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Abstract 

Purpose:  This study used machine learning classification of texture features from 
MRI of breast tumor and peri-tumor at multiple treatment time points in conjunction 
with molecular subtypes to predict eventual pathological complete response (PCR) to 
neoadjuvant chemotherapy.

Materials and method:  This study employed a subset of patients (N = 166) with PCR 
data from the I-SPY-1 TRIAL (2002–2006). This cohort consisted of patients with stage 
2 or 3 breast cancer that underwent anthracycline–cyclophosphamide and taxane 
treatment. Magnetic resonance imaging (MRI) was acquired pre-neoadjuvant chemo-
therapy, early, and mid-treatment. Texture features were extracted from post-contrast-
enhanced MRI, pre- and post-contrast subtraction images, and with morphological 
dilation to include peri-tumoral tissue. Molecular subtypes and Ki67 were also included 
in the prediction model. Performance of classification models used the receiver oper-
ating characteristics curve analysis including area under the curve (AUC). Statistical 
analysis was done using unpaired two-tailed t-tests.

Results:  Molecular subtypes alone yielded moderate prediction performance of PCR 
(AUC = 0.82, p = 0.07). Pre-, early, and mid-treatment data alone yielded moderate 
performance (AUC = 0.88, 0.72, and 0.78, p = 0.03, 0.13, 0.44, respectively). The com-
bined pre- and early treatment data markedly improved performance (AUC = 0.96, 
p = 0.0003). Addition of molecular subtypes improved performance slightly for 
individual time points but substantially for the combined pre- and early treatment 
(AUC = 0.98, p = 0.0003). The optimal morphological dilation was 3–5 pixels. Sub-
traction of post- and pre-contrast MRI further improved performance (AUC = 0.98, 
p = 0.00003). Finally, among the machine-learning algorithms evaluated, the RUS-
Boosted Tree machine-learning method yielded the highest performance.

Conclusion:  AI-classification of texture features from MRI of breast tumor at multiple 
treatment time points accurately predicts eventual PCR. Longitudinal changes in tex-
ture features and peri-tumoral features further improve PCR prediction performance. 
Accurate assessment of treatment efficacy early on could minimize unnecessary toxic 
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chemotherapy and enable mid-treatment modification for patients to achieve better 
clinical outcomes.

Keywords:  Molecular subtypes, Neoadjuvant chemotherapy, Magnetic resonance 
imaging, Artificial intelligence, Texture features, Radiomics

Background
Neoadjuvant chemotherapy (NAC) [1] is often given to patients with breast cancer 
prior to surgical excision of the tumor in order to reduce the tumor size and minimize 
risk of distant metastasis. For assessing the treatment response at the end of NAC, the 
pathological complete response (PCR) [2, 3], which is defined as absence of invasive 
cancer in the axillary lymph nodes and breast, is the standard. Patients who achieve 
PCR are more likely to be the candidate of breast conserving surgery and have longer 
overall survival and recurrence-free survival [2, 3]. It is of clinical importance to 
know early in the NAC process whether the patient will respond, because clinicians 
can then adjust medications or choose alternative methods such as hormone ther-
apy or radiation therapy and discontinue ineffective chemotherapy. For this reason, 
it is desirable to predict PCR using pre- and early treatment data instead of waiting 
months until the end of NAC to know if the treatment was effective. MRI is an attrac-
tive non-invasive method of monitoring treatment progress because it provides good 
soft tissue contrast and a high-resolution 3D view of the whole breast. Texture analy-
sis and machine learning is capable of processing MRI images and extracting patterns 
that may be indiscernible to the human eye.

Many studies have utilized molecular subtypes [4–6], tumor volume [4, 7], and breast 
tumor radiomics [8–17] at initial time points to predict eventual PCR. Molecular sub-
types of breast cancer play an important role in informing whether patients are more 
likely to respond to NAC. However, by themselves, they do not have sufficient accuracy 
to predict eventual PCR [4–6]. Radiological assessment and tumor volume also do not 
have sufficient accuracy to predict eventual PCR either [7]. Furthermore, a few studies 
have used texture analysis and machine learning [8–17] of breast MRI to predict PCR. 
However, most of these texture analysis studies analyzed the contrast-enhanced tumor 
alone. Peritumoral microenvironment, in addition to the tumor, could play an impor-
tant role in cancer development and chemoresistance [18]. Machine learning may also 
be able to detect early subtle changes in peri-tumoral microenvironment which may 
improve PCR prediction accuracy. To our knowledge, there are no published studies 
using machine learning analysis of tumoral and peri-tumoral texture features at multiple 
treatment time points that include molecular markers and patient demographic data to 
predict PCR.

The goal of this study was to determine whether machine learning classification of 
texture features of breast MRI, in conjunction with molecular subtypes, could accu-
rately predict PCR associated with NAC in breast cancer. We performed PCR predic-
tion on: (i) texture features at individual treatment time points and combination of time 
points (manually segmented tumor from post-contrast MRI); (ii) MRI tumor texture 
features + molecular subtypes; (iii) tumor with peri-tumor using automated graded 
morphological dilation, and (iv) post- and pre-contrast subtraction MRI with and with-
out “dilation”. We also compared the prediction performance of 5 machine-learning 
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classifiers: Ensemble, K-nearest neighbor, support vector machine, Naïve Bayes, and 
Decision Tree.

Results
In Table 1, a subset of the I-SPY-1 patient pool with PCR and MRI data is analyzed. For 
comparison, the molecular subtypes of the entire data of the I-SPY-1 data are shown. 
The % prevalence of molecular subtypes in this subset was similar to the parent dataset.

Figure 1 shows the ranking of clinical features, post-contrast MRI texture at tp1, tp2, 
and tp1 + tp2. The top four clinical features were: the presence of bilateral cancer, HER2 
positivity, and HR/HER2+, and Ki67. For tp1, the top four MRI texture features were: 
standard deviation, variance, root mean square, and smoothness. For tp2, smoothness, 
standard deviation, variance, and root mean square. For tp1 + tp2, entropy, mean, cor-
relation, and root mean square. Note that the highly ranked features might be corre-
lated, and thus not all highly ranked features would contribute to improving prediction 
performance.

Table 1  Molecular subtypes of breast cancer for those with PCR and the entire data ISPY-1 data set

ER estrogen receptor, PgR progesterone receptor, HR hormone receptor, HER2 human epidermal growth factor receptor 2, 
Ki67 a cellular marker for proliferation

Characteristics PCR dataset n = 166 (%) I-SPY 1 available 
data n = 221 (%)

Age ± SD (years) 48.20 ± 8.88 48.25 ± 8.89

Caucasian 165 (74.66%)

African American 42 (19.00%)

Asian 9 (4.07%)

Native Hawaiian/Pacific Islander 1 (0.45%)

American Indian/Alaskan Native 0 (0.00%)

Multiple race 2 (0.90%)

ER

 ER+ 95 (57.23) 125 (56.60)

 ER− 71 (42.77) 94 (42.53)

 Missing 2 (0.90)

PgR

 PgR+ 76 (45.78) 104 (47.05)

 PgR− 90 (54.22) 117 (52.94)

 Missing 2 (0.90)

HR

 HR+ 100 (60.24) 131 (59.28)

 HR− 66 (39.76) 90 (40.72)

 Missing 2 (0.90)

HER2

 HER2+ 49 (29.52) 67 (30.32)

 HER2− 117 (70.48) 149 (6.74)

 Missing 5 (2.26)

3 level HR/HER2

 HR+/HER2− 74 (44.57) 96 (43.44)

 HER2+ 49 (29.51) 67 (30.32)

 Triple− 40 (24.09) 53 (23.99)

 Missing 5 (2.26)
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Table 2 shows the PCR prediction performance analysis on the tumor contour based 
on the post-contrast MRI with morphological dilation. The AUC of PCR prediction 
using molecular subtype was 0.82. The AUC of PCR prediction using MRI texture only 
at tp1, tp2, and tp3 were 0.88, 0.72, and 0.78, respectively. By contrast tp1 + tp2 yielded 
markedly better performance with an AUC of 0.96. The AUC of MRI texture + molecu-
lar subtypes further improved AUC slightly for individual time points and substantially 
for the combination time points. The p-values also became comparatively smaller for the 
combination time points. We did not perform texture analysis on data for tp4 because 
the tumor had markedly shrunk or mostly disappeared for most patients. Similar con-
clusions were reached for most other performance measures (i.e., sensitivity, specificity, 
etc.). We also performed tp1 + tp3 and tp2 + tp3 (data not shown), and tp1 + tp2 was the 
best performer among any paired time point combination.

To evaluate the contribution of peri-tumor to prediction performance, we analyzed 
data without dilation, and with 3, 5, and 7-pixel dilation (Fig. 2). The data were those of 
tp1 + tp2 with inclusion of molecular subtypes. The performance of both 3- and 5-pixel 
dilation yielded better accuracy than that with no dilation and the 7-pixel dilation. The 
performance of 3- and 5-pixel dilation was also similar to each other. The performance 
of 7-pixel dilation was similar to that with no dilation.

We further compared the performance using image data of post-contrast MRI with 
that of subtraction for pre- and post-contrast MRI, and 5-pixel dilation of the subtracted 

Fig. 1  Ranking parameters for a molecular subtypes, post-contrast MRI texture at b tp1, c tp2, and d 
tp1 + tp2

Table 2  ROC metrics for predicting PCR based on molecular subtypes, MRI features at pre- and 
during NAC using Ensemble RUSBoosted Tree classifier

The data were tumor contours based on post-contrast-enhanced MRI with morphological dilation. The numbers in 
parenthesis show the 95% confidence intervals

Time point Features type Sens. Spec. PPV NPV Accuracy AUC​ P-value

– Molecular subtypes 86.48 76.92 91.42 66.66 84 0.82 (0.66, 0.97) 0.07

Tp1 MRI texture only 86.48 84.62 94.12 68.75 86 0.88 (0.77, 1.0) 0.03

Tp2 97.30 38.46 81.82 83.33 82 0.72 (0.53, 0.91) 0.13

Tp3 92.85 30 78.78 60 76 0.78 (0.62, 0.95) 0.44

Tp1 + Tp2 1.00 76.92 92.50 1.00 84 0.96 (0.92, 1.0) 0.0003

Tp1 MRI tex-
ture + molecular 
subtypes

89.18 92.30 97.06 75.00 90 0.86 (0.75, 0.98) 0.005

Tp2 89.18 69.23 89.18 69.23 84 0.80 (0.64, 0.96) 0.068

Tp3 96.42 50 84.38 83.33 84 0.87 (0.74, 0.99) 0.09

Tp1 + Tp2 94.59 92.31 97.22 85.71 94 0.98 (0.94,1.0) 0.0003
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images (Fig. 3). The results showed that the subtraction images and 5-pixel dilation of 
the tumor mask yielded the highest performance accuracy (94%). We also evaluated sub-
traction images with 3 and 7 pixels (data not shown); the accuracies were 93.8 and 78%, 
respectively.

Table  3 shows the performance comparison for post-contrast MRI, pre- and post-
contrast subtraction images, and subtraction image with dilation. The AUC of the 
subtraction image with dilation was the highest, followed by subtraction image, and 
post-contrast MRI only. Similar conclusions were reached for other performance met-
rics. The p-values of the subtraction image with dilation was also the lowest.

Fig. 2  Accuracy for MRI texture of tp1 + tp2 data + molecular subtypes at different dilation voxel diameters

Fig. 3  Accuracy for MRI texture analysis of tp1 + tp2 data + molecular subtypes for using image data of 
post-contrast MRI, subtraction of pre- and post-contrast MRI, and 5-pixel dilation of the subtracted images
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Table  4 shows the results of PCR prediction performance of MRI texture + molecu-
lar subtypes using 5 machine-learning classifiers: Ensemble, KNN, SVM, Naïve Bayes, 
and Decision Tree Fine. The data were tumor contours without morphological dilation 
for combined tp1 + tp2. The Ensemble classifier yielded the highest prediction accuracy 
based on both accuracy and AUC.

Table 5 shows the PCR prediction performance analysis on the tumor contour based 
on the post-contrast MRI with morphological dilation using Ensemble RUSBoosted 
Tree classifier based on single view and multiview methods without using SMOTE. The 
AUC of PCR prediction using molecular subtype was 0.82. The AUC of PCR prediction 
using MRI texture only at tp1, tp2 were 0.88, and 0.72, respectively. By contrast tp1 + tp2 
yielded markedly better performance with an AUC of 0.96. Based on the Multiview tech-
nique the AUC of PCR prediction was 0.96 with slighter wider confidence interval with 
lower bound 0.91 and upper bound 1.00 and increased accuracy of 94.0.

Table 6 shows the PCR prediction performance analysis on the tumor contour based 
on the post-contrast MRI with morphological dilation using Ensemble RUSBoosted Tree 
classifier based on single view and multiview methods with SMOTE. The AUC of PCR 

Table 3  ROC metrics for predicting PCR using post-contrast image, subtraction image, and 
subtraction image with dilation at tp1 + tp2 using Ensemble RUSBoosted Tree classifier

The numbers in parenthesis show the 95% confidence intervals

Method Sens. Spec. PPV NPV Accuracy AUC​ P-value

Post-contrast image 89.18 53.84 84.61 63.64 80 0.68 (0.48, 0.87) 0.212

Subtraction image 89.18 61.54 86.84 66.66 82 0.83 (0.70, 0.97) 0.128

Subtraction + 5 pixel dilation 94.59 92.31 97.22 85.71 94 0.98 (0.94, 1.0) 0.00029

Table 4  MRI texture analysis using combined tp1 + tp2 MRI data and molecular subtypes using 
different machine learning classifiers

The number in parenthesis showed the 95% confidence intervals. These data were tumor contour without morphological 
dilation

Method Sens. Spec. PPV NPV Accuracy AUC​ P-value

Rusboosted Tree 94.59 92.31 97.22 85.71 94 0.98 (0.94, 1.0) 0.00029

Decision Tree 1.00 0 74.00 NA 90 0.92 (0.81, 1.0) 0.00459

SVM coarse Gaussian 94.59 0 72.92 0 74 0.72 (0.55, 0.88) 0.5738

Kernel Naïve Bayes 70.27 69.23 86.66 45.00 70 0.70 (0.55, 0.85) 0.7925

KNN 94.59 0 72.92 0 70 0.60 (0.43, 0.76) 0.7924

Table 5  ROC metrics for predicting PCR based on molecular subtypes, MRI features at pre- and 
during NAC using Ensemble RUSBoosted Tree classifier based on single view and multiview without 
SMOTE

The data were tumor contours based on post-contrast-enhanced MRI with morphological dilation. The numbers in 
parenthesis show the 95% confidence intervals

Time point Features type Sens. Spec. PPV NPV Accuracy AUC​

(View 1) Molecular subtypes 86.48 76.92 91.42 66.66 84 0.82 (0.66, 0.97)

Tp1 (view 2) MRI texture only 86.48 84.62 94.12 68.75 86 0.88 (0.77, 1.0)

Tp2 (view 3) 97.30 38.46 81.82 83.33 82 0.72 (0.53, 0.91)

Tp1 + Tp2 (view 4) 1.00 76.92 92.50 1.00 84 0.96 (0.92, 1.00)

Multiview Molecular subtype 
and MRI texture

97.0 85.0 94.70 91.70 94.0 0.96 (0.91, 1.0)
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prediction using molecular subtype was 0.69. The AUC of PCR prediction using MRI 
texture only at tp1, tp2 were 0.86, and 0.76, respectively. By contrast tp1 + tp2 yielded 
performance with an AUC of 0.88. However, based on the Multiview technique using 
SMOTE, contrast tp1 + tp2 yielded markedly better performance with an AUC of 0.98.

As different views contain information that describes a particular aspect of data, it is 
obvious that single-view data may contain incomplete knowledge, while multi-view data 
usually contains complementary, which results in a more accurate description of the 
data. Integrating the information contained in multiple views and by balancing the data 
with SMOTE helps to tune the class distribution that positively affect models in seeking 
good splits of the data during training. Hence, it improves the performance in case of 
multiview as compared to single view.

Discussion
This study evaluated whether machine learning classification of texture features from 
breast MRI data obtained at different treatment time points in conjunction with molecu-
lar subtypes could accurately predict PCR associated with NAC in breast cancer. The 
major findings are: (i) molecular subtypes alone yield moderate prediction performance 
of eventual PCR; (ii) pre-, early and mid-treatment data alone also yield moderate per-
formance; (iii) the combined pre- and early treatment data markedly improves predic-
tion performance; (iv) the addition of molecular subtypes data improves performance 
slightly for individual time point data, and substantially improves performance for com-
bined pre- and early treatment MRI; (v) the optimal morphological dilation was 3–5 pix-
els; (vi) post- and pre-contrast subtraction image with morphological dilation further 
improves performance, and (vii) among the machine-learning algorithms studied, RUS-
Boosted Tree machine-learning method yields the highest performance.

Molecular subtypes alone yielded moderate prediction accuracy of PCR, consistent 
with previous findings [4–6]. Pre-, early, and mid-treatment MRI data alone yielded 
moderate PCR prediction accuracy, consistent with a previous study that used tumor 
volumes at different time points to predict PCR [7] in which they found an AUC at 
pre- and post-treatment time points to be 0.7 and 0.73, respectively. Our study dif-
fered from the study by Hylton et al. [7] and most previous studies [12–17] in that we 
used machine-learning classification and we incorporated additional input parameters 

Table 6  ROC metrics for predicting PCR based on molecular subtypes, MRI features at pre- and 
during NAC using Ensemble RUSBoosted Tree classifier based on single view multiview techniques 
with SMOTE

The data were tumor contours based on post-contrast-enhanced MRI with morphological dilation. The numbers in 
parenthesis show the 95% confidence intervals

Time point Features type Sens. Spec. PPV NPV Accuracy AUC​

(View 1) Molecular subtypes 65.0 69.0 85.70 40.90 66.0 0.69 (0.54, 0.90)

Tp1 (view 2) MRI texture only 68.0 100 100 52.0 76.0 0.86 (0.77, 0.96)

Tp2 (view 3) 70.0 62.0 83.90 42.10 68.0 0.76 (0.58, 0.94)

Tp1 + Tp2 (View 4) 73.0 92.0 96.40 54.50 78.0 0.88 (0.78, 0.97)

Multiview Molecular subtype 
and MRI texture

84.0 100 100 68.40 88.0 0.98 (0.94, 1.00)
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(such as molecular subtypes, data of different time points, and peri-tumoral features 
among others) into our prediction model.

The combined pre- and early treatment MRI data markedly improved prediction 
performance with an AUC of 0.98. A similar study by McGuire et al. also showed that 
MRI data from two time points predicted PCR moderately well (AUC = 0.777) [19]. 
Our study differed from McGuire’s in that our approach included molecular subtypes. 
The addition of molecular subtypes data only moderately improved performance 
of individual time points, but substantially improved performance of the combined 
tp1 + tp2 data. The p-value was markedly smaller for the combination time points 
when molecular subtypes were incorporated into the model. This finding further sup-
ports the notion that longitudinal changes in texture features helps to improve the 
PCR prediction performance.

Peritumoral microenvironment could affect chemoresistance [18]. It is not surpris-
ing that peri-tumoral image features are relevant in predicting treatment response 
[13]. We evaluated texture features with graded morphological dilation to assess the 
contribution of peri-tumoral areas to prediction performance. We found that the 
performance had an inverted U-shape curve with 3–5-pixel dilation yielding opti-
mal prediction performance. This is not unexpected because too little dilation is not 
expected to be helpful and too much dilation would include normal tissue which is 
not helpful either. Similarly, the performance of the subtraction image with dilation 
outperformed both post- and subtraction images. This is not unexpected because 
edge detectors work by dilating an image and then subtracting it away from the origi-
nal to highlight those new pixels at the edges of the object of interest.

We compared the prediction performance of 5 machine learning classifiers. The 
Ensemble classifier yielded the highest prediction accuracy and AUC, followed by the 
Decision Tree classifier. Mani et al. [20] investigated PCR in 20 patients after a single 
cycle of NAC using the following classifiers: Gaussian Naïve Bayes, logistic regres-
sion, and Bayesian logistic regression two Decision Tree-based classifiers (CART36 
and Random Forest), one kernel-based classifier (SVM), and one rule learner (Rip-
per). They showed that imaging and clinical parameters boosted the performance of 
Bayesian logistic regression. Qu et  al. [12] predicted PCR to NAC in breast cancer 
with two combined time points, using a multipath deep convolutional neural net-
work and obtained a similar AUC as our current study. However, they did not include 
molecular subtypes. Tahmassebi et al. applied eight machine learning classifiers using 
a single time point and attained a high AUC using XGboost disease-specific survival 
(DSS) as the standard of reference [21]. Their results suggest that the choice of clas-
sifier is important in determining accuracy; XGboost classifier is also among the top 
performers.

AI-classification of texture features from MRI of breast tumor at multiple treat-
ment time points accurately predicts eventual PCR. Longitudinal changes in texture 
features and peri-tumoral features further improve PCR prediction performance. 
Accurate assessment of treatment efficacy early on could minimize unnecessary toxic 
chemotherapy and enable mid-treatment modification for patients to achieve bet-
ter clinical outcomes. Because PCR is associated with recurrent free survival, this 
approach also has the potential to improve quality of life. Novelty is that the model 
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used multiple time point MRI data and non-imaging data to improve PCR predic-
tion accuracy. Analysis of peri-tumor by graded dilation was also evaluated. Multiple 
machine learning models were evaluated.

This study had a several limitations. This is a retrospective multicenter study. The sam-
ple size is relatively small. These findings need to be replicated in a prospective study 
with a larger sample size. This study used supervised machine learning of texture fea-
ture. Future work could use deep-learning artificial intelligence methods.

Conclusion
Machine learning classification of texture features from MRI of breast tumor at com-
bined time points of treatment can accurately predict pathologic complete response. 
Specifically, inclusion of molecular subtypes, longitudinal changes in texture features 
and peri-tumoral features improve the PCR prediction performance. This accurate 
assessment of treatment efficacy early on could minimize unnecessary toxic chemother-
apy and enable mid-treatment modification to achieve better clinical outcomes.

Methods
Patient cohort

Patients from the I-SPY-1 TRIAL (2002–2006) were used [7, 22, 23]. All patients had 
locally advanced stage 2 or 3 unilateral breast cancer with breast tumors ≥ 3  cm in 
size and underwent anthracycline–cyclophosphamide and taxane treatment. MRI was 
acquired pre-NAC (pre-treatment, time point 1 [tp1]), ~ 2 weeks after the first cycle of 
anthracycline–cyclophosphamide (early treatment, tp2), after all anthracycline–cyclo-
phosphamide was administered but before taxane (mid-treatment, tp3), and post-NAC 
and before surgery (post-treatment, tp4). In addition to imaging data, molecular sub-
types were also included in the prediction model, and they included HR+/HER2−, 
HER2+, with triple negative, HR+/−, PgR+/−, ER+/−, and level of Ki67 (see Table 1 
for definition of abbreviations). Full patient characteristics and demographic data are 
shown in Table  1. There is a total n = 121 patients in the available dataset, however a 
clinical and outcome excel file referring sheet TCIA outcome subset contains PCR for 
n = 166 subject only. The remaining subjects had missing data and were not applicable 
for PCR prediction. Patients available at (https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​
Public/​ISPY1). The ground truth was PCR status, defined as complete absence of inva-
sive cancer in the breast and axillary lymph nodes after NAC. The sample size was 166 
patients divided into two classes based on PCR status. 124 achieved full PCR and 42 had 
residual cancer after NAC and did not achieve full PCR. The results were computed with 
and without SMOTE to handle the imbalance of the data. Moreover, the k-fold cross-
validation technique was employed to handle the overfitting.

MR imaging protocol

The MR imaging protocol as detailed in [24, 25] was used in our study according to the 
below information. MR imaging was performed by using a 1.5-T field strength MR imag-
ing system and a dedicated four- or eight-channel breast radiofrequency coil. Patients 
were placed on the MR imaging table in the prone position with an intravenous catheter 
inserted within the antecubital vein or hand. The image acquisition protocol included 

https://wiki.cancerimagingarchive.net/display/Public/ISPY1
https://wiki.cancerimagingarchive.net/display/Public/ISPY1
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a localization sequence and a T2-weighted sequence followed by a contrast-enhanced 
T1-weighted series. All imaging was performed unilaterally over the symptomatic breast 
in the sagittal orientation. The contrast-enhanced series consisted of a high-resolution 
(1 mm in-plane spatial resolution), three-dimensional, fat-suppressed, T1-weighted gra-
dient-echo sequence (20 ms repetition time, 4.5 ms echo time, 45° flip angle, 16 × 16 cm 
to 20 × 20 cm field of view, 256 × 256 matrix, 60–64 slices, 1.5–2.5 mm slice thickness). 
The imaging time length for the T1-weighted sequence was between 4.5 and 5 min. The 
sequence was performed once before the injection of a contrast agent and repeated two 
to four times after injection of agent.

Preparation of images

The tumor on the first post-contrast image (~ 2 min post-contrast MRI) was manually 
segmented with ITK-SNAP, into tumor masks by a trainee who was supervised and 
reviewed by an experienced breast radiologist (20+ year of experience). Images with 
poor visualization of breast tissue were excluded (usually due to poor contrast visualiza-
tion or faulty fat suppression). In addition, we also calculated subtraction images from 
the pre- and first post-contrast MRI. A peri-tumor mask was obtained using the stand-
ard morphological dilation operation with the spherical structural element containing 
3, 5, and 7 voxels as its diameter using Matlab2019b. Dilated images were obtained for 
post-contrast as well as subtraction images.

Overview of PCR prediction analysis

This study specifically aimed to predict PCR based on several criteria detailed below and 
quantify their contribution to the model. Specifically, the criteria were multiple texture 
features, incorporating molecular subtype, combining images from different time points, 
performing morphological dilation, computing performance based on single and multi-
view, and handling the imbalanced data with synthetic minority oversampling (SMOTE). 
First, we performed PCR prediction using: (i) all molecular subtypes data alone; (ii) 
MRI tumor texture features only at pre-treatment time point using segmented tumor of 
post-contrast MRI; (iii) MRI tumor texture features + molecular subtypes; (iv) texture 
analysis using pre-treatment, different time points during NAC, and their combinations 
by concatenating the time points; (v) texture analysis of peri-tumor mask with graded 
morphological dilation; (vi) post- and pre-contrast subtraction MRI, and (vii) morpho-
logical dilation of the subtraction MRI. We also compared the prediction performance of 
5 machine learning classifiers: Ensemble, K-nearest neighbor, support vector machine, 
Naïve Bayes, and Decision Tree. We optimized the machine learning algorithms to find 
the best combination for our type of data. We also computed the performance based on 
single view and multiple view with and without SMOTE technique.

Multiview representation

In real-world problems, the machine learning applications are used in which we can use 
multiple ways to represent the features using clustering, classification and feature learn-
ing as detailed in [26–32]. In this study, we used multiview classification with different 
feature learning and time points, i.e., imaging with different feature types, non-imaging, 
multiple time points, etc., of an example. For example, a webpage contains words in the 
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page, which can also contain hyperlinks which refer to it from other pages. Likewise, 
internet images can also be reflected by the visual features within it, and text which sur-
round it. In multiple view representation, we simply concatenate different features into 
single one. To represent the multiview approach, a commonly known method such as 
multi-view learning (MVL) is of great interest of the recent years [31, 33–37]. There are 
many approaches discussed in [29, 33, 38–40] which reflect the multiple view learning 
approach is better than the naïve approach which use one view or concatenating all view. 
Xu et al. [30] discussed the MLV methods with two significant principles: consensus and 
complementarity. (1) Consensus principles maximize the agreement among multiple 
view. A co-regularization method [41] is used to minimizes the distance between the 
predictive function of two views as well as the loss within each view. There are various 
methods from the family of co-regularization style methods [39, 42] considered after the 
consensus principle. (2) The complementarity principle assumes each view of data con-
tains some information does not present in the other view. Thus, accurately and compre-
hensively utilizing information from multiple view is expected to produce better models. 
The probabilistic latent semantic analysis [43] using multiview approach model jointly 
the co-occurrences of features and documents from different views and utilized two 
conditional probability to capture the specified structures inside each view to model the 
complimentary information. The maximum entropy discrimination (MED) [44] method 
is used to integrate the two principles into a single framework for Multiview approach. 
MED is widely used in many applications such as feature selection [45], classification 
[28], structured prediction [42, 44, 46], multi-task learning [47]. Moreover, multi-view 
maximum entropy discrimination (MVMED) [48] extends MED to MVL. The MVMED 
method makes full use of all Multiview information of the data by considering the two 
common principles such as complementarity and consensus.

Figure  4 reflects the flow of work. In this research work, we first used multi-view 
stacked Ensemble approach by categorizing the data into different views where view 1 
contain the Molecular subtype variables, view 2 contains the textural feature of MRI at 
first time point (T1), view 3 have textural feature of MRI at 2nd time point (T2), whereas 
view 4 contains textural features of T1 and T2 after concatenation. Then, we split the 
each view into train and test data. The training data of each view train were used to 
train classifiers as per data view (i.e., SVM on View 1, DT on View 2, KNN on View 
3 and NB on View 4) and prediction probabilities of each classifier are used together 
to create a low dimensional dataset which is then used to train our final classifier (i.e., 
RUSBOOST). In contrast, we also applied SMOTE on the training data of each view to 
balance the dataset. Then we applied the similar process as discussed above for normal 
train data of each view.

For single view, we also train the classifiers on each view individually with and without 
applying SMOTE on train data of all views. Finally, we evaluated the performance on all 
classifiers on test data of each view using different performance metrics with respect to 
respect to single/multi-view classification.

Texture features

The texture features are estimated from the Grey-level Co-occurrence Matrix (GLCM) 
[49–51] covering the pixel (image) spatial correlation. Each GLCM input image (u, v)th 
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defines how often pixels with intensity value u co-occur in a defined connection with 
pixels with intensity value v . We extracted second-order features consisting of contrast, 
correlation, mean, entropy, energy, variance, inverse different moment, standard devia-
tion, smoothness, root mean square, skewness, kurtosis, and homogeneity previously 
used in [52–58].

Classification

We applied and compared 5 supervised machine learning classification algorithms: 
Ensemble, K-nearest neighbor (KNN), SVM coarse Gaussian, Kernel Naïve Bayes, and 
Decision Tree Fine. The ensemble includes the RUSBoosted method (random under-
sampling boosting) which is a hybrid data sampling/boosting algorithm which can 
eliminate data distribution imbalance between the classes and improve the classification 
performance of the weak classifiers [59, 60]. KNN is the most widely used algorithm in 
the field of machine learning, pattern recognition, and in many other areas [61]. A model 
or classifier is not immediately built, but all training data samples were saved and waited 
until new observations are needed to be classified. This characteristic of the lazy learn-
ing algorithm makes it better than eager learning which constructs a classifier before 
new observations need to be classified. SVM Coarse Gaussian (SVMCG) is a nonlin-
ear SVM learning technique used for optimization tasks and prediction of new data sets 
from a few given samples [62, 63]. The coarse Gaussian kernel is a fitness function that 
makes the computation process easier and faster [64]. This algorithm works with fast 
binary and hard medium, slow and large multiclass, and kernel scale set [65]. The Kernel 
Naïve Bayes (KNB) [66] algorithm is based on the Bayesian theorem [67] and is suitable 
for higher dimensionality problems. This algorithm is also suitable for several independ-
ent variables whether they are categorical or continuous. Moreover, this algorithm can 

Fig. 4  Schematic diagram to show the flow of our model for prediction of PCR with single and multiview 
classification techniques and with and without SMOTE method



Page 13 of 23Hussain et al. BioMed Eng OnLine           (2021) 20:63 	

be a better choice for average higher classification performance and minimal computa-
tional time in constructing the model. In Decision Tree algorithms, the score generated 
by each Decision Tree for each observation and class is the probability of this observa-
tion originating from this class computed as the fraction of observations of this class in 
the tree leaf. All classification algorithms were performed using Matlab (R2019b, Math-
Works classification App) with typical default parameters used for each of the classifiers. 
Following algorithms were used for classification:

Support vector machine

Support vector machine (SVM) is the most important technique of supervised learn-
ing methods, which is also used for classification purposes. For solving the problems 
related to pattern recognition [68], medical analysis area [69, 70], and machine learn-
ing [71] recently SVM are used. Furthermore, SVMs are also used in many other fields 
such as detection and recognition, recognizing of text, image retrial based on contents, 
biometric systems and speech recognition, etc. To build a single hyperplane or set of 
hyperplanes in infinite space or high dimension, SVM is used. For classifying a good 
classification this hyperplane may also be used. By implementing this, a hyperplane 
which has the greatest distance to nearby training point of any class is achieved. Usually, 
lower generalization fault of the classifier is achieved by larger margin.

Support vector machine tries to find a hyperplane that gives the training example with 
greatest minimum distance. In Support vector machine theory, this is also termed as 
margin. For maximized hyperplane the best margin is attained. There is additional sig-
nificant characteristic for SVM that provides the better generalization results. Support 
vector machine mainly has a two-type classifier which converted data into a hyperplane 
dependent on data that is nonlinear or dimensionally higher.

Kernel trick

The data which is not linearly separable, Müller et al. [72]  recommended kernel trick 
to handle this type of data. To cope up with this type of problem, the nonlinear map-
ping function from the input space is transformed into higher dimensional feature space. 
Thus, in the input space, the dot product between two vectors is expressed by the dot 
product with some kernel functions in the feature space. The SVM coarse Gaussian ker-
nel was trained data that comprised input variable (x) as predictors and output variable 
(y) as responses and cross-validation is performed.

Below equations display the mathematical representation of the coarse Gaussian ker-
nel and the kernel scale set, where P is the number of predictors:

Decision Tree (DT)

The DT classifier checks the dataset similarity that is given and classifies it into differ-
ent separate classes. Decision Trees are used for making classifiers of data depending on 

Gaussian Kernel: K (x, xi) = e−y |x−xi|
2
,

Kernel Scale set: (P) ∗ 4.
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the choice of a feature which fixes and maximizes the data division. These attributes are 
separated into different branches until the end criteria are met.

The Decision Tree classifier is based on supervised learning technique, which used a 
recursive approach by dividing dataset in order to reach at a similar classification. Most 
of the classification problems with large data sets are complex and contain errors, the 
Decision Tree algorithm is most appropriate in these situations. The Decision Tree 
works by taking the objects as an input and give output as yes/no decision. Decision 
Trees use sample selection [73] and also exhibit Boolean functions [74]. The Decision 
Trees are also quick and effective methods used for large classification data set entries 
and provide best decision support proficiencies. There are many applications of using 
DTs such as medical problems, economic and other scientific situations, etc. [75].

K‑nearest neighbor (KNN)

In the field of pattern recognition, machine learning and other different fields, K-nearest 
neighbor is regularly utilized algorithm. KNN is non-parametric method used for both 
classification and regression problems. In both of these cases, the given input consists of 
k-closest training samples in the feature space. The output is dependent that whether we 
use KNN for regression or classification. For KNN classification method, the output is a 
class membership. Any object can be classified based on the majority voting of its neigh-
boring data points with the object being assigned to the class that is common among 
its k-nearest neighbors (where k is a positive integer, typically small). If k = 1, then the 
objects will be classified and assigned to the nearest class of that single neighbors.

The k-nearest neighbors (k-NN) algorithm is a non-parametric technique that is used 
for regression and classification purposes. In both mentioned cases, the given input 
comprises the k-closest training samples in the feature space. The received output is 
dependent on whether we are using k-NN for regression or classification purpose. In 
k-NN classification method, the output is a class membership. On the basis of major-
ity voting of its neighboring data points any object is classified, with the object being 
assigned to the class that is common among its k-nearest neighbors (k is a positive inte-
ger, typically small). If we suppose that k = 1, then the object will be simply classified 
and assigned to the nearest class of that single neighbor. We used the default parameters 
during training/testing of data using KNN algorithm. KNN was used for classification 
complications in [76]. KNN is also termed lazy learning algorithm. A classifier is not 
promptly constructing however all preparation information tests are spared and held up 
until the point that new perceptions should be classified. Due to these characteristics of 
lazy learning algorithm it marks better than excited learning, because it builds a classi-
fier previously new interpretations need to be classified. It is explored by [77] that KNN 
is also more important when it is required to change the dynamic data and more rapidly 
simplified. Different distance matrices are employed for KNN.

Kernel Naïve Bayes (KNB)

The Naïve Bayes classifier is successfully been used in many of the classification prob-
lems successfully, however most recently, the Al-khurayji and Sameh used latest ker-
nel function [78] for classification of Arabic text by yielding the most effective results. 
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Likewise, Bermejo, Gámez, and Puerta employed [79] for feature selection in an incre-
mental wrapper function.

The Naive Bayes classifier is a simple and efficient stochastic classification method and 
is based on Bayesian theory based on supervised classification technique. For each class 
value, it estimates that a given instance belongs to that class [80, 81]. A feature item of 
a class is independent of other feature values called class conditional independence. In 
machine learning, from the family of probabilistic classifiers, Naïve Bayes [82] classifier 
was used which is based on the Bayes’ theorem having strong independence assump-
tions between the features. NB is most popular in classification tasks [83]. This algo-
rithm is most popular since 1950. Due to the good behavior [84], NB is extensively used 
in recent developments [79, 85–88] which try to improve NB performance.

RUSBoosted Tree

The ensemble classifiers comprise a set of individually trained classifiers whose predic-
tions are then combined when classifying the novel instances using different approaches 
[89]. These new learning algorithms by constructing set of algorithms classify new data 
based on the new data points by taking weight of their prediction. Based on these capa-
bilities, these algorithms have successfully been used to enhance the prediction power 
in variety of applications such as predicting signal peptide for predicting protein sub-
cellular location [90], predicting subcellular location and enzyme subfamily prediction 
[91]. The ensemble classifiers in many applications gives relatively enhanced perfor-
mance than the individual classifier. The researchers [92] reported that individual clas-
sifiers during classification can produce different errors, however these errors can be 
minimized by combining classifiers because the error produced by one classifier can be 
compensated by the other classifier.

Mata boosting technique AdaBoost used for weak learners to improve classification 
performance by creating ensemble hypotheses iteratively, these weak hypotheses are 
combined to the unlabelled example. Error is also included with their weights so mis-
classified have increased weights and correctly classified have decreased weights. The 
authors in [93] enhance AdaBoost which increases classification accuracy of imbal-
ance data by improving imbalanced class distribution. RUS is robust than AdaBoost 
as it reduces the class distribution imbalance problem of the training set [59, 94]. RUS 
is the most common and robust Data sampling method due to its simplicity, it intelli-
gently performed under sampling and oversampling until the desired result is archived. 
Verma and Pal also employed different ensemble methods to classify skin diseases; the 
results reveal that ensemble methods yielded more accurate and effective skin disease 
predictions.

Synthetic minority oversampling (SMOTE)

The SMOTE is used to handle the imbalanced data. There exist numerous differ-
ences of distribution for the classification of datasets among the quantities of 
minority class and majority class, which is commonly known as imbalanced data-
set. It is being considered as a challenging problem to learn from imbalanced data-
sets in supervised learning because a standard classification algorithm is designed 
to distribute the dataset in balanced proportion. For this purpose, oversampling is 
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one of the best-known methods. Oversampling creates artificial data to get a bal-
anced dataset distribution. Synthetic minority oversampling (SMOTE) is a kind of 
oversampling method that is most widely used to balance the imbalanced data in 
machine learning. SMOTE technique arbitrarily creates new instances of minority 
class from the nearest neighbors of the minority class. Furthermore, these instances 
are used to view the various features of original dataset and will be considered as 
original instances of the minority class [95, 96].

Several studies have shown significant results for the implementation of oversam-
pling method. The combination of SMOTE with different classification algorithms 
has been implemented and have shown the improved performance of prediction sys-
tems, such as credit scoring, bankruptcy prediction, network intrusion detection and 
medical diagnosis. Region adaptive synthetic minority oversampling technique (RA-
SMOTE) is proposed by Yan et al. and implemented in the detection of intrusion to 
recognize the attack in the network [97]. Sun et al. proposed another hybrid model 
by using SMOTE for unbalanced dataset to be utilized as a helping tool to evaluate 
the enterprise credit for bank [98]. Later, this system was applied to the financial 
data of 552 companies and outperformed than other earlier used traditional models. 
Le et al. employed several oversampling techniques to manage the unbalanced data 
problems related to financial datasets [99, 100].

In medical field, the combination of different classification algorithms with 
SMOTE has been widely used in disease classification and medical diagnosis. Wang 
et  al. presented a hybrid algorithm by using well-known classifier, particle swarm 
optimization (PSO) and SMOTE to enhance the prediction of breast cancer from a 
huge imbalanced dataset [101].

SMOTE is a method for creating synthetic observations (not oversampling the 
observation by with-replacement sampling method) based on the minority observa-
tions that exist in the data set. The synthetic samples of minority class are over-sam-
pled by taking each minority class sample and introducing synthetic examples along 
the line segments which join all or any of the k minority class nearest neighbors. 
So, it randomly picks up the number of samples that are needed, from the k-nearest 
neighbors. This approach minimizes the classifiers overfitting problem by broaden-
ing the minority class decision region.

SMOTE technique boosts the minority class set Smin by producing counterfeit 
samples based on the feature space similarities between existing minority samples. 
The SMOTE technique can be defined as:

For each sample xi in Smin , let SK
i

 be the set of the K-nearest neighbors of xi in Smin 
according to the Euclidian distance metric. To produce a new sample, an element in 
S
K
i

 , denoted as x̂i , is selected and then multiplied by the feature vector difference 
between x̂i and xi and by any randomly selected number between [0, 1]. Finally, the 
obtained vector is added to xi :

where δ ∈ [0, 1] is a random number.

xnew = xi +
(
x̂i − xi

)
· δ,
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These produced samples help to break the ties introduced by ROS and augment 
the original dataset in a manner that, in short, significantly enhances the learning 
process [102, 103].

Performance evaluation measures

The performance was evaluated with the following parameters.

Sensitivity

The sensitivity measure also known as TPR or recall is used to test the proportion of 
people who test positive for the disease among those who have the disease. Mathemati-
cally, it is expressed as:

i.e., the probability of positive test given that patient has disease.

Specificity

The TNR measure also known as Specificity is the proportion of negatives that are cor-
rectly identified. Mathematically, it is expressed as:

i.e., probability of a negative test given that patient is well.

Positive predictive value (PPV)

PPV is mathematically expressed as:

where TP denotes that the test makes a positive prediction and subject has a positive 
result under gold standard while FP is the event that test make a positive perdition and 
subject make a negative result.

Negative predictive value (NPV)

NPV can be computed as:

Sensitivity =

∑
True positive∑

Condition positive
,

Sensitivity =
TP

TP+ FN
,

Specificity =

∑
True negative∑

Condition negative
,

Specificity =
TN

TN+ FP
,

PPV =

∑
True positive∑

Predicted condition positive
,

PPV =
TP

TP+ FP
,
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where TN indicates that test make negative prediction and subject has also negative 
result, while FN indicate that test make negative prediction and subject has positive 
result.

Accuracy

The total accuracy is computed as:

Receiver operating curve (ROC)

The ROC is plotted against the true positive rate (TPR), i.e., sensitivity and false posi-
tive rate (FPR), i.e., specificity values of PCR and non-PCR subjects. The mean features 
values for PCR subjects are classified as 1 and non-PCR subjects are classified as 0. This 
vector is then passed to the ROC function, which plots each sample values against speci-
ficity and sensitivity values. ROC is a standard way to classify the performance and visu-
alize the behavior of a diagnostic system [104]. The TPR is plotted against y-axis and 
FPR is plotted against x-axis. The area under the curve (AUC) shows the portion of a 
square unit. Its value lies between 0 and 1. AUC > 0.5 shows the separation. The higher 
AUC shows the better diagnostic system. Correct positive cases divided by the total 
number of positive cases are represented by TPR, while negative cases predicted as posi-
tive divided by the total number of negative cases are represented by FPR.

Training/testing data formulation

The Jack-knife fivefold cross-validation technique with below steps as detailed in [105–
107] was applied for the training and testing of data formulation and parameter opti-
mization. It is one of the most well-known, commonly practiced, and successfully used 
methods for validating the accuracy of a classifier using a fivefold cross-validation. The 
data are divided into fivefolds in training, the fourfolds participate, and classes of the 
samples for remaining folds are classified based on the training performed on fourfolds. 
For the trained models, the test samples in the test fold are purely unseen. The entire 
process is repeated 5 times and each class sample is classified accordingly. Finally, the 
unseen samples classified labels that are to be used for determining the classification 
accuracy. This process is repeated for each combination of each system’s parameters and 
the classification performance indices were computed.

NPV =

∑
True negative∑

Predicted condition negative
,

NPV =
TN

TN+ FN
,

Accuracy =
TP+ TN

TP+ FP+ FN+ TN
.
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Handling the overfitting problem

K-fold cross-validation as shown in Fig.  5 is an effective preventative measure against 
overfitting. Thus, to tune the model, the dataset is split into multiple train-test bins. 
Using k-fold CV, the dataset is divided into k-folds. For model training, k − 1 folds are 
involved, and rest of the folds are used for model testing. Moreover, k-fold method is 
helpful for fine-tuning the hyperparameters with the given original training dataset in 
order to determine that how the outcome of ML model could be generalized. The k-fold 
cross-validation procedure is reflected in Fig.  5 below. In this research work, we kept 
the value of k = 10, i.e., tenfold cross-validation is used to avoid the overfitting problem, 
where the final performance of the models trained on the tenfold CV is tested using test-
ing samples set consisting of non-augmented values (without SMOTE) to evaluate per-
formance on actual data (non-augmented data).

Statistical analysis and performance measures

Analyses examining differences in outcomes across different time points used unpaired 
2-tailed t-tests with unequal variance [108, 109]. Receiver operating characteristic (ROC) 
curve analysis [110, 111] was performed with PCR as ground truth. AUCs with lower 
and upper bounds and accuracy were tabulated. Matlab (R2019b, MathWorks, Natick, 
MA) was used for statistical analyses. The performance was evaluated in terms of sen-
sitivity, specificity, positive predictive value (PPV), negative predictive value, accuracy, 
area under the receiver operating characteristic (AUC) curve as detailed in [105–107].
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