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Background
Over the last decades, microRNAs (miRNAs) have emerged as important molecules 
associated with regulation of gene expression in humans and other organisms, expand-
ing the strategies available to diagnose and handle several diseases. Briefly, miRNAs are 
small non-coding RNAs (21–25 nucleotides) and derived from coding and non-coding 
transcription units in genic (intronic or exonic) and intergenic regions [1, 2].

These molecules were initially described in nematodes and implicated in the regula-
tion of genic expression by post-transcriptional mechanisms targeting complementary 
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mRNAs and affecting several biological processes, as cell signaling, differentiation, pro-
liferation, and activation/inhibition of apoptotic mechanisms [2–4]. Currently, over 38 
thousand miRNAs sequences from 271 species were described and cataloged on the 
miRBase (http://www.mirba​se.org), which 1917 sequences are from Homo sapiens and 
may represent an important source of data to understand complex cellular mechanisms 
and establish a molecular diagnosis of several diseases [5, 6].

In this sense, considering the miRNAs proprieties and their role in the post-transcrip-
tional regulation of genic expression, along the recent years we observed a successive 
accumulation of new evidence from differential expression of miRNAs in physiologi-
cal and pathological conditions—including in infectious diseases and during the cancer 
development [7–14].

Classically, miRNAs can modulate the genic expression acting directly by intracel-
lular mechanisms or after their release into microvesicles, allowing the modulation of 
gene expression between different tissues [15–17]. Both intra- and extracellular miRNAs 
can be detected on tissue samples and biological fluids (as serum, plasma, urine, saliva, 
sweat, and tears), but currently, this methodology is poorly explored in personalized 
medicine as diagnosis strategy or therapeutic tool [18–20]. Thereby, this review explores 
the role of miRNAs on the maintenance of tissue homeostasis, during cancer develop-
ment, the major strategies adopted to detect and quantify these molecules, and their 
potential application as biomarkers for early cancer detection using a tissue or minimally 
invasive samples. Taken together, these findings may contribute to the development of 
new diagnostic tools for the quantification of miRNAs using clinical samples and allow-
ing the application of personalized medicine strategies.

The current paper summarizes the latest findings related to the application of miR-
NAs as biomarkers for cancer detection, notably breast, prostate, and cervical cancers. 
These cancers, despite their high incidence worldwide, resulting in millions of new diag-
noses and deaths every year worldwide [21, 22], present only few studies summarizing 
the recent findings in this area. Besides, we take an overview of current strategies used 
to quantify these molecules in tissue samples and liquid biopsies and point out the major 
challenges to applying these strategies as a screening method for early cancer detection.

The biological basis of miRNAs and their use as biomarkers of cancer 
development
Role of miRNAs during tissue homeostasis, extracellular signaling and their implication 

on the development of cancer

During physiological conditions, miRNAs play a key role in the control of tissue homeo-
stasis and cell signaling, acting as a post-transcriptional mechanism of gene expression. 
The coordinate function of these molecules associated with other mechanisms avoid the 
development of aberrant cellular proliferation, regulates the cellular differentiation and 
allows the fine regulation of mRNAs in response to endocrine hormones and other stim-
uli (e.g., cytokines, chemokines, infectious or stress conditions) detected in the cellular 
microenvironment [23–26].

Typically, miRNAs are expressed in the precursor form (pri-miRNAs) by RNA Poly-
merase II in the nucleus and partially cleaved by DGC58/Drosha proteins, resulting 
in the pre-miRNA form, as represented in step 1 of Fig. 1. This intermediary (70–100 

http://www.mirbase.org
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nucleotides) is exported to the cytoplasm by Exportin 5 proteins (step 2) and interacts 
with Dicer, which will be responsible for the final cleavage of the hairpin loop and results 
in a 20–25 nucleotide dsRNA structure (step 3). Finally, mature single strain miRNAs 
are released after the action of helicases and interact with Argonauts proteins (AGO1 
and AGO2), resulting in the formation of the miR-RISC protein complex (step4), which 
stabilizes the following interaction with the complementary mRNA strand and acts on 
post-transcriptional control of gene expression, driven the mRNA for degradation or 
silencing (step 5) [27]. Additionally, mature miRNAs can be released into exosome vesi-
cles (step 6) and affect the tissue microenvironment or present an endocrine action after 
being secreted on biological fluids (as plasma, saliva, or urine), resulting in local or sys-
temic effects (step 7) [28–30].

Despite being systemically secreted by different cell types, the miRNAs expression 
follows a tissue-specific pattern, evidencing the key role of these molecules on cell 

Fig. 1  MicroRNA expression and function on post-transcriptional regulation of mRNA. (1) Mature miRNAs 
are initially expressed in the nucleus in the pri-miRNAs form, which is cleaved by DGC58/Drosha proteins, 
resulting in the pre-miRNA form. (2) The intermediary pre-miRNA form is exported to the cytoplasm. (3) 
The intermediary pre-miRNA form interacts with Dicer, responsible for the final cleavage of the hairpin loop 
and result in a 20–25 nucleotide dsRNA structure. (4) Mature miRNAs are released and form the miR-RISC 
protein complex. (5) miR-RISC protein complex interacts with the complementary mRNA strand and the acts 
on post-transcriptional regulation mechanisms. (6) Mature miRNAs are released into exosome vesicles. (7) 
Mature miRNAs in exosomes can be detected in several biological fluids (as plasma, saliva, or urine)
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differentiation and control of homeostasis [31]. Over recent years, this feature has been 
explored to map the miRNA expression profile in homeostatic conditions and how infec-
tions or other diseases can modulate these molecules. In this sense, Ying and colleagues 
evidenced that miRNAs (notably miR-155) released by adipose tissue macrophages in 
exosome vesicles play an important role in insulin sensitivity in  vivo and in  vitro and 
modulate the cellular glucose uptake [32]. Several miRNAs also have been implicated 
in the fine regulation of other endocrine signaling pathways by up- or downregulation 
of estrogen receptors ER-α and β [33]. The expression of these molecules can also be 
influenced by the circadian cycle and contribute to the development of other non-cancer 
conditions, such as neurological, cardiovascular, and infectious diseases [7–14].

Although being progressively explored in basic research and their potential as a thera-
peutic tool, targeting specific genes and blocking the over/aberrant gene expression, 
miRNAs still is under adopted in clinical practices in personalized medicine—whether 
due to costs, safety or technical issues [34–36]. Currently, the NIH (clinicaltrials.gov) 
registered over 850 miRNA-related studies and their use for the development of new 
diagnostic tools or exploring their potential as a therapeutic approach to several dis-
eases, such as sepsis, autism, diabetes mellitus 2, muscular dystrophy, amyotrophic lat-
eral sclerosis, and cancer.

How the changes in the miRNA expression allow the subversion of the tissue 

microenvironment and contribute to cancer development?

The dynamic balance between the apoptotic mechanisms and controlled cellular pro-
liferation is critical to prevent the development of potentially malignant cells and keep 
the immune surveillance ready to act when an aberrant proliferation is detected. Usu-
ally, the host immune response activates cellular mechanisms mediated by NK and 
CD8+ T cells to eliminate unwanted cells and control the disordered cellular prolif-
eration without damage the affected tissue. In this context, miRNAs are continuously 
expressed in rest or proliferating cells (including those related to the development of the 
immune response) and act to control the disordered cellular replication and differentia-
tion, allowing the maintenance of tissue homeostasis or controlled response to stress or 
injuries [27]. However, when this tight control does not eliminate all detected threats 
by apoptotic and/or necrotic mechanisms or aberrant cells avoid the development of 
immune response, it can result in cancer development [37–39].

Several studies have implicated the changes in the miRNA expression pattern with the 
alteration observed in tissue microenvironment since the early stages of tumoral pro-
gression, allowing the formation of new blood vessels, the aberrant cellular proliferation 
and blocking the development of the immune response (e.g., inducing local Tregs cells 
and tumor-associated macrophages) [40–42]. Typically, these alterations occur without 
any manifestation of clinical symptoms or detection by traditional screening methods 
[19, 43]. In both contexts, several miRNAs are critical to block the function of cellular 
sensors and allow the uncontrolled proliferation or indicate the aberrant proliferation, 
recruiting immune cells to the affected tissue and avoid the tumoral development.

Among the main miRNAs related to the tumoral development, the overexpression 
of miR-21 was associated with the occurrence of several types of cancer (such as glio-
blastoma, breast, and gastrointestinal cancer) [44–46]. According to Xu et al. [47], this 
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molecule has oncogenic property by targeting critical genes (as PTEN, RECK, and Bcl-
2), allowing the aberrant cellular proliferation and tissue invasion of malignant cells. On 
the other hand, the downregulation of other miRNAs (as miR-141) is associated with 
cell proliferation and invasion in breast, colorectal, and prostate cancer [48–50], while 
several studies associate the regulation of p53 expression by the miRNAs [51–54]. Taken 
together, the dynamic balance mediated by several miRNAs between fine regulation of 
oncogenes and tumor suppressor genes act as a key regulator of tissue homeostasis and 
may indicate the early stages of tumoral development even when these alterations are 
not detected by traditional screening methods [55–57].

According to the recent estimates from Bray et  al. [39], the number of new cancer 
cases is expected to affect up to 24.6 million people by 2030 and resulting in 13 million 
cancer-related deaths. In this sense, accurate early diagnosis is critical to the establish-
ment of adequate therapeutic protocols, save lives, and improve the life expectancy of 
diagnosed patients [16, 58]. In recent years, the understanding of biochemistry and met-
abolic alterations induced during the aberrant cellular proliferation allowed the devel-
opment of new chemotherapeutic agents, reducing the side effects and improving the 
therapeutic protocols [59–61]. However, since the description of the epigenetic mecha-
nisms and the influence of miRNAs on post-transcriptional regulation events, a new era 
of molecular targets emerges as potential therapeutic agents and/or tissue-specific bio-
markers of the development of tumoral cells [62–64].

This analysis leads us to the hypothesis that a complex miRNA panel may have an 
important role in the cancer diagnosis. However, currently there is no consensus on 
which molecules should be analyzed and how they can be applied as a biomarker of early 
cancer development, allowing the clinical staff to start the treatment in the initial stages 
of the disease and improving the quality of life from diagnosed patients.

miRNAs as biomarkers of early cancer development: changes in the expression pattern 

detected in tissue samples and minimally invasive liquid biopsies

Although there is a lack of consensus on miRNA panel to detect the cancer develop-
ment, this review summarizes the major findings related to the role of miRNAs during 
cancer development and the top 20 molecules related to breast, prostate, and cervical 
cancers. The current paper is not intended to present a definitive panel but to systema-
tize our knowledge in the application of miRNAs as biomarkers of cancer development, 
and its importance in the rise of new strategies of diagnosis.

Considering all recent experimental and clinical data accumulated during research in 
physiological and pathological conditions, the quantification of miRNAs may be a pow-
erful tool during the establishment of early cancer diagnosis, the evaluation of prognosis, 
and predictive biomarkers [58, 65]. Over recent years, changes in the pattern of miRNA 
expression serve as a molecular signature and have been used as a complementary tool 
to consolidate the cancer diagnosis [66–68]. This property allowed the identification of 
multiple primary and metastatic cancers by the origin of the tumoral tissue [69–73].

Besides the indication of cancer development with high sensibility and specificity, 
miRNAs also can be applied to confirm the initial pathological classification and to 
indicate the prognosis associated with cancer development [74, 75]. This approach 
may be used directly from tissue samples even during retrospective studies with 
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formalin-fixed paraffin-embedded (FFPE) specimens archived for long periods or 
using minimally invasive methods [76].

However, despite these advances, currently, only a few studies associate the 
miRNA expression in tissue samples with the miRNAs released into exosomes, 
observed using minimally invasive liquid biopsies (as peripheral blood, saliva, urine, 
and tears) [15–17]. Although several basic studies evaluated the miRNAs present 
into vesicles, this gap hampers the use of miRNAs as a new strategic diagnostic tool, 
considering the needed for tissue samples and the use of specific bioinformatics 
tools to perform the clinical interpretation of results.

Currently, there is a lack of consensus on miRNA panels to detect the cancer 
development, but we must consider all published data to find which biomarkers may 
be useful to early detection of each type of cancer. In this sense, despite the sugges-
tion present in the current paper, we encourage the development of new studies to 
adequate the targets miRNAs according to the genetic background of each popula-
tion and the type and stage of cancer development.

Considering these findings, the development of a new tool to quantify miRNAs in 
clinical samples will be useful to detect several cancers and other diseases, includ-
ing those that affect the CNS, once these molecules can cross the blood–brain bar-
rier and indicate the occurrence of cellular alterations, in a complementary way to 
the traditional imaging exams [77–79]. Additionally, despite the current difficulties 
to correlate the serum miRNA profile to the tissue-specific tumoral alterations, the 
establishment of a well-defined panel and the adequate bioinformatics tools may be 
useful to distinguish between similar histological/phenotypical subtypes, providing 
an additional molecular classification using minimally invasive samples with high 
sensitivity and specificity [80–82].

Preliminary panel of miRNA expression related to breast cancer development

As previously discussed, several miRNAs are identified as potential biomarkers of 
breast cancer development, as evidenced in Table  1. Among these, several act as 
onco-miRs (allowing the aberrant cellular proliferation). Some of these are repre-
sented for miR-21, miR-26a, miR-155, miR-221/miR-222, and miR-495, which are 
related to tumor proliferation and angiogenesis [46, 83–91].

On the other hand, several miRNAs (as those from let-7 family, miR-1, miR-100, 
miR-125b, miR-126, miR-145, miR-195, miR-199, miR-200c, miR-203, miR-210, 
miR-298, miR-331, miR-335, and miR-340) are implicated in the control of cell cycle, 
response to hypoxia and stress conditions, and induction of apoptotic mechanisms 
[46, 79, 92–110].

Additionally, McAnena et al. [111] observed that circulating miR-332 and miR-195 
may be used to differentiate between local and metastatic breast cancer, while Sathi-
pati et  al. [112] suggest that 34 miRNAs can be used to classify the early and the 
advanced stage of breast cancer progression. These findings reinforce that a small 
number of miRNAs can be used as biomarkers to risk prediction or prognosis of 
breast cancer development [113–115].
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Preliminary panel of miRNA expression related to cervical cancer development

Similarly to breast cancer, several miRNAs are associated with the inhibition of cel-
lular proliferation and migration (as miR-10b, miR-32, miR-124, miR-138, miR-143, 
miR-146a, miR-192, miR-214, miR-328, miR-429, miR-466) [64, 116–125]. Other 
studies associated the expression of miR-15b, miR-17, miR-21, miR-124, miR-130a, 
miR-218, miR-409, miR-432, and miR-454 with the regulation of cell differentiation 
and development of cervical cancer [118, 119, 126–130]. Table 2 summarizes the top 
20 main miRNAs and their cellular function implicated in the development of cervi-
cal cancer.

Several authors also evidenced the changes in the miRNA expression patterns in tissue 
samples and liquid biopsies, reinforcing the importance of studies using multiple types 
of samples. In this sense, Shukla et al. [118] observed that patients diagnosed with cer-
vical cancer differentially expressed 119 miRNAs in tissue samples when compared to 
healthy controls, while 19 miRNAs were differentially expressed in serum and only 14 
miRNAs were mutually altered in tissue and serum samples. A similar approach con-
ducted by Nagy et al. [131] studying the miRNA expression in patients diagnosed with 
colorectal cancer identified that hsa-miR-3591-3p, hsa-miR-4506, hsa-miR-31, and hsa-
miR-187 are similarly altered in tissue and plasma samples.

Preliminary panel of miRNA expression related to prostate cancer development

Along the recent decade, several papers explored the miRNA expression from pros-
tate cancer patients and compared these results with classical parameters (as PSA, 

Table 1  Preliminary panel for miRNA quantification related to breast cancer development

miRNA Cellular function References

let-7 family Inhibition of cell proliferation, migration, and metastasis [46, 83]

miR-1 Inhibition of tumor growth and metastasis [97, 171]

miR-21 Promotion of cellular proliferation and tumor angiogenesis [46, 83, 84]

miR-26a Promotion of cell proliferation and differentiation in several tissues [85, 86]

miR-100 Inhibition of tumorigenesis, cell proliferation and signaling [98, 99]

miR-125b Inhibition of cellular proliferation and induction of metastasis [83, 100, 172]

miR-126 Inhibition of cell invasion by ADAM9 downregulation [103, 104]

miR-145 Inhibition of cellular proliferation, migration, and tumor angiogenesis [83, 105, 106]

miR-155 Promotion of cellular proliferation and tumor angiogenesis [83, 87]

miR-195 Regulation of apoptosis and inhibition of tumor invasion [111]

miR-199a Inhibition of tumor invasion and metastasis [84]

miR-200c Regulation of apoptosis and metastasis [29]

miR-203 Inhibition of tumorigenesis, cell proliferation, and signaling [173]

miR-210 Response to hypoxia and stress conditions [107, 174, 175]

miR-221/miR-222 Promotion of cellular migration and proliferation [88–90]

miR-298 Response to hypoxia and control of cell proliferation [108]

miR-331 Regulation cell proliferation, apoptosis, and inhibition of tumor invasion [111]

miR-335 Regulation of BRCA1 expression, inhibition of cellular proliferation and migra‑
tion

[109, 110]

miR-340 Regulation cell proliferation and inhibition of tumor invasion [176]

miR-495 Promotion of cellular migration, proliferation, and response to hypoxia [91]
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biopsies results, and Gleason score), associating the tissue-restricted or circulat-
ing miRNAs expression with the occurrence of tumoral cells and the prognosis 
[132–134].

In this sense, the expression of miR-17, miR-20a/miR-20b, miR-148, miR-650, and 
miR-4534 are associated with induction of cell differentiation and tumor angiogenesis 
[134–137]. On the other hand, the expression of let-7 family, miR-100, miR-124, miR-
125b, miR-132, miR-141, miR-143, miR-145, miR-195, miR-200a, miR-221, miR-296, 
miR-375, miR-382, and miR-449 are associated with the inhibition of cell proliferation 
and metastasis formation [94, 138–165]. Table 3 summarizes these findings associated in 
the development of prostate cancer. Figure 2 illustrates in a Venn diagram the sharing or 
differentially expressed miRNA profile in only one type of cancer, according to the data 
present in the tables. The star represents that, considering only these panels, there is no 
over position on miRNA expression mutually altered in all three cancer types according 
to the literature reviewed. However, this possibility was not excluded if we considered 
the expression of other miRNAs not presented in the tables.

Current strategies adopted to quantify miRNAs and major challenges to the development 

of new diagnostic tools in the IoT era

Besides millions of deaths worldwide, the cancer diagnosis also has a huge economic 
impact on individuals and health systems. According to recent data from the National 
Cancer Institute—NIH, the annual cost of treatment for breast, prostate, and cervical 
cancer is estimated at 35.6 billion dollars, mainly directed to hospitalizations, therapeu-
tic agents, and palliative care. Additionally, the indirect impact associated with the lost 

Table 2  Preliminary panel for  miRNA quantification related to  cervical cancer 
development

miRNA Cellular function References

miR-10b Inhibition of cellular proliferation and invasion [116, 117]

miR-15b Regulation of cellular proliferation and migration [126]

miR-17 Promotion of cellular proliferation and tumor angiogenesis [118]

miR-21 Promotion of cellular proliferation and tumor angiogenesis [127]

miR-27b Induction of cell proliferation, migration, and invasion [177]

miR-32 Inhibition of cellular proliferation and migration [118]

miR-124 Regulation of cellular differentiation and migration [119]

miR-130a Promotion of cellular proliferation and tumor angiogenesis [128, 129]

miR-138 Inhibition of cellular proliferation and migration [116]

miR-143 Regulation of apoptotic mechanisms [120]

miR-146a Regulation of inflammatory responses and cell differentiation [121]

miR-192 Inhibition of cellular proliferation and migration [64]

miR-214 Inhibition of cellular proliferation [44]

miR-218 Regulation of cell differentiation and proliferation [119]

miR-328 Inhibition of cellular proliferation [123]

miR-409 Regulation of cellular proliferation and metastasis [118]

miR-429 Inhibition of cell proliferation, migration, and invasion [124]

miR-432 Regulation of cell proliferation and differentiation [130]

miR-454 Regulation of cellular proliferation and metastasis [118]

miR-466 Inhibition of cellular proliferation and control of apoptotic mechanisms [125]
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productivity associated with cancer diagnosis represents an extra amount of 17.2 billion 
dollars per year [166–168].

Among the main challenges to the dissemination of new tools for the accurate early 
cancer diagnosis are the use of expensive methods/equipment and the need for special-
ized professionals, which makes unfeasible their application in low- and middle-income 
countries and remote locations. The advances observed in cancer therapy changed the 
outcome and improved the quality of life during the treatment, evolving from a death 
sentence to a curable disease in several cases in only a few decades. However, despite the 
efforts, the diagnostic tests do not go along with these advances or are expensive to be 
applied as screening methods in primary health care [92, 93].

Usually, the cancer diagnostic methods are based on high-resolution imaging, detec-
tion of metabolites in tissue samples/biological fluids, or morphological/phenotypic cel-
lular analysis. Nevertheless, even when all those requirements are available, it does not 
guarantee the establishment of a precise early cancer diagnosis due to the stage of dis-
ease development, lack of sensibility or misinterpretation of requested exams, and false-
positive or false-negative results [10].

In recent decades, the initial techniques to detect miRNAs were optimized and pro-
gressively replaced by more accurate and less laborious methods [94]. Currently, the 
main techniques used for miRNA quantification are based on microarray platforms, 
qPCR, next-generation sequencing, Northern blotting, or isothermal amplification. 
Among these methods, those based on microarray platforms and qPCR are widely used 
in basic researches and manufactured by different companies. In general, both strategies 

Table 3  Preliminary panel for  miRNA quantification related to  prostate cancer 
development

miRNA Cellular function References

let-7 family Inhibition of cell proliferation, migration, and metastasis [138–140]

miR-17 Promotion of cellular proliferation and tumor angiogenesis [134]

miR-20a/miR-20b Regulation of cell proliferation, differentiation, and apoptosis [134]

miR-100 Inhibition of tumorigenesis, cell proliferation, and signaling [141]

miR-124 Inhibition of cellular proliferation and migration [142, 143]

miR-125b Inhibition of cellular proliferation and induction of metastasis [144, 145]

miR-132 Inhibition of cellular proliferation and signaling [146]

miR-141 Inhibition of cellular proliferation and migration [94, 147]

miR-143 Regulation of apoptotic mechanisms [148, 149]

miR-145 Inhibition of cellular proliferation, migration and tumor angiogenesis [150, 151]

miR-148 Regulation of angiogenesis and apoptotic mechanisms [135]

miR-195 Inhibition of cellular proliferation, cell cycle progression, and metastasis [152, 153]

miR-200a Inhibition of cellular proliferation and signaling [154, 155]

miR-221 Inhibition of cell proliferation and invasion [156–158]

miR-296 Inhibition of cell proliferation and invasion; induction of apoptotic mecha‑
nisms

[154, 159, 160]

miR-375 Inhibition of cell proliferation and invasion [161, 162]

miR-382 Inhibition of cell proliferation, migration, and metastasis [163]

miR-449 Control of cell proliferation and differentiation [164, 165]

miR-650 Regulation of pro-inflammatory signals and induction of cell proliferation [136]

miR-4534 Induction of cell migration and metastasis [137]
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adopt a labeled-probe strategy to quantify their targets using optical sensors and report 
the results. However, the elevated operational cost of analysis and the multiple-step pro-
cessing samples are issues that need to be solved to allow the scalability of these meth-
ods using clinical samples.

On the other hand, the application of next-generation sequencing, Northern blot, and 
isothermal amplification for miRNA quantification requires multiple-step protocols 
and they are more expensive than microarray platforms and qPCR, especially when we 
analyze multiple targets simultaneously. Table 4 summarizes the main features of each 
method and current limitations for their application as a screening method for early 
cancer detection. Considering these features, recent papers that quantify miRNAs in 
clinical samples aiming to detect potential biomarkers are mostly based on microarrays 
platforms and qPCRs strategies, regarding their better processing scalability, analysis of 
results, and overall costs in multiple targets assays [80, 92, 93, 101].

In this sense, one of the major challenges on miRNA field is to apply the knowledge 
from different areas (as medicine and biomedical engineering) to the development of 
a trusted, cheap and portable platform/devices, which uses minimally invasive samples 
(i.e., serum/plasma, saliva or urine) to contribute for early cancer detection. However, 
beyond the inherent biological aspects, the development of these new tools should also 
consider their application as a smart device and be able to connect with other medi-
cal devices and to the Internet of Things (IoT). An efficient low-cost platform using 

Fig. 2  Representation in a Venn diagram of the sharing or differentially expressed miRNA profile in only one 
type, according to the proposed panels for (1) breast; (2) cervical; or (3) prostate cancer. The star represents 
the absence of over position on miRNA profile mutually altered in all three cancer types according to the 
literature reviewed. This possibility, however, was not excluded if we consider the expression of other miRNAs 
not presented in the tables
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minimally invasive samples, as represented in Fig. 3, which with few steps since the min-
imally invasive sample collection (step 1), sampling processing (step 2), miRNA quan-
tification (step 3) through the final communication of results (step 4) can reduce these 
technical barriers and contribute to the democratization of access to cancer screening 
tests, even in remote populations. The elaboration of a complex panel based on updated 
results from several platforms and the device connection with specialized centers could 
be useful to test isolated populations and optimize the analysis of results, contributing to 
developing personalized medicine strategies and translating the knowledge from bench 
to save lives.

Taken together, these advances may represent a new era in cancer diagnosis proce-
dures. As observed in several industry segments, the revolution 4.0 in health practices 
and devices can subvert the rationale of investments (from hospitalization to primary 
care assistance), contributing to early diagnosis and optimizing the resources available 
[95, 169, 170].

Conclusion
Considering the progressive number of new cancer cases every year worldwide, the 
development of new tools to improve the early detection methods is critical to improv-
ing the sensitivity and specificity in screening tests to allow a better prognosis for these 
patients. Besides the deaths associated with late diagnosis, cancer therapy has a huge 
economic impact associated with therapies, prolonged hospitalization periods, and the 
occurrence of metastasis. Currently, several papers associated changes in the miRNA 
expression to the development of tissue-specific modifications and aberrant cellular pro-
liferation. Although there is a lack in the consensus on the miRNA expression between 
tissue and biological fluid samples, the development of new studies and the establish-
ment of an adequate biomarkers panel may be useful to detect several cancer types using 

Fig. 3  Development of a low-cost platform to quantify miRNAs using minimally invasive samples and their 
application as a diagnostic tool for cancer screening. Among the desirable features for the application of a 
new diagnostic tool, this strategy may reduce the technical barriers to early cancer diagnosis and contribute 
to the application of miRNAs quantification as a powerful screening method. (1) Use of minimally invasive 
samples. (2) Few steps of sample processing until the complete miRNA isolation. (3) miRNA quantification 
and data analysis. (4) Clinical interpretation of results and effective communication of them between the 
health professional and the patient
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minimally invasive samples. The current methods used to quantify miRNAs in clinical 
samples frequently are expensive, based on multiple steps protocols and demand a high-
specialized professionals, making their large-scale application unfeasible.

In this sense, the application of miRNAs as biomarkers of early cancer development 
may contribute to the development of precision medicine and improve life expectancy 
and quality of life from affected patients. However, there is still a challenge to make the 
miRNA quantification an economically feasible approach to be adopted widely in pri-
mary health care. The development of new technologies and/or optimization of current 
strategies adopted to quantify these molecules applied into a new portable device able to 
detect these molecules using blood or other biological fluids could represent an impor-
tant strategy to democratize, with agility and excellence, the cancer screening strategy 
and take the next step forward to the development of personalized medicine.
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