9423,0.9503) (0.9445,0.9483) (0.9486,0.9526) (0.9743,0.9799)

Sensitivity 0.6399 0.8795 0.9798 0.9262 0.9482 0.9914

(0.6244,0.6554) (0.8715,0.8875) (0.9725,0.9870) (0.9244,0.9280) (0.9409,0.9556) (0.9863,0.9964)

Specificity 0.8747 0.9268 0.9399 0.9938 0.9646 0.9738

(0.8564,0.893) (0.9164,0.9372) (0.9331,0.9467) (0.9910,0.9965) (0.9567,0.9724) (0.9656,0.9820)

AUC​ 0.7935 0.9447 0.9888 0.9908 0.9924 0.9978

(0.7868,0.8003) (0.9422,0.9472) (0.9855,0.9921) (0.9899,0.9917) (0.9912,0.9936) (0.9965,0.9990)
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Fig. 2  Box plots of accuracy for classifying schizophrenic speech and controls using five neural networks and 
Sch-net
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Network visualization using Grad‑CAM

In recent years, deep learning methods have already achieved high accuracy that 
approaches the manual diagnosis accuracy in many fields through improving the com-
puting capabilities and expanding the data set. It can simplify and speed up the diagno-
sis, and reduce the workload of doctors. However, the process of generating predicted 
labels from input data is still uninterpretable. To make the decision-making process 
in deep learning transparent, this work applies the Grad-CAM [69] to Sch-net using 
speech samples from schizophrenic group and healthy group. Grad-CAM is a visuali-
zation method to show the importance of each neuron for the classification using the 
gradient information in the last Conv layer [69]. The Grad-CAM highlights the more 
discriminative parts as brighter regions in the heatmap. We attempt to consider how the 
Sch-net works on making good use of features, through observing the spectrogram and 
activation maps. In this subsection, the input spectrogram and its corresponding activa-
tion map generated in the last Conv layer of normal speech and schizophrenic speech 
are shown in Fig. 3.

In Fig. 3, spectrograms of normal speech and schizophrenic speech are shown in a and 
c, respectively. Activation maps of normal speech and schizophrenic speech are depicted 
in b and d. The brighter region in the spectrogram means more energy concentrated, 
and that in the activation map means larger weight located.

Spectrogram_control Activation_control Activation_schizophreniaSpectrogram_schizophrenia

(a)

(b)

(c)

(d)

Fig. 3  Spectrogram and corresponding activation map of normal speech and schizophrenic speech in four 
emotions. a The spectrogram and corresponding activation map of normal speech and schizophrenic speech 
in calm emotion. b The spectrogram and corresponding activation map of normal speech and schizophrenic 
speech in anger emotion. c The spectrogram and corresponding activation map of normal speech and 
schizophrenic speech in fear emotion. d The spectrogram and corresponding activation map of normal 
speech and schizophrenic speech in happiness emotion
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As shown in Fig. 3a, c, schizophrenic speech and normal speech have different distri-
butions of concentrated energy in the spectrogram. Through the horizontal comparison, 
two findings of two groups can be seen in this figure, which can be listed as follows:

(1)	 The energy concentration in the frequency domain of schizophrenic speech is 
almost below 5000 Hz, while normal speech has a wider range of energy concentra-
tion bands, that can be extended from 8000 to 10,000 Hz. Blunted affect is a typi-
cal symptom in schizophrenia [70]. Patients with negative symptoms may speak 
with a dull monotone voice [71], resulting in a small range of the energy concentra-
tion region. While healthy controls have a more flexible emotional expression. The 
angry, fearful and happy speech exhibit a higher intonation, faster speed rate, and 
more energy in higher frequencies [72]. And the sad speech changes slowly and 
has high energy concentration in lower frequencies [73]. Thus, normal speech has a 
wider range of energy distribution than schizophrenic speech.

(2)	 It can be seen that schizophrenic speech and normal speech both have concen-
trated energy region and apparent formant horizontal stripes in the low-frequency 
bands below 2000 Hz. The difference between the two groups is the shape of for-
mant horizontal stripes. For schizophrenic speech, the stripes are almost contin-
uous, which is inconsistent with the energy distribution characteristics of vowels 
and consonants. The vowels have energy concentration in both low- and high-fre-
quency range [74]. The unvoiced consonants mainly have high-frequency energy 
components, and they rarely have formants [75]. According to the texture used 
in this work, the continuous-time speech signals comprise both vowels and con-
sonants. Therefore, there are supposed to show a short disappearance of formant 
horizontal stripes on the spectrogram. It can be guessed that the continuous stripes 
in the spectrogram of schizophrenic speech may be caused by the incorrect place-
ment of articulators during speech production. The wrong articulation process 
leads to the unvoiced consonants are produced as voiced consonants.

Observing both the spectrogram and its corresponding activation map in Fig. 3, it can 
be seen that the Sch-net can capture the features in high-frequency bands for normal 
speech, and can give larger weights to the features in low-frequency bands for schiz-
ophrenic speech. The results of Sch-net are consistent with human visual perception, 
which is difficult to achieve using the models based on feature engineering. The Sch-net 
has excellent learning ability to extract features, and it achieves better performances on 
schizophrenic speech detection than traditional feature engineering models adopted in 
this work.

Further validation of the proposed Sch‑net using LANNA children speech database

Schizophrenia is a neurodevelopmental disorder affecting the language expression 
of patients [76]. SLI, also termed development dysphasia, is described as a neurologi-
cal disorder of the brain [77–80]. Patients with SLI exhibit delayed language acquisition 
[81], slower linguistic processing [82], and difficulties in grammar or specific subcompo-
nents of grammar [83, 84]. To further validate model effectiveness and generalization, 
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the Sch-net is tested on LANNA children speech database [85] for the classification of 
patients with SLI and healthy controls in this subsection.

LANNA children speech database [85] is the first and only publicly open speech cor-
pora for children with SLI, which comprises 2173 speech signals from 54 children with 
SLI (aged from 6 to 11 years) and 1680 speech signals from 44 controls (aged from 6 to 
10 years). This data set is composed of 13 parts: vowels, consonants, syllables, six types 
of words, sentences, auditory differentiation, and description of the picture. Audios were 
recorded in a schoolroom and a consulting room using Dictaphone, MD and micro-
phone. The background noise in natural environments affects the quality of speech sig-
nals, leading to difficulties in speech signal processing.

Previous studies [85–91] had demonstrated that speech can be viewed as a sym-
bol of diagnosing SLI. In [85–87], 1582 acoustic features were extracted from 34 low-
level descriptors and its 21 statistical functionals. The features were given as inputs 
of the SVM, achieving 96.94% accuracy on the LANNA children speech database. In 
[88], Gaussian posteriorgrams trained on MFCC features were employed to discrimi-
nate patients with SLI and healthy controls. The kernel extreme learning machine were 
trained with the speech signals, and it performed an accuracy of 99.41% on the test data. 
Apart from MFCC, in [89], Tonnetz and Chroma were calculated, combined with SVM, 
RF and Recurrent Neural Network to detect SLI. The Tonnetz and Chroma reached 
accuracies of 70% and 71%, respectively. In the four studies [85–89], high accuracies had 
been achieved for speaker-dependent classification.

In contrast, some methods were proposed for speaker-independent classification in 
[90, 91]. The top-20 LPC features were selected from 408 LPCs using Mann–Whitney 
U test and Spearman’s correlation in [90], which achieved an accuracy of 97.90% on the 
SLI detection task. In [91], a feed-forward neural network was proposed for classifying 
patients with SLI and healthy controls. The glottal features and MFCCs were adopted as 
the inputs of the network and the classification accuracy reached up to 98.82%.

In this subsection, fivefold cross-validation is employed. SLI data set is divided with 
80% for training and 20% for testing. Table 6 gives the classification results using state-
of-the-art methods, deep neural networks and the proposed Sch-net. As can be seen, 
our method outperforms the classic deep neural network and state-of-the-art methods. 
The proposed Sch-net can extract discriminant features of speech signals for classifying 
healthy individuals and those suffered from SLI.

Conclusions
In this work, we propose an Sch-net neural network for automatic detection of schizo-
phrenia based on speech signals. This is the first work to detect schizophrenic speech 
using deep learning techniques. The Sch-net is performed using a set of convolutional 
layers. The global and local features are merged using skip connections, and the effective 
features are highlighted by using CBAM. In the experiments, the advantages of embed-
ding the SC and CBAM into the backbone architecture are verified in ablation studies. 
The proposed model can learn the differences in speech patterns between patients and 
healthy controls automatically, avoiding the requirements of domain knowledge for 
designers. The comparisons with the models based on feature engineering and classic 
deep neural networks are conducted on a schizophrenic speech data set that contains 
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28 schizophrenic patients and 28 healthy controls. The experimental results show that 
the Sch-net has achieved 97.68% accuracy. In addition, we visualize how the model per-
forms on extracting features given an input spectrogram. The Grad-CAM heatmaps 
show the region that the Sch-net focuses on is consistent with human visual perception. 
Finally, the proposed method is further validated on the open access LANNA children 
speech database, achieving 99.52% accuracy on classifying patients with SLI and healthy 
controls.

The clinical diagnosis of schizophrenia is made by expertise psychiatrists based on 
a full psychiatric assessment, which depends on the experience of psychiatrists. The 
reports are often affected by the patients’ retrospective recall bias and cognitive limita-
tions. Moreover, the diagnosis is high-cost and time-consuming, and the high patients-
to-clinicians ratio leads to the heavy workload of clinicians. The proposed model can 
serve as an aid to psychiatrists for the diagnosis of schizophrenia. It can automatically 
discriminate schizophrenic speech from controls, which may be helpful to the prelim-
inary screening for schizophrenia. In addition, it can provide low-cost and long-term 
monitoring for patients with schizophrenia, and reduce the workload of clinicians.

Our work still has several limitations. First, the proposed model can only achieve the 
classification of patients and healthy controls, but cannot assess disease severity. Sec-
ond, the generalization of the proposed model needs to be further verified. Future work 
will seek to perform extensive validation using a larger number of databases that record 
speech signals of patients with psychological/neurological disorders.

Methods
In this work, we have developed a CNN-based architecture, termed Sch-net, to clas-
sify schizophrenic speech and normal speech. The architecture of the proposed model 
is depicted in Fig. 4. The input is the spectrogram containing time–frequency domain 
information of speech signals. There are 12 convolutional (Conv) layers, 6 pooling layers, 
skip connections, an attention module and a fully connected (FC) layer. The FC layer is 
composed of two hidden layers. A softmax function is employed to the output of the FC 
layer, and the output of the softmax is the classification result of speech samples. The 

Table 6  Results of SLI detection using state-of-the-art methods, classic deep neural networks and 
the proposed Sch-net

Method Accuracy Precision Recall F1-score

State-of-the-art method Grill [85–87] 0.9694 1.0000 0.9474 0.9730

Ramarao [88] 0.9941 - - -
Slogrove [89] 0.9800 0.9900 0.9900 0.9900

Sharma [90] 0.9790 - - -
Reddy [91] 0.9882 - - -

Deep Neural Network AlexNet 0.9132 0.9585 0.8810 0.9181

VGG16 0.9230 0.9897 0.8787 0.9309

ResNet34 0.9329 0.9489 0.9286 0.9386

DenseNet121 0.9461 0.9397 0.9643 0.9518

Xception 0.9622 0.9514 0.9863 0.9685

Sch-net (our) 0.9952 0.9979 0.9937 0.9958
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backbone network and two essential components (skip connections and CBAM) of Sch-
net are described below.

Backbone network of Sch‑net

The backbone network of Sch-net shown in Fig.  5 is consisted of Conv layer, pooling 
layer, batch normalization (BN) component, rectified linear unit (ReLU) and FC layer. 
When spectrogram is given as the input of Sch-net, local features in spectrogram are 
extracted via Conv layer. The dimension of features and the amount of computation are 
reduced in the pooling layer via max pooling operation [92]. As the number of hidden 
layers increases, the network would suffer from the gradient vanishing and exploding 
problems. To address these problems, the BN layer and ReLU activation function are 
adopted. The introduction of BN components can also speed up the convergence, cut 
down the regularization process, and enable to train the network with a larger learning 
rate [93, 94]. ReLU is a typical activation function in deep learning, which works bet-
ter than sigmoid and tanh activation functions in speech recognition tasks [95, 96]. It 
removes the negative values in the feature map and is identity for all positive values [97]. 
The networks can be trained effectively using the ReLU even without pre-training [98]. 
At the end of the network, the FC layer and softmax function are employed to achieve 
the classification task. The FC layer is essential to transfer CNN-based network visual 
representation in classification tasks [99]. Each node in the FC layer is connected to all 
activation values in the previous layers.

Conv + BN + ReLU

Max-pooling
Average-pooling

Concatetation

FC + Softmax
Attention

Conv1 Conv2 Conv3
Conv4

Conv5

Conv6

Conv7

skip1

skip2

skip3

Conv8

Fig. 4  Architecture of Sch-net for automatic schizophrenic speech detection

Conv + BN + ReLU

Max-pooling

FC + Softmax

Input Output

Fig. 5  Diagram of the backbone network of Sch-net
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Skip connections

The backbone network of Sch-net can extract the local features in spectrogram via shal-
low layers and max-pooling operation. There is no evidence that schizophrenic patients 
have a special pattern in pronunciation or schizophrenic speech has prominent local 
acoustic features. Thus, global features are supposed to be extracted for schizophrenic 
speech detection. To retain more original and global information in the input feature 
map, average pooling operation and skip connections are added to the backbone net-
work of Sch-net. Average pooling considers all the values in the batch that has an equal 
size with the pooling kernel. Skip connection allows the low-level feature map to skip 
some layers in the neural network and merge with high-level feature maps [100]. This 
connection combines the features after max-pooling and average-pooling, superim-
posed into a feature. Skip connections expand the dimensions of features in the network, 
providing more information for the classification task. The diagram of the backbone net-
work of Sch-net with skip connections is given in Fig.6.

Attention mechanism

The output of skip connections contains low-level and high-level features. To emphasize 
the meaningful features and suppress the unnecessary ones for the classification task, an 
attention module is added to the backbone network. The output of the attention module 
is calculated as the weighted sum of the input values [101]. The bigger weights mean 
the more attention would be paid to the input. This work adopts a lightweight and gen-
eral module, CBAM [102], to improve the performance of the network. The CBAM is 
composed of channel and spatial attention modules [102]. The channel attention module 
focuses on “what” is the effective part in the feature map by utilizing max-pooling and 
average-pooling with a shared network [102]. The spatial attention module tells “where” 
to focus or suppress by employing a Conv layer [102]. The CBAM used in the Sch-net 
can effectively refine the intermediate feature map with negligible computation and 
overheads.

Input Output

Conv + BN + ReLU

Max-pooling
Average-pooling

Concatetation
FC + Softmax

Fig. 6  Diagram of the backbone network + skip connections of Sch-net
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